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BOUNDARY DECOMPOSITION
OF THE BERGMAN KERNEL

STEVEN G. KRANTZ

ABSTRACT. We study the Bergman kernel on a domain
having smooth boundary with several connected components,
and relate it to the Bergman kernel of simpler domains having
only some of these boundary components. Results both in one
and several complex variables are obtained.

1. Introduction. The Bergman kernel has, in the past 50 years,
become an important tool in the complex analysis of both one and
several complex variables (see [2, 5, 9], for example). Its reproducing
properties, its biholomorphic invariance, and its relationship to the
Bergman metric are all of fundamental importance.

It is important to obtain concrete information about the Bergman
kernel. That said, we must confess that it is generally quite difficult
to obtain specific, calculable information about this kernel. On the
disc, the ball and the polydisc, the kernel may be computed with
an explicit formula (see [5]). Analogous work was performed on the
bounded symmetric domains of Cartan in [4]. But, for more general
domains, a formula is certainly not feasible; one might hope instead for
an asymptotic expansion (see, for instance, [2] or [9]).

This paper explores a slightly different avenue for getting one’s hands
on the Bergman kernel of a domain. The general approach is perhaps
best illustrated with an example. Let

Q={CeC:1<|¢| <2}

This is the annulus, and any explicit representation of its Bergman
kernel will involve elliptic functions (see [1]). One might hope, however,
to relate the Bergman kernel Kq of 2 to the Bergman kernels Kq, and
KQZ of

Q={CeC:[¢| <2}

Author supported in part by a grant from the Dean of Graduate Studies at
Washington University in St. Louis and also a grant from the National Science

Foundation.
Received by the editors on October 15, 2008.

DOI:10.1216/RMJ-2011-41-4-1265 Copyright ©2011 Rocky Mountain Mathematics Consortium

1265



1266 STEVEN G. KRANTZ

and
QW={eC:1<[¢]}

The first of these has an explicitly known Bergman kernel (see [5]),
and the second domain is the inversion of a disc, so its kernel is known
explicitly as well.

One could pose a similar question for domains of higher connectivity.
The question also makes sense, with a suitable formulation, in several
complex variables. Our purpose here is to come up with precise
formulations of results such as these and to prove them. In one complex
variables, we can make decisive use of classical results relating the
Bergman kernel to the Green’s function (see [6]). In several complex
variables there are analogous results of Garabedian (see [3]) that will
serve in good stead.

In Section 2 we introduce appropriate definitions and notation. In
Section 3 we prove a basic, representative result in the plane. Section 4
proves a more general result in the plane. Section 5 treats the multi-
dimensional result. Section 6 sums up the work.

2. Definitions and notation. If  C C” is a bounded domain,
then we let Kq(z, () denote its Bergman kernel. This is the reproducing
kernel for

A%(Q) = {f € L*(Q) : f is holomorphic on Q}.

It is known, for planar domains, that Kq(z, () is related to the Green’s
function Gq(z,¢) for Q by this formula:

82

Of course it is essential for our analysis to realize that the Green’s
function is known quite explicitly on any given domain. If

D(G,2) = 5-log ¢ - |

is the fundamental solution for the Laplacian (on all of C), then we
construct the Green’s function as follows:
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Given a bounded domain €2 C C with smooth boundary, the Green’s
function is posited to be a function Gq((, z) that satisfies

GQ(Cvz) = F(Cv Z) - Fy(g)a

where F$}(¢) = F®((,z2) is a particular harmonic function in the ¢
variable. It is mandated that F* be chosen (and is in fact uniquely
determined by the condition) so that G( -, z) vanishes on the boundary
of . One constructs the function F*( -, z), for each fixed z, by solving
a suitable Dirichlet problem. Again, the reference [5, p. 40] has all the
particulars. It is worth noting that the Green’s function is a symmetric
function of its arguments.

In our proof, we shall be able to exploit known properties of the
Poisson kernel (see especially [7]) and of the solution to the Dirichlet
problem (see [8]) to get the estimates that we need.

We shall first formulate and solve our problem for domains in the
plane. Afterward we shall treat matters in higher-dimensional complex
space.

3. A representative result. We first prove our main result for the
domain

Q={(eC:1< (| <2}

This argument will exhibit all the key ideas—at least in one complex
variable. The later exposition will be clearer because we took the time
to treat this case carefully.

Let
Q= {CeC: | <2}
and

O ={CeC:1<[(|}

For convenience in what follows, we let S; be the boundary curve of
Q; and S5 the boundary curve of 5. Of course it then follows that
o) =S, USs.
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We claim that

1

KQ(Z7C) = 5 [KQI (ng) + KQz(zvc)] + 8(z,(),

where £ is an error term that is smooth on 2 x . In particular, £ is
bounded with all derivatives bounded on that domain.

For the proof, we write

! Ko 0 + Koy (0]
2
- %8?82 [(D(¢,2) — F(¢,2)) + (D(C,2) — F2(¢, 2))]
32

6(62 <F(<7Z) - % [Fﬂl(gaz) +FQZ(C5Z)] >

Now we claim that
FH(C2) + F2(C,2) = 2F7((, 2) + £(2,()
for a suitable error term £. We must analyze
G(C2) = [FP (¢, 2) + FP(C,2)] = 2F7(C, 2).

We think of G as the solution of a Dirichlet problem on 2, and we
must analyze the boundary data. What we see is this:

e For z near Sp, F* and F*% agree on S; (in the variable ¢) and equal
0. And F is smooth and bounded by C - |log(1/2)|, just by the form
of the Green’s function. All three functions are plainly smooth and
bounded on Sy (for z still near S;) by similar reasoning. In conclusion,
G is smooth and bounded on Q for z near S;.

e For z near Sy, F? and F*®2 agree on S (in the variable ¢) and equal
0. And F is smooth and bounded by C - |log(1/2)|, just by the form
of the Green’s function. All three functions are plainly smooth and
bounded on Sy (for z still near S3) by similar reasoning. In conclusion,
G is smooth and bounded on Q for z near Ss.

e For z away from both S; and So—in the interior of 2-it is clear that
all the terms are bounded and smooth on 9. So the solution G of the
Dirichlet problem will also be smooth as desired.
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As a result of these considerations, G is smooth on Q.

That completes our argument and gives, altogether, the error term
E. Thus

FO 4 2 _oF9? — ¢,

It follows that

1 ” o )
Ko (5:0) + K (2 O = 45 (TG, 2) = F(G,2) ) + €

4. The more general result in the plane. Now consider a
smoothly bounded domain 2 C C with k£ connected components in its
boundary, £ > 2. We denote the boundary components by Sy, ..., Sk;
for specificity, we let S; be the component of the boundary that bounds
the unbounded component of the complement of Q. Let 2; be the
bounded region in the plane bounded by the single Jordan curve S;.
Let Qo,...,Q be the unbounded regions bounded by S2,S3,... , Sk,
respectively.

Then we may analyze, just as in the last section, the expression

1
Ko — o [Ka, + Ko, + -+ Ko, ]

to obtain a smooth error term
E=E+E+ -+ &

That completes our analysis of a smooth, finitely connected domain in
the plane.

5. Domains in higher-dimensional complex space. The elegant
paper [3] contains the necessary information about the relationship of
the Bergman kernel and a certain Green’s function in several complex
variables so that we may carry out our program in that more general
context.
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Fix a smoothly bounded domain €2 in C*. Let t = (¢1,...,%;) be a
fixed point in Q2. Following Garabedian’s notation, we set

k
> lz =52
j=1

Let o be constants chosen so that

k Or—2k+2
;E}I(I)O'k/r BZT%a]dU+B(t):O’
€ ]:1
where I'. is the sphere of radius ¢ about ¢, B is some continuous
function, and (ag,...,ax) is a collection of complex-valued direction
cosines.

Now set 6(z,t) to be that function

(%) 0 = opr—2**2 4 regular terms
on €2 so that
52 e
— 0z, /
on 012,
LANE
8Zj
on Q (for j =1,...,k) and such that
/ 0fdv =0,
Q

for all functions f analytic in €. It follows from standard elliptic theory
that such a @ exists.

In fact, according to [3], this function 6 that we have constructed is
a Green’s function for the boundary value problem
0

TA,BZO onQ,j:L...,kz
82j

k
ZgTﬁaJZU on 0N.
Jj=1 %
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Garabedian goes on to prove that the Bergman kernel for €2 is related
to the Green’s function € in this way:

Kq(z,t) = A,0(z,t).

This is just the information that we need to apply the machinery that
has been developed here.

In order to flesh out the argument in the context of several complex
variables, our primary task is to argue that our new Green’s function
has a form similar to the classical Green’s function from one complex
variable. But in fact this is immediate from equation (x). It follows
from this that the argument in Section 3 using the maximum principle
will go through as before, and we may establish a version of the result
in Sections 3 and 4 in the context of several complex variables. The
theorem is this:

Theorem 1. Let Q be a smoothly bounded domain in C" with
boundary having connected components Sy, Ss,...,Sk. For specificity,
say that S1 is the boundary component that bounds the unbounded
portion of the complement of Q. Let Kq be the Bergman kernel for Q,
let Ky be the Bergman kernel for the bounded domain having Sy as its
single boundary element, and let K, for j > 2, be the Bergman kernel
for the unbounded domain having S; as its single boundary component.
Then

Ko=Ki +Ky+- -+ K, +&,

where £ is an error term that is bounded with bounded derivatives.

The reader can see that this new theorem is completely analogous to
the results of Sections 3 and 4 in the one variable setting. But it must be
confessed that this theorem is something of a canard. For, when j > 2,
any function holomorphic on the unbounded domain with boundary S;
will (by the Hartogs extension phenomenon) extend analytically to all
of C™. And of course there are no L? holomorphic functions on all of
C". So it follows that K; = 0. So the theorem really says that

Kqg=K; +¢€.

This is an interesting fact, but not nearly as important or provocative
as the one-variable result. The one other point worth noting is that the
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statement of the result is now a bit different from that in one complex
variable, just because we are dealing with a different Green’s function
for a different boundary value problem. Basically what we are seeing is
that K, ..., K do not count at all, and K; is the principal and only
term.

6. Concluding remarks. It is always a matter of interest to
find means to get control of the Bergman kernel of any domain.
This paper offers a simple device—more meaningful in the one-variable
context than in the several-variable context—for doing so. In practice,
asymptotic expansions seem to be the most powerful device for getting
hard analytic information about a Bergman kernel. The decomposition
presented here could be the first step in such an expansion.
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