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FORMATION CONTROL OF
A SWARM OF MOBILE MANIPULATORS

BIBHYA SHARMA, JITO VANUALAILAI AND AVINESH PRASAD

ABSTRACT. This paper presents a new Lyapunov-based
decentralized formation control planner for a swarm of 2-link
mobile manipulators in an a priori known environment. To
ensure a significant degree of formation stiffness along the
flight-path, information on moving ghost targets, inter-robot
bounds for aggregation and heading for the mobile manipula-
tors are captured in the control planner. The final desired ori-
entation of the formation is by observing a minimum distance
between every member of the swarm and ghost walls. The
nonlinear control laws extracted from the Lyapunov-based
control scheme are utilized to obtain collision-free trajectories
of the swarm in a low-degree formation, whilst ensuring sta-
bility of the kinodynamic system governing the swarm. The
effectiveness of the controllers is demonstrated by simulating
interesting situations.

1. Introduction. Social interactions in nature have inspired
researchers to design numerous robotic systems that are capable of
solving real-world problems for humans. One such biological behavior
is swarming, a cooperative behavior seen, for example, in schools of
fishes, flocks of birds, and herds of animals, to name but a few. This
salient behavior is predominantly based on the principle that there
is safety and strength in numbers [5, 17]. This swarm-intelligence
system, if emulated appropriately, can satisfy stringent time, manpower
and monetary demands, enhance performances and robustness, and
harness desired multi-behaviors, each of which is extremely difficult if
not entirely impossible to solicit from single agents [6, 8, 16, 17].
These multi-agent formations are tipped to play a very crucial role in
the future. In fact, multi-robot formations are frequently sighted in
places such as airports, factories, wharfs, and in farms and mines.
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In literature, swarm-intelligence systems consist of three basic rules
of steering, namely separation, alignment and cohesion, which describe
how an individual maneuvers based on the positions and velocities of
its neighbors [18]. Although the rules governing each agent of a group
are seemingly basic, the collective motion is strikingly spectacular.
The superposition of these three rules results in all agents moving
in a particular formation, with a common heading whilst avoiding all
possible collisions [27].

Control and motion planning of swarm formations have been facili-
tated via a number of techniques. The much fancied artificial potential
fields (APFs) are still highly favored [1, 7, 11, 12, 13] appearing
frequently in literature. This is mostly due to easier analytic represen-
tation of system singularities and inequalities, simplicity and elegance
[23], favorable processing speeds, decentralization and scalability fea-
tures [13]. The governing principle behind the APFs is to attach attrac-
tive field to the target and a repulsive field to each of the obstacles. The
whole workspace is then inundated with positive and negative fields,
with the direction of motion facilitated via the notion of steepest de-
scent [11]. For vehicular systems, the gradient of the total artificial
potential field, referred to as the input force, determines the speed and
direction along which the vehicle moves. The pioneering work on mo-
tion planning and control of robots via APFs was carried out by Khatib
in [9]. Since then many papers utilizing potential fields to address is-
sues such as parking, posture and point stabilities, and path tracking,
have appeared. The reader is referred to [10, 19] and the references
therein for a detailed account of APFs and their applications.

In this paper, we adopt the Lyapunov-based control scheme employed
in [21, 22, 23, 24, 25, 26, 29] and utilize it to derive continuous,
time-invariant, feedback control laws for formation control of a swarm
of 2-link mobile manipulators. The scheme guarantees completion of
the following subtasks: collision avoidance; goal convergence, cohesion
of swarms; satisfying nonholonomic constraints; satisfying kinodynamic
constraints (bounds on velocity and steering angle, workspace bound-
aries); and forcing final desired orientation of the formation.

An observed swarm behavior leads to the concept of formation stiff-
ness, which is a rule necessitating a strict observance of the prescribed
formation during the motion of the swarm. On one hand, there are
split/rejoin maneuvers which can be required in applications, for ex-
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ample, reconnaissance, sampling and surveillance while, on the other
hand, there are tight-formations which can be required in applications
that require cooperative payload transportation [3, 4, 8]. Then there
are low-degree formations (required in convoying and demining [20])
that are strict but do allow for slight distortions. Swarming motions
presented in this paper follow the latter approach and encompass slight
distortions to cater for collision and obstacle avoidances. This, to the
authors knowledge, is carried out for the first time for the control of
kinodynamic model of 2-link mobile manipulators in a prescribed for-
mation. To ensure a low-degree formation, the authors included mov-
ing ghost targets, inter-robot bounds for aggregation and heading. The
resultant controllers inherently allow temporary distortions in the for-
mation in order to avoid obstacles that are directly in the path of the
procession. The robots are then forced into constellation where the
original formation is re-established before seeking convergence to tar-
get. The controllers also guarantee re-establishment of the prescribed
formation if a robot is getting closer or lagging behind another robot
in the formation.

The new control scheme gives an improved performance in compari-
son to the behavior-based models, which treat each subtask separately
as a behavior and usually run into the problem of overlapping and
prioritization.

2. System modeling: The leader-follower scheme. In this
paper, we adopt the well known leader-follower scheme. It is a scheme
within which the movement of each member of a swarm is with respect
to a single individual (leader).

We begin by deriving a dynamic model using Cartesian coordinates
for the leader-follower based formation control of a swarm of n 2-
link mobile manipulators (2MMs) with one additional 2MM, labeled
Ay, acting as the leader-robot. The leader-robot is followed by A;,
i € {1,2,...,n} acting as the ith follower-robot. For simplicity, and
without any loss of generality, we let each 4;, i € {0,1,2,... ,n} have
the same dimensions.

As depicted in Figure 1, (zo,y0) and (x;,y;) are the Cartesian
coordinates of the end-effector of the leader-robot and the i¢th follower-
robot, respectively; vy and v; are the leader’s and the ith follower-
robot’s linear velocities; 61 and 6;; are the heading directions of their
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FIGURE 1. Leader-follower scheme of 2-link mobile manipulators.

platforms in global coordinates; 6p2 and 6;2 give the orientations of
link 1 with respect to their platforms, while 6y3 and ;3 give the
orientations of link 2 with respect to their link 1. Furthermore, ¢; and
by are, respectively, the length and the width of each wheeled platform;
while /5 and /3 are the lengths of link 1 and link 2, respectively.

Letting ;0 = 01 + 0i2, Oir = 051 + Oi2 + i3, wig = wi1 + wie and
wiT = w1 + wis + w;z, we can easily derive the dynamic model of the
ith 2MM, for i € {0,1,2,... ,n}, as:

j7i = V; COS 6i1 — leil sin 02’1 — €2wiQ sin giQ — ngiT sin OiT,

U; = v;sin 0;; + fyw;1 cos b1 + égwiQ CcoSs GiQ ~+ L3w;T cos b;T,
(1) . . .

0i1 = wit, iz = wia, Oiz = wis,

Vi = U1, Wil = Uq2, Wi2 = U3, Wiz = Ui4-

System (1) is a description of the instantaneous velocities and accel-
erations of the various bodies of the swarm of 2MMs where the position
of the ith 2MM is given as d; = (z;,y;). We assume that the instanta-
neous accelerations wu;y, u;2, u;3 and u;4 can move the end-effector of A;
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to its target. In the Lyapunov-based control scheme, (w;1, w2, uis, ti4)
for i € {0,1,2,...,n} are considered as the nonlinear controllers for
system (1).

We shall use the vector notation x; = (x;, yi, 0i1, 6i2, 0i3, Vi, wi1, Wiz,
wis) € R? in the z;-z» plane to refer to the position and velocity
components of the ith 2MM. For generality, we further define x =
(X0, X1,Xa2,...X,) € RIX(+1),

Now, to ensure that the complete A; safely steers past an obstacle,
we enclose each body of A; by the smallest possible circle. Given the
clearance parameters ¢; for j = 1,2, 3, as shown in Figure 1, we shall
enclose the wheeled platform by a protective circular region with radius
ry = \/(Zl +2¢1)% 4 (b1 + 2¢2)2/2, link 1 with radius ro = ¢3/2 and
link 2 with a radius of r3 = ¢3/2 4+ 3. We denote the centers of
the wheeled platform, link 1 and link 2 of the ith 2MM as (x;1, yi1),
(wi2, yiz) and (z;3, yi3), respectively.

Furthermore, it can be easily verified that the positions of the wheeled
platform, link 1 and link 2 of the ith 2MM can be expressed completely
in terms of the state space variables x;, y;, 6;1, 0;2, and 6;3. Hence for
the articulated bodies m = 1,2, 3 of the 1th 2MM we have the following
functions:

3 / k
k
Tim = T — E W COS < 01p>,
p=1

k=m

(2) : .
k .
Yim = Yi — Z Wsm< 0ip>7
p=1

k=m

where |m/k] is a floor function. For example, (z12,y12) are the Carte-
sian coordinates of the center of link 1 of A; (1% follower-robot). Note
that these position constraints are known as the holonomic constraints
of the 2MM system.

The Lyapunov-based control scheme requires the construction of
a feasible Lyapunov function, which is then utilized to obtain the
nonlinear control laws for our kinodynamic system. The control scheme
itself operates within the AFP framework. Hence we now design
attractive functions that help the swarm move towards its target and
avoidance functions that help the swarm in successful collision and
obstacle avoidances. We also introduce a new algorithm that establishes
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and maintains the formation of the swarm. All these functions will,
in a later section, be combined appropriately to form the Lyapunov
function.

3. Formation. There have been a number of different approaches
designed and employed to establish and maintain robot formations,
either of fixed or dynamic topologies. Formations are commonly
referenced with respect to the center of mass of the agents [14, 15].
Notwithstanding this trend, we make the following assumption to aid
in the construction of potential field functions:

Assumption 1. The prescribed formation is referenced with respect
to the end-effectors of the 2MMs.

Now, different degrees of formation stiffness have been addressed
in literature; the choice partly due to the nature of the applications
[20], the collision and obstacle avoidances required, and the overall
operational costs involved. In this paper, we desire a significant degree
of formation stiffness but allow for slight (but temporary) distortions to
help execute the essential collision avoidance maneuvers; this formation
is classified as a low-degree formation. Instead of adopting concepts
such as prioritization and switching, we desire to retain the continuous
property of the controllers. Accordingly, we consider a new algorithm
that maintains the low-degree formation during the motion.

The algorithm is an amalgamation of the following tasks:
(i) Moving ghost targets;
(ii) Aggregation (inter-robot bounds);
(iii) Heading.
We shall consider these tasks separately to highlight and elucidate the
importance of the new technique.

3.1. Moving ghost targets. We introduce the concept of mowving
ghost targets, a variant of the leader-follower scheme, which not only
helps in the advancement of formations but also contributes to help
maintain these prescribed formations. In the scheme, when the leader
Ay moves towards its target, we want the follower-robots, A;, i €
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{1,2,...,n}, to move towards their moving ghost targets positioned
relative to the leader-robot. To put the scheme into place, it is necessary
to affix a circular target with center (po1,po2) and radius rt, for the
leader robot Ag to reach after some time ¢ > 0. We will make the
following assumptions with respect to leader-follower scheme:

Assumption 2. The moving ghost targets of the follower-robots are
positioned relative to the wheeled platform of the leader-robot in the
leader-follower scheme.

Assumption 3. Let T; = {(z1,22) € R?: (21 — pi1)? + (22 — piz)? <

rt2} be the target of the leader-robot i = 0 and the follower-robots
ie{1,2,...,n}.

Remark 1. With the inclusion of these assumptions we can then
proclaim that the moving ghost target of the ith follower-robot is
positioned k;; units horizontal and k;2 units vertical off the center of the
wheeled platform of the leader-robot (as shown in Figure 1). Also that
the center of the moving ghost target of the ith follower-robot is given
as (pil,pig) = (CEOl — ki1, Yo1 — k‘ig) for i = 1,2,...,n in geometrical
space.

For attraction to the target and ghost targets we consider the attrac-
tive function

(3)  Vi(x) == [(zi —pir)* + (yi — pi2)® + 07 + Wi +wh +wh],

DN | =

for i € {0,1,2,...,n}. This function is positive for all x € R*(n+1),
Once a Lyapunov function candidate for system (1) is established, V;(x)
will act as attractor by having the end-effector of ith 2MM move to its
designated target.

3.2. Aggregation: Inter-robot bounds. To maintain cohesion
of the multi-robots traversing their paths to the target configurations
we need the concept of neighbors:

Definition 1. Neighbors: Any two 2-link mobile manipulators (A;
and Aj, for i # j) at any time ¢ > 0 along the trajectory of the swarm
are classified as neighbors if they are part of a prescribed formation.
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Remark 2. The definition is justified in swarms with ||d; —d;|| < M}
where M;; > 0 is the maximum Euclidian distance between the end-
effectors of A; and A;. However, increasing the density of 2MMs in a
swarm can require different sets of neighbors for different individuals
of the swarm in either fixed or dynamic formations.

We next consider inter-robot bounds.

Maximum inter-robot bound: The relative distance between the
end-effectors of any two neighbors needs to be bounded. We desire
|di — d;|| < M}. To satisfy this condition, we design the following
obstacle avoidance function

(@ Rij(x) = 5 [M2 — (@i — 2;)

fori,j €{0,1,2,...,n}, j #1i.

Minimum inter-robot bound: To prevent any possible collisions
between neighbors a minimum distance between them is also warranted.
Now, each solid body of the articulated 2MM has to be treated as an
obstacle for the other 2MMs in the workspace. Therefore, for each mth
body of A;, i € {0,1,2,... ,n}, to avoid the uth moving solid body of
A;,7€{0,1,2,... ,n}, j # i, we shall adopt

2

() MOuusj(0) = 5 |@im = 270)° + (Wi = y5)° = (s +7)?]

N | =

for m,u =1,2,3.

These inter-robot bounds are treated as artificial obstacles. To gen-
erate repulsive fields around these obstacles we follow [22, 23] to de-
sign new repulsive potential field functions, which basically are inverse
functions that encode the above mentioned positive functions into the
corresponding denominators and tuning parameters in the numerators.
These ratios act to prevent inter-robot collisions and to restrict robots
from drifting off and destabilizing the prescribed formation. Manip-
ulation of the tuning parameters associated with functions R;; and
MO i provide an added degree of control of the subtasks and help
maintain the desired formation.
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Henceforth, for each obstacle, we will construct an appropriate avoid-
ance function that will appear in the denominator of a repulsive poten-
tial field function with tuning parameters populating the numerator.
These functions will be combined into a Lyapunov function in accor-
dance with the Lyapunov-based control scheme.

3.3. Heading. We desire to keep the orientations of the wheeled
platforms of the follower-robots the same as that of the wheeled plat-
form of the leader-robot while they traverse their paths to their final
configurations. For this, we introduce another new function |0g; —6;1| <
€o; where g9; > 0 is the accepted error in the heading. This function
will again be treated as an artificial obstacle in our control scheme. For
avoidance, we create an obstacle avoidance function which establishes
error bounds on orientations of the platforms of leader and follower
robots

() Qu(x) = 5 [ — (001 — 6)"]

for i € {1,2,...,n}. The other advantage of utilizing this function
is the fact that it inherently allows for rotations of the prescribed
formations.

4. Integrated subtasks. Together with establishing and maintain-
ing prescribed formations, we have included a number of subtasks typi-
cally integrated with motion planning and control of autonomous vehic-
ular systems. These subtasks are: final desired orientation of the for-
mation; goal convergence; kinematic constraints (bounded workspace,
fixed obstacles, holonomy and nonholonomy); and dynamic constraints
(mechanical singularities and modulus bound on velocities). In the
following subsections we will discuss these subtasks and design appro-
priate obstacle avoidance functions.

4.1. Final orientation of formation using a minimum dis-
tance technique and ghost walls. A direct result of Brockett’s
theorem [2] is the failure to accomplish stabilizing posture configura-
tions of nonholonomic systems via smooth (even continuous) feedback
controllers. Although the final position is reachable, it is difficult to
obtain exact orientations at the equilibrium point of this special class
of dynamical systems.
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In this section, we will use the concepts of ghost walls from [24] and a
minimum distance technique (MDT) from [23] to force the prescribed
final orientations of the swarm, bearing in mind that the goal reach-
ability has already been guaranteed by the target attractive function
designed in subsection 3.1. A useful feature of this methodology is that
it works with any desired orientation.

To begin with, we construct ghost walls along the three sides of
the target, with the orientations of the walls depending on the final
orientations of the swarm. To accomplish the desired orientation of
the swarm, we have to avoid these ghost walls. In [21, 22], the
authors utilized a novel technique, classified as the obstacle alignment
technique, to avoid these artificial walls; however, the technique became
cumbersome once the number of walls erected increased. To retain the
simplicity of the controllers we adopt a minimum distance technique.

A minimum distance technique (MDT) utilized in [21, 23] gives the
distance between the closest point on each kth ghost wall measured
perpendicularly from a point on each mth body of A;. Avoidance of
these closest points on a ghost wall at any time ¢ > 0 essentially results
in the avoidance of the entire wall by the entire 2MM.

The parametric representation of this kth ghost wall in the z; zo-plane
with initial coordinates (a1, bx1) and final coordinate (akz,bx2) is

Cimk = k1 + Nimk(ak2 — k1), ik = br1 + Nk (b2 — br1),

where m = 1,2, 3 are the three solid bodies of the ith articulated robot.
Minimizing the Euclidian distance between the point (2;,, Yim ) and the
ghost wall (¢imk, dimk), we get

Ximk = (Tim — ak1)qk1 + (Yim — bk1)qr2, for A € [0, 1],
where

(ak2 — ak1) oy = (bk2 — br1)
(ak2 — ag1)? + (bk2 — bk1)?’ (ag2 — ak1)? + (br2 — br1)?’

qk1 =

If Ximr > 1, then we let A\jr = 1; if A\jpnre < 0, then we let A\ji = 0.
Otherwise, we accept the value of A;,; between 0 and 1, in which case
there is a perpendicular line to the point (¢imk, dimk) on the ghost wall
from the center (Zim, Yim) of the mth body of the ith 2MM at every
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time ¢ > 0. We note that each target will be surrounded by three ghost
wall lines which have to be avoided by the respective 2MMs. This
means that the leader has to avoid the 1st, 2nd and 3rd ghost walls
while the ith follower will be avoiding (3¢ + 1), (3¢ + 2) and (3¢ + 3)
ghost walls; thus k € {3i + 1,3i + 2,3¢ + 3}. The following obstacle
avoidance function will ensure that all m bodies of the ith 2MM will
avoid their time-varying closest points on the ghost walls surrounding
the three sides of the target position

2

(7)  LSimk(x) = [(-’Eim = Comi)” + (Yim = dimi)” =700 |4

N | =

form =1,2,3, k€ {3i + 1,3i + 2,3t + 3} and 7 € {0,1,...,n}. We
again design new repulsive potential field functions as per the procedure
outlined in the previous section. The main idea here is to attach
necessary and sufficient repulsive potentials to the ghost walls so that
the final orientations of all rigid bodies of the 2MMs could be forced to
eventuate [21, 23].

4.2. Auxiliary function. To guarantee that the trajectories of
the swarm vanish precisely at the equilibrium state, we design a new
auxiliary function that would be multiplied to the inverse of each
obstacle avoidance function mentioned in this research. This is in line
with the work in [29]. The function is

3
(zi —pi)” + (yi — pi2)® + Zpij(eij —pij+2)’],
i=1

® F=;

for i =0,1,2,... ,n. Note that p;3, pi4, p;5 are the final orientations of
the wheeled platform, link 1 and link 2, respectively, of the ¢th 2MM.
Here pj1, pi2, pis > 0 are new parameters classified as the angle-gain
parameters, which will be used to force prescribed final orientations of
each solid body of the ith 2MM. An angle-gain parameter will have a
value of one only if a final orientation is warranted, else it gets a default
value of zero.

4.3. Kinematic constraints. The various types of fixed and
moving obstacles and their necessary specifications are discussed below.
These obstacles are treated as kinematic constraints.
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4.3.1. Workspace: Boundary limitations. We consider a planar
workspace which is a fixed, closed and bounded rectangular region
defined for some 1y > 2(ry 4+ re +r3) and 72 > 2(ry +ro +73), as

WS ={(z1,22) €ER?:0< 21 <11,0 < 29 <12}

We require the prescribed formation to stay within the rectangular
region at all time ¢ > 0. The boundaries of the region are defined as
follows:

(a) Left boundary: By = {(21,22) € R%: 21 = 0};

(b) Lower boundary: By = {(21,22) € R?: zp = 0};

(c) Right boundary: Bz = {(z1,22) ER?: 21 =m };

(d) Upper boundary: By = {(z1,22) € R?: 29 = 2}
In our Lyapunov-based control scheme, these boundaries are considered
as fized obstacles, which need to be avoided by each member of the
formation. Now, since the two ends of link 1 are protected by the
protective circular regions of the wheeled platform and of link 2,
respectively, it can be geometrically verified that we need consider

obstacle avoidance functions only for the wheeled platform and link 2
of the ith 2MM in order to avoid the workspace boundaries.

Thus, for the avoidance by the wheeled platform we shall adopt the
following obstacle avoidance functions [17]:

9a
9b
9c
9d

~—

i1(x) = @i — 11,

Wir
Wia(x) = yi1 — 71,
W;
Wi

- =

i3X) = m — (r1 + zi1),
ia(x) =m2 — (r1 + yi1)-

~—~ ~~ —~
~

For the avoidance of the left, lower, right and upper boundaries,
respectively, by link 2, we shall adopt

(10a) Wis(x) = 3 — 73,
(10b) Wie(x) = yiz — 73,
(10c) Wir(x) =m — (rs + z:3),
(10d) Wig(x) = n2 — (r3 + ¥i3)
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Since n; > 2(ry + ro + r3) and 7y > 2(r1 + 79 + 73), each of the
aforementioned functions is positive in W.S. That is, W;;,W;3 > 0
for all z;; € (ri,m1 — 1), Wiz, Wiy > 0 for all y;; € (r1,m2 — 71),
Wis, Wiz > 0 for all z;3 € (7‘3,771 — 7'3), and Wi, W;s > 0 for all
Yis € (rs,me —r3), for ¢ = 1,2,...,n, recalling that the forms of
(z41,vi1) and (z3,y;3) are given in (2).

These obstacle avoidance functions will be appropriately coupled with
tuning parameters to obtain the repulsive potentials.

4.3.2. Avoidance of fixed obstacles. Let us fix q obstacles within
the boundaries of the workspace. We assume that the [th fixed obstacle
is circular with center given as (o0;1, 0;2) and radius rad;. We define the
lth obstacle as

O = {(21,22) €R?: (21 — 011)2 + (22 — 012)? < rad?},
for [ = 1,2,...,q. For its avoidance, we will need to have separate

avoidance functions for each mth body of the ith 2MM. Thus we
consider

(1) FOuu(x) = 5 [(@im = 01)” + (im — 012)" = (r + radi)?]

DN | =

form=1,2,3,1=1,2,...,gand i =0,1,... ,n.

4.4. Dynamic constraints. The motion of a mechanical sys-
tem restricted due to the presence of a number of self-inflicted and
user-inflicted conditions. The self-inflicted conditions are conditions
imposed on a system due to its mechanical structure. They predomi-
nantly consist of the mechanical singularities of the robotic system. On
the other hand, the user-inflicted conditions are conditions imposed on
the robotic system with safety in mind. They largely comprise modulus
bounds on velocity components, inter-robot bounds and heading of the
robot formations [21].

Now, the only way these conditions can be incorporated into the
Lyapunov-based control scheme is to treat them as obstacles, hence-
forth classified as artificial obstacles. These obstacles will then have to
be avoided, in accordance with the Lyapunov-based control scheme.
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4.4.1. Mechanical singularities.

(i) Singular configurations arise when 6;3 = 0, 6;3 = 7 or 6;3 =
—m. Subsequently, the condition placed on 6;3 is 0 < |f;3] < 7 for
;3 € (—m,0) U (0,7), which implies that the links can neither be fully
stretched nor be folded back [29];

(ii) The angle between link 1 and the platform is bounded by
—7/2 < ;2 < w/2. In other words, link 1 of the ith 2MM can only
freely rotate within (—m/2,7/2).

For the avoidance of artificial obstacles created from the aforemen-
tioned singular configurations and the restriction on 62, we will adopt
the following avoidance functions:

(12a) Si1(x) = [0is];
(12b) Sia(x) = m — |0is];

(12¢) Sis(x) = %(g - 9i2> (g + eﬂ).

4.4.2. Modulus bound on velocities. From a practical viewpoint,
the translational and rotational velocities of the 2MMs are bounded,
so we include the following additional constraints:

(1) |ui] < Umax, Where vmay is the mazimal achievable speed;

(ii) |wit] < Ymax/|Pmin|, Where pmin = ¢1/tan(@max). This condition
arises due to the boundness of the steering angle, ¢;. That is |¢;| <
Omax, where dnax is mazimal steering angle;

(iil) wi2| < wamax and |wiz| < w3 max, Where womax, W3max are the
mazximal rotational velocities of link 1 and link 2 respectively.

For the avoidance of these new artificial obstacles, we will adopt the

following avoidance functions, for ¢ =0,1,2,... ,n:
(132) Uin(9) = 5 (v = 22)
(130) Ua(x) = 5 (2= -3 )
(13c) Uis(x) = % (W3 max — Wia) »
(134) Uia(9) = 5 (e — )
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When used appropriately in a Lyapunov function, these positive func-
tions will help in the avoidance of the artificial obstacles and therefore
guarantee adherence to the limitations placed upon the steering angle
and the velocities.

5. Lyapunov-based control scheme. We shall now define a
Lyapunov function candidate and then utilize it to extract the nonlinear
control laws for our system (1).

5.1. Lyapunov function candidate. Combining all the target
attractive and obstacle avoidance functions (3)—(13) and introducing
tuning parameters, a;s > 0, &p > 0, Yimt > 0, 05 > 0, Gk > 0,
Bir > 0, ;5 > 0 and @pu; > 0, we define a Lyapunov function
candidate for system (1) (suppressing x) as

n 8
Uis
(14) Loy = {V;- +F; [Z W

5.2. Controller design. Taking the time derivative of the Lya-
punov function candidate and treating the state variable separately,
we get the semi-negative definite form

Lay(x) = - Z (61107 + 8jow}y + Sizwiy + Giawis) <0,
=0

K2
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provided our feedback nonlinear controllers are given as

(15)

wip = — [051v; + (fir + fis + fis + fir) cosbix
+(fiz + fia + fic + fis)sinbi1] /gia,

1 .
Ujp = — | Ojowin — (fn + §fi3 + fis + fi7>51 sin 0;1

U3 =

1
Ujg = — | Gjawi3 — (fn + §f17> l3sin6;7

where:

f017f027"'

as

+

+

+

+

|
|
|

1
+ (fi2 + §fis>€3 cos O; +9i3] /.%’7:

2

1
fio + = fia + fis + fis)fl cos 0;1

2

1 .
fir+ - fis + fi7>€2 sin 0;¢

1
fiz + 5 fie + fi8>Z2 cosb;q

2

2

2

1
fio + —fis>€3 cos Oy + 91‘1] /gi5>
1 )
diswiz — <fi1 + 5fi5 + fn) lysin ;g

1
fiz + 5 fie + fi8>Z2 cos b;q

2

1
fir + = fir

(
(
(
(fﬂ + lfn)fz sin i
(
(
(

2

1
>53 sin 0,1 + (fiZ + §fi8>€3 cos 0,7 + gi2:| /gw,

dij, for ¢ € {1,2,...,n} and j € {1,2,...,4} are pos-
itive constants classified as convergence parameters, the functions

, fos and go1, 902, ... ,907 for the leader-robot are defined

2 &o 2 1 Nomt & Comk
S0 m m
YD (S e )
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q
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DI i ]

j=1 “m=lu=1 ROj

Fi
x po2(foz — Poa) + ;2 % Bo2,
03
. a : : N Yom >\ Comn
Os Op om om
w= (L gr e S (L e )
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4 ﬂ n 3 3 0 ¢
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The functions f;1, fi2, - -

., fis and g1, gi2, - - - , gi7 for the ith follower-
robot are defined as

8 - 3 6 3 q . 3i+3 C
fa = [HZW’f +> " +Z < iml T Simk )

FOiml

=1 k=3i+1 LSimk
4 ﬂ O n 3 3 o N 1/]
T Pmuis Vi | ok
fLu e +¥(MZ_ "~ MOy +Ri,.>] (2= (@01 —kir))
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+Z< R?.J + ;{2J >( i — ),
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oy 3 & 3 T i 3i+3 Com
e[ e (S 5 )
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T p= m=1 =1 k=3i+1
2.8 o; "33 0 Wi
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5.3. Stability analysis. Define x} = (pi1, pi2, 0i1, 02, 0i3,0,0,0,0) €
R® € D(L). Then, given the controllers (15), it can be verified that
X = (x§,x],%3,...x},) € D(L) as an equilibrium state for system (1).

Now, since the Lyapunov function candidate L(x) for system (1) is
defined, continuous and positive over the domain

D(L)(x) = {x e RV . W, (x) >0, s=1,...,8;
Sip(x) >0, p=1,2,3;
LSpki(x) >0, m=1,2,3, k=3i+1,3i+2,3i + 3;
Q:(x) > 0; FOpmii(x) >0, m=1,2,3,1=1,...,q;
Uir(x) >0, r=1,...,4;
MOuyyi5(x) >0, m,u=1,2,3;
Rij(x) >0, i,7=0,...,n, j#i},

it is easily verified that the Lyapunov function candidate L(x) satisfies
the following properties:
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(a) L(x) is continuous and has first partial derivatives in the region
D(L) in the nelghborhood of the point x. of system (1);

(b) L(xe) =

(c) L(x) > 0 for all x € D(L)/x.;

(d) L(x) < 0 for all x € D(L);

(e) L(xe) =0.
Hence, we can conclude that L(x) is an appropriate Lyapunov function
for system (1) that guarantees its stability:

Theorem 1. The equilibrium point x. of system (1) is stable provided
the controllers (u;1, Uiz, uis, uiq) are as defined in (15).

6. Implementation of the control laws. In this section,
we demonstrate the effectiveness of the proposed motion planner by
controlling the motion of a swarm of 2MMs in a fixed formation
navigating in a constrained workspace. We verify numerically the
stability and the convergence results obtained from the Lyapunov-based
control scheme.

6.1. Scenario 1: 4-robot arrowhead formation. In this scenario
we consider the motion of a 4-robot arrowhead formation. Basically
we want the swarm of 2MMs to converge to a target position and
attain the desired orientation, avoiding the obstacles in its path while
maintaining an acceptable degree of formation stiffness. We have
utilized the RK4 method to numerically integrate system (1). This
enables us to obtain the solutions (z;,y;,0i1, 02, i3, Vi, wi1, Wiz, wis)
and plot the points (z;, y;) in the z1-z2 plane until the points converge to
a neighborhood of the target. The corresponding initial and final states,
numerical values of the different parameters, workspace restrictions and
other details are given in Table 1 and Table 2

The nonlinear control laws were implemented to generate feasible
maneuvers of the swarm in a fixed arrowhead formation. Figure
2 (a) shows the evolution of trajectories of the individual members
of the swarm to the target configuration. Figure 2 (b) shows that
the prescribed formation is maintained during the motion with slight
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TABLE 1. Initial and final states.

Ao Ay Aa As
Rectangular (7,14) (3,17) (3,14) (3,11)
Positions (z;,y;) (m)
Angular Positions 0,7,-2) | (0,5,-%%) | (0,5,-3°) | (0,3,-%)
(051,602, 053) (rad)
Translational vo =3 vy =3 v =3 vy =3
velocities (m/s)
Rotational Vel. (0.3,0.1,0.1) | (0.3,0.1,0.1) | (0.3,0.1,0.1) | (0.3,0.1,0.1)
(wi1,wi2,w;3) (rad/s)
Target Centers (27,14) (23,17) (23,14) (23,11)
(pi1, pi2) (m)
Final Orientations 0, %-3%) 0, %-3%) 0, %-3%) 0, %-3%)
(i3, pia, pis) (rad)

TABLE 2. Values of constraints and parameters.

Clearance Parameters €1 =0.2m, e2 =0.1m, e3 = 0.3m

Robot Dimensions lo=12m,bp =0.7Tm, €1 =42 =08m

Ghost Target Parameters | (k11,k12) = (2.5 m, —3 m); (k21, k22) = (2.5 m,0 m);
(k31,k32) = (2.5m,3 m)

Obstacle Center, Radius | (011,012) = (11 m,17m), ro1 =2m

Max. distance (M;;) Mop1 = 5.5 m; Moz = 4.5 m, Moz = 4.5 m;

Mio = 5.5m, M2 = 3.5 m, M3 = 6.5 m;

Mo = 4.5 m, Ma; = 3.5 m, Ma3z =4.5m;

Mso = 5.5 m;Msz1 = 6.5m, M32 =4.5m

Heading €oi = 0.2 rad, for: =1,2,3

Angle Gain Parameters pi1 = piz = piz =1, for i =0,1,2,3

Max. Steering Angle Pmax = T7/18 rad

Max. Velocities Umax = 10 m/$; w2 max = W3 max = 1 rad/s

Top, Right Boundaries n =n2=28m

Control Parameters a;s =0.01,s=1,...,8 vim1 =0.5, m=1,2,3;

Cimk = 1.2 & =05,p=1,2,3; Bir = 0.1, 7 =1,... ,4
Yi; = 0.01; omui; = 0.5, myu=1,2,3 4,7 =0,...,3, j #1;
o1 =02 =03 =0.1

Convergence Parameters | §;1 = §;2 = ;3 = ;4 =15 for:=0,1,2,3
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distortions to the constellation when the swarm avoids the fixed ob-
stacle in its path. However, the prescribed low-degree formation is
re-established before the convergence of the swarm to its target config-
uration.

We have also generated the graph of orientations of the different
bodies of the leader-robot (see Figure 2 (c)). It can clearly be seen
that the desired final orientation of each body of the 2-link mobile
manipulator is achieved at the target; proving the effectiveness of the
MDT. Figure 2 (d) shows the evolution of the orientations of the
end-effectors of the leader and the follower robots. This also proves
the low-degree formation of the swarm and the effectiveness of the
obstacle avoidance function governing its heading. Finally, Figures
2 (e) and 2 (f) show the behavior of the nonlinear controllers for the
leader-robot. Convergence at the target configuration is observed in
both figures, which clearly validate the effectiveness of the proposed
controllers. Similar trends were observed with the follower-robots.

6.2. Scenario 2: 5-robot X-Shaped formation. In this
scenario, we have considered the leader-robot at the center of an X-
shaped formation with a follower-robot positioned at each vertex. The
formation has to maneuver from an initial to a final state, whilst
avoiding all fixed and moving obstacles in its path. Tables 3 and 4
provide values for the initial conditions, constraints and the different
parameters utilized in this simulation, however, only those that are
different from Scenario 1. The control laws were implemented to
generate feasible trajectories.

Figure 3 (a) shows the trajectories of the individual 2MM of the
swarm fixed in a X-shaped formation. Figure 3 (b) shows that the
prescribed formation is maintained during the motion. It is also clear
from the figure that there is a temporary distortion of the constellation
when the swarm gets closer to the fixed obstacle, but the original
formation is re-established soon after the well-choreographed collision
avoidance. The controllers also guarantee re-establishment of the
predefined formation when a 2MM is getting closer or lagging behind
another 2MM. The behaviors of the non-linear controllers of the leader-
robot are shown in Figures 4 and 5, indicating its convergent nature.
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FIGURE 2. The evolution of state variables and the swarm formation for Scenario 1.
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TABLE 3. Initial and final configurations.

Ao A Az Az Ag
Rect. Positions (10, 30) (15, 35) (15, 25) (5, 25) (5, 35)
(zi,Yqi)

N

Angular Positions (o, %a -
(0i1, 052, 043)

2y 1 (0,%,-2%) | (0,%,—-23F) | (0,%,-3%3%) | (0,%,-23F)

Translational vg =2 vy =2 vy =2 vg =2 vg =2
velocities

Rotational Vel. (0.3,0.1,0.1) | (0.3,0.1,0.1) | (0.3,0.1,0.1) | (0.3,0.1,0.1) | (0.3,0.1,0.1)
(wi1, wiz, wis)

Target Centers (54, 30) (59, 35) (59,25) (49, 25) (49, 35)
(Pi1> Pi2)

Final Orientations | (0, 7, —%) 0,7, —-%) 0, %,—%) 0,7, -%) 0,7, —%)

(i3, Pia; Pis5)

TABLE 4. Values of constraints and parameters.

Robot Dimensions o =2.0m,bg =1.0m, £; =4 =12m

Ghost Target Parameters | (k11, k12) = (—7.5 m, —5 m), (k21, k22) = (—=7.5 m,5 m);
(k31,k32) = (1.5 m,5 m), (ka1, ka2) = (1.5 m, =5 m)
Obstacle Center, Radius (o11,012) = (256 m,32 m), roy = 2.5m

Max. distance (M;;) Mgy = 8.0 m; Moz = 8.0 m, Mpz = 8.0 m, Mg = 8.0 m;
Mg =8.0m, Mj2 =11.0 m, M3 =15.0 m, M14 = 11.0 m;
Moy = 8.0 m, Mgy = 11.0 m, Maz = 11.0 m, Moy = 15.0 m;
M3zg = 8.0 m, M3; = 15.0 m, M3y = 11.0 m, M34 = 11.0 m;
Myg = 8.0 m, Mgy = 11.0 m, Myp = 15.0 m, Mg3 = 11.0 m

Top, Right Boundaries N1 =60 m; n2 =50m

Control Parameters a;s =0.01,s=1,...,8; vim1 =05, m=1,2,3;
Cimk =1.2; &4 =0.5,p=1,2,3; B4 =0.1, r =1,...,4;
Pij = 0.015 @rpysj = 0.5, myu=1,2,3 4,5 =0,...,4, j #1%

o1 =09 =03 =0.1

Convergence Parameters | §;;7 = §;0 = ;3 =d;4 = 15for i =0,...,4

7. Concluding remarks. We have presented a set of continuous
time-invariant acceleration control laws that successfully tackles the
problem of formation control of a swarm of 2-link mobile manipulators
in a priori known environment. The advancement of the prescribed
formation was via the moving ghost targets, a variant of the leader-
follower scheme. Synthesis of the controllers for the swarm was for
the first time attempted via the Lyapunov-based control scheme, which
inherently guaranteed stability of the kinodynamic system. The control
scheme successfully encompasses changes to the swarm heading and can
easily be modified to address scalability of the formations.

The tuning parameters from the control scheme provide an added
degree of control of the subtasks and also ensured maintenance of
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the prescribed formation. A new algorithm was integrated to the
Lyapunov-based control scheme to establish and maintain prescribed
formations, but allowing slight distortions in order to avoid obstacles
directly in the path of the procession. After avoidance the swarm
was forced back into constellation where the original formation was
re-established. For the first time, final orientations of the swarm in
a fixed formation was addressed via the use of MDT and ghost walls.
The simulation results confirm the performance of the controller and
validate the stability and convergence of the swarm of 2MMs.

In summary, our decentralized continuous control laws derived from
the Lyapunov-based control scheme demonstrated autonomy and to
a certain extent, the multitasking capabilities of homogeneous multi-
agents seen in nature. A sequel of this paper will utilize the Lyapunov-
based control scheme to address formation control of swarms in dy-
namic topologies.
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