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CARLESON MEASURES AND
A CLASS OF GENERALIZED INTEGRATION
OPERATORS ON THE BERGMAN SPACE

ANSHU SHARMA AND AJAY K. SHARMA

ABSTRACT. In this paper, we consider a linear operator

LM f(2) = / F™ (9 () R (€) d¢
0

induced by holomorphic maps h and ¢ of the open unit disk D,
where ¢(D) C D and n is a non-negative integer. A complete

characterization of when I}(l";

space A2 is established by using Luecking’s result for Carleson
measures. We also compute upper and lower bounds for the
essential norm of this operator on the Bergman space.

is bounded on the Bergman

1. Introduction. Let D be the open unit disk in the complex
plane C. Throughout this paper, we denote by H(D) the space
of holomorphic functions on D. Let dA(z) = (1/m)dxzdy, where
z = x + ty, denote the normalized Lebesgue measure on D. Recall
that the Bergman space A? is a Hilbert space of holomorphic functions
on D with the norm

(L.1) 1l = ( /| |f<z>2dA<z>)1/2 < .

Also, if f € A% and f(z) = > .—,a,z" is its Taylor series in D, then
||| 4= may also be defined as

e} |an|2
1.2 = .
(12) Ille =22
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Moreover, it is well known that

1/2
(1.3) | f1].a2 ~ [£(0)] + </D If'(2)P(1 - ZIZ)ZdA(Z)> ;

where the notation A ~ B means that there is a positive constant C'
such that B/C < A < CB. See [5, 14] for more details on the Bergman
space.

For z,w € D, let B,(w) = (2 — w)/(1 — Zw) be the Mdbius trans-
formation of D which interchanges 0 and z. Then the nth deriva-
tive of B,, B (w) = n!(|2|? — 1)(2)" /(1 — zw)"*1. Also K,(w) =
1/(1 — zw)? is the Bergman kernel and k,(w) = (1 — |z|?)/(1 — zw)? =
(1 - |2*)K,(w) = —pB.(w) is the normalized kernel function in A2
Moreover, k{") (w) = (n+ 1)!(1 — |2]2)(2)"/(1 — zw)"+2 = —B" T (w).

Let g, h and ¢ be holomorphic maps on D such that ¢(D) C D. For
a non-negative integer n, we define a linear operator

1) 1(z) = /0 PO (p()R(Q) &, f € H(D).

We call it the generalized integration operator, since it induces many
known operators. When ¢(z) = z, we drop ¢ and simply write [, ,(ln) for

I,(L),. If n =0 and h(z) = ¢(2), then we get the operator T} , induced
by g and ¢ as

T, of(z) = /0 T F(e(0)) dg(€) = /0 T F(e(0)g'(0) d¢
:Afww»ww@w

The operator T, , can be viewed as a generalization of the Riemann-
Stieltjes operator T, induced by g, defined by

1ww=A3@@@:AﬂmwwMazen

Pommerenke [7] initiated the study of Riemann-Stieltjes operator on
H?, where he showed that T, is bounded on H 2 if and only if g is in
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BMOA. This was extended to other Hardy spaces HP, 1 < p < oo, in
[1, 2], where compactness of T, on H? and Schatten class membership
of Ty on H 2 was also completely characterized in terms of the symbol
g- Recently, several authors have studied these operators on different
spaces of analytic functions. For example, one can refer to ([3, 8, 9, 11,
12]) and the related references therein for the study of these operators
on different spaces of analytic functions. If n = 1 and h(z) = ¢'(2)g(z),
then we get the operator J, , induced by g and ¢, defined as

Jgof(2) /f (Q)g(¢)d¢, =zeD.

The operator J, , is the generalization of the operator J,, recently
defined by Yoneda in [13] as

/f ¢)d¢, zeD.

Also, if n = 1 and h(z) = ¢'(z), then I( 3, reduces to the difference
of the composition operator and the pomt evaluation map, defined as
Cof = fop— f(e(0), f € HD). These operators have gained
increasing attention during the last three decades, mainly due to the
fact that they provide ways and means to link classical function theory
to functional analysis and operator theory. For general background on
composition operators, we refer to [4, 10] and the references therein.

The main goal of this work is to estimate the essential norm of the

operator I () on the Bergman space A2. Recall that the essential norm
[|T||e of a bounded linear operator on a Banach space X is given by

[|IT)|le = inf{||T — K|| : K is compact on X},

that is, its distance in the operator norm from the space of compact
operators on X. The essential norm provides a measure of non-
compactness of T'. Clearly T is compact if and only if ||T||. = 0.

2. Boundedness of I, (n ). In what follows, we make extensive use
of Carleson measure technlques, so we give a short introduction to
Carleson sets and Carleson measures first. For b € 0D and 0 < § < 1,
let S(b,d) denote the Carleson set:

S(b,6)={z€D:|z—b| <4}
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We need a special case of the Luecking’s result [6] for p = ¢ = 2 and
a = 0 in which he characterized positive measures p with the property

1F ™ L2y < ClIF|| a2

Theorem 2.1. Let n € NU{0}. Then for a positive Borel measure
w on D the following are equivalent:

(1) There is a constant Cy > 0 such that, for b€ 9D and 0 < § < 1,

w(S(b,8)) < C1520+m),

(2) There is a constant Cy > 0 such that, for every f € A2,

/D £ () Pdpa(w) < Cal ] L.

(3) There is a constant Cs > 0 such that, for every z € D,

/ 1B+ (w) Pdu(w) < C.
D

A positive Borel measure p which satisfies the above equivalent
conditions is called a 2(n + 1)-Carleson measure for the Bergman space
A?. If we define

p(5(b,9))

Il = sup sup 22000,

5>0 bedD
then ||p|| and the constants in Theorem 2.1 are comparable.

A positive Borel measure g on D is called a vanishing 2(n + 1)-
Carleson measure if

lim sup M

60 pcoD §2(n+1) =0

The following result completely characterizes the bounded generalized

integration operator I °

on the Bergman space.
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Theorem 2.2. Let h and ¢ be holomorphic maps of D such that
©(D) C D. Then the following are equivalent:

(1) I,(:; is bounded on A>.

(2) The pull-back measure pp , = vy o @~ of vy induced by ¢ is a
2(n + 1)-Carleson measure. Here dvy(z) = (1 — |2[?)?|h(2)|?dA(z).

(3) sup.ep Jp (1 — [2[%)2(1 — [w|*)?]/|1 — Zp(w) [P +2) |h(w) [PdA(w)
< oo.

Proof. Since I}(:;f(O) =0 for all n > 0, so by (1.3) we have
VA% = [ G0 R = |=2dAC)
:/D|h(z)| 11 () (L~ |2*)*dA(2).

Thus, by definition, I, }(Ln; is bounded on A2 if and only if there is a
constant C' > 0 such that for any f € A2,

/ 1F™ (0(2))12|h(2)]?(1 — |2]?)%dA(z) < ClIf11%e-

Let dvp(z) = (1 — |2]?)?|h(2)[?dA(2) and pp,, = v, 0 @ be the pull-
back measure of v, induced by ¢. If we change the variable w = ¢(z),
then we get

/ £ () P o ()
D

/If”) ))[2dvn ()

/ £ (o(2) PIA()E(L — [2?)2dA().

Thus, by Theorem 2.1, (1) is equivalent to

/|f w)Pdpn p(w) < O f] %
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Hence (1) and (2) are equivalent. Again, by Theorem 2.1, the condition
that pp,, is a 2(n + 1)-Carleson measure is equivalent to

/D B (w) Pdpan,p (w) < C.

Changing the variable, we get

(1= 21?22 (1 = |w[?)? >
@D sw /D - ) dA(w) <

Thus, (1), (2) and (2.1) are equivalent. Clearly, (3) = (2.1). Suppose
that (2.1) holds. Then, for any 0 < 7y < 1, we have

(1 21?2 — Jw]?)? 2
(2.2) roiuzll)<1/D 11— zp(w) |2 +2) |h(w)|"dA(w) < oo.

By (1), I,(:; is bounded on .A2. Thus by taking f(z) = z"/n! in A%, we
get

/ (1 [wf?)?[h(w)2dA(w) < C
D

and so

(1—2*)%(1 = w/*)? 2
(2.3) ogsgzm/[) = 2 () 20D \h(w)|*dA(w)

: ﬁ /D(l — |w*)?|h(w) PdA(w).

Combining (2.2) and (2.3), we have (2.1) = (3). mi

Corollary 2.3. Let h and ¢ be holomorphic maps of D such that
p(D) CcD. If I,(;’L), is bounded on A?, then

1— 2)\2
o (L=l

sup oy R < oo

Proof. Suppose that I,(;g is bounded on A%. By Theorem 2.2, we

have

(1 - [2[%)?(1 — [w]*)? ,
h(w)|2dA ,
Slelg/n 11— zp(w) 242 |h(w)]*dA(w) < oo
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In particular,
1— 2)\2 1— 2\2
(2.4) sup/ (L= le@ )= ol ) 2d4(w) < oo
2tbJo 11— playplw)Er+d
For a fixed a € D, let Q(a) = {z € D : |z —a| < (1 — |a]?)/2}.
Then Q(a) C D. By subharmonicity of the function |h(w)*/|1 —
pla)p(w)[*" ), we get
|2 (a)* ¢
(1= lp(a)[2)2n+D) = (1 — |af?)?

(1 — |p(a)]?)? ;
’ /Q(“) 11— p(a)p(w)|2n+2) [7(w)]"dA(w)

cc’

=0-japy
2 2\2 2)2
X/ |h(w) (1 — |p(a)®)*(1 — Jwl|?) dA(w).
Q(a) 11— o(a)p(w)]?"+2)
Thus
(25 U= |a|*)*|h(a)[?

(1= lp(a))2(n )
coor [ O le@P2 )
- @ 1= p(a)p(w)>+2)
The result follows by (2.4) and (2.5). O

[h(a)[*dA(w).

It seems that the result for the boundedness of the operator I ,(1") on
the Bergman space A% has not appeared in the literature. Therefore,
we single it out as a corollary. In its formulation, we write AZ! for the
space of holomorphic functions f on D for which

sup(1 — |2[*)|(2)] < oo.
zeD

Corollary 2.4. Let h be a holomorphic map of D. Then I,(ln) 18
bounded on A? if and only if h € X, where
AL ifn=0
X=< H® ifn=1
{0} ifn>2.
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Proof. First suppose that I, ,(l") is bounded on A%. Then, by taking
¢(z) = z in Corollary 2.3, we have

(2.6) sup (1 — [2[%)'7"|h(2)| < oc.
z€D

Thus, for n = 0, h € Al and for n = 1, h € H*®. Again if
n > 2, then (2.6) implies that there is a positive constant C' such
that |h(z)| < C(1 — |2]?)"~! for all z € D. It follows that |h(z)| — 0
as |z| — 17, so by the maximum modulus theorem, we have h = 0.
Conversely, suppose that h € X. Now, if n > 2, then the result is
obvious. If n =0, then

_ 22 201 _ ,w2 2
D

|1 —Zwl|*
C12)2
ST

S

and so by Theorem 2.2, I,(Ln) is bounded on A2. If n = 1, then once again
the proof follows by taking ¢(z) = z in Corollary 2.3 and Theorem 2.2.
We omit the details. o

3. Essential norm. For holomorphic maps h and ¢ of D such that
(D) C D, define A} (a) as

|1 —@p(z) P(+2)

Theorem 3.1. Let h and ¢ be holomorphic maps of D such that
¢(D) C D. Let I}(L"; be bounded on A2. Then there are positive
constants C1 and Cy such that

Cy limsup A (a) < [|17)][2 < Cz limsup A7 (a).

la]—1 la]—1

In order to prove Theorem 3.1, we need several lemmas.
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Lemma 3.2. Let1/2 <r <1,ne€ NU{0} and D(0,7) = {z €D
|z] < r}. Let
M7 = sup [ 1604V du).
la|>r /D
Then, if u is a 2(n + 1)-Carleson measure for the Bergman space A?,
50 18 [ir = ft|p\D(0,r)- Moreover, ||it,|| < NM;, where N is a constant
depending upon n only.

Proof. Let
p(5(6,9))

M, = sup sup 5200

§<1—r bedD
For b € 0D and 0 < ¢ < 1, take any S(b, ). Suppose that § = n(1 —r)
for some constant 7. If 0 < n < 1, then S(b,§) C D\ D(0,r), and so
i (S(b,6)) = pu(S(b,0)) < M2+

If n > 1, then [§] + 1 > n and [§] + 1 < 27, where [r] is the greatest
integer that is less than or equal to 1. Let m = [n] + 1. In this case
it is possible to cover S(b, ) by S(by,01), S(b2,062),--. ,S(bm,dm) such
that §, = (L —r), k=1,2,...,m. Thus

fir (S(b,6)) = u(S(b,6) N (D \ D(0,7)))

—

I

p(S (b, k)

>
Il
—

5]3(1+”)

2(14n)
o
1

1— T,))Q(l—&-n)

[77] + 1)2(1+n)(1 _ 7,)2(1+n)
2n)2(1+n)(1 _ T)2(1+n)

IA
IS
NE

b
Il
—

INA
IS
NE

x>
Il

—~ o~
—~

IA I

\v}

2(1+4n) 62(1-‘,—77,)'

This implies that ||fi,|| < 220+™M,. Thus, to complete the proof,
we just need to prove that M, < NMY, where N > 0 is a constant
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depending upon n only. Take § < 1 —r. Let a = (1 — §)e?’. Then
la] =1—-6 > r. Again

(= JaP)lal” 9'1%((1 - Ia2)|a|">

11— az|2tn (1—az)2tn
@ JaP)alr (1 fa]\*"
- (1—|a|>2+n%<1—az>
(1~ [a]?)|a]” ( |a|<1—zz>><””’
=T w14 B
A=ja)z "\" T @ =Ta]

1 (1—laf)la
(2)F/2 (1 —[a])*t"

S 1 _a
= 9(Bn+2)/2§1+n’ ¢= m

>

if |[1—2C|/(1—]a]) < 7o for some fixed 0 < v < 1/4, that is, if
z € S(b,706). Thus

1(S(b,6)) 3 +2/ (n+1) (1|2
— 2" By 2)|*du(z
§2(1+n) S(bv05) ‘ ( )| ( )

s /D 1B (2)|2da(2)

< 23n+2M*
= T

Taking the supremum over all § with § < 1 —r, we get M, <
23" T2OMY. O

Let f(z) = Y50, arz* be holomorphic on D, Q,,f(z) = S5y arz*
and R, f(z) = I — @, where I is the identity map. Then R,, is the
orthogonal projection of A% onto z™A? and R, f(z) = 3 pe,, akz".

We need the following lemma which generalizes Proposition 3.15
of [4]. Though it can be easily extended to weighted Hardy spaces
considered by Cowen and MacCluer [4, page 133], we state it for the
Bergman space A2 only.
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Lemma 3.3. For eachr, 0 <r <1 and f € A?, we have

k=max{m,n}

for|z| <r.

Proof. Let n be a non-negative integer. Then for each z € D, the
evaluation of nth derivative of functions in A2 at z is a bounded linear
functional and f((2) = (f, Kén)>, where

KO0 =3 (o) B @)+ )

(n) |2 S k! ZE(kfm )k
K2 = é((k_n)!) ()% )(k+1)\A2
o5} k! 2_ e 2
:kz:% <(kn)!> kD)

= i ( : f'n)!>2|z2(’“”>(k+ 1).

—

Thus
(B f)" ()] = | (B, K|
= (5t
<111 e 1K) Lo

e () een)

k=max{m,n}

Finally, we need the following lemma of Cowen and MacCluer [4, page
134] to estimate the essential norm of I, ,(1"27

Lemma 3.4. Let T be a bounded operator on A%. Then
Il = lim |[7R, |
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Proof of Theorem 3.1. Upper bound. By Lemma 3.4,
T2 = Jim 100 Rul2 = lim  sup (|17 Rom) £

T[] 42

Thus by (1.3),
IR e = [ PR ) ()P~ 2 PaAL)
= [ R 1)) P (2
D
N / (R )™ (2)Pdpanp (2)
D\D(0,r)

(™) (2|2 p
+ / o D) )

=1 + L.

Since I( ™) is bounded on A2, dpeh,e is a 2(n + 1)-Carleson measure for
the Bergman space. So

L < sup |(Bunf) ™ (2)? / dpinp(2)
D(0,r)

|z|<r

<ie > (i) ).

k=max{m,n}

Thus for fixed r as m — 0o, we have supjs<1f2 = 0. On the other
hand, if we denote by fin,, = pin,o|D\D(0,r), then by Lemma 3.2 we
have

I S/ |(Rn )™ (2)|2dpn,(2) < lim KNM} = KNM;.
D\D(0,r) n—00
Therefore,
(n) 2 . .
12,7 Rl |2 < KN lim M;

= KNlimsup/ \5£"+1)(Z)|2d/1h,w(z)
D

la]—1

. (a2 = P2
_KNhI(?ilip/D 1= () 20D |h(2)|°dA(z),

which gives the desired upper bound.
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Lower bound. Consider the normalized kernel function k,(z) =
1 —a|?/(1 — @z)2. Then ||k4|| 4> = 1 and k, — 0 uniformly on compact
subsets of D as |a| — 1. Fix a compact operator K on A% Then
[|Kkqlla2z — 0 as |a| — 1. Therefore,

125"~ K| > msup ||(Z") — K)ka|a
|la]—1
> limsup(HI;(lZ;kaHAz — [|Kka| a2)
|a]—1
: (1 —la[?)*(1 — |2*)? 2
> Chmsup/D T ap(2) 21D |h(2)]*dA(2).

la]—1

Thus,

112 > |11 — K|

: (1= la*)(1 —|2[*)? 2
> Chrililip/D 1= ap(z) En D |h(2)|*dA(z). O

Routine calculations yield the following corollary.

Corollary 3.5. Let h and ¢ be holomorphic maps of D such that
©(D) C D. Then the following are equivalent:

(n)
(1) I, , is compact on A2,
(2) The pull-back measure pip, = vhp o @~ of vy, induced by ¢
is a vanishing 2(n + 1)-Carleson measure. Here dvp(z) = (1 —

|21)2|(2)|*dA(2).

(1—2[*)? (1~ |w|?)?

(3) limy. 51 [p Sz mymmrs |A(w)|*dA(w) = 0.
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