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PERIODIC AND HOMOCLINIC SOLUTIONS OF
A CLASS OF FOURTH ORDER EQUATIONS

YUANLONG RUAN

ABSTRACT. In this paper, we investigate a class of fourth
order equations, which include the extended Fisher-Kolmogorov
Equations as a special case. Under different conditions, we ob-
tain periodic solutions and homoclinic solutions respectively.

1. Introduction.

1.1. Background. In this paper we shall study a class of fourth
order differential equations. The extended Fisher-Kolmogorov (EFK)
equation is of this kind, for example, [10] studies the stationary
solutions of EFK,

ou 0*u  O%u

E:—qw-}-wﬁ—u—u?’, on R x (0,00),

where 7 is a positive parameter. The problem of finding stationary
solutions of EFK and relevant generalized equations has long drawn
attention from both mathematicians and physicists. Various methods
have been employed to attack these equations, from topological shoot-
ing, the maximum principle, Hamiltonian methods to variational meth-
ods. In [9], the authors carefully summarized most recent results and
efforts in these directions. For results concerning variational approach,
the readers could refer to [2, 4, 7, 12] and references therein. In par-
ticular, we shall mention [7]; in their paper, the authors successfully
found a periodic minimizer of a second order functional whose Euler-
Lagrange equation is just the above mentioned fourth order equation.

Our results have embraced [2, 10, 14] and part of generalizations in
[9]. Our work is inspired by [2, 14, 15].
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1.2. Main results. In this paper, we focus on the nontrivial periodic
solutions of the fourth order equation assuming the following form

P) {u“’—ku”—c(m)u:f(m,u),:ve(O,L),

u(0) =u (L) =u"(0) =u" (L) = 0.
where k > 0 and ¢(z) is a function satisfying
(A1) c1=2c(z)=ex>0.

In what follows, ¢ (z) is always assumed to satisfy (A;).

Under different conditions of f (z,u), we investigate the existence and
multiplicity of solutions. Let f (z,u) be a continuous function and

F(x,u):/ouf(:v,s) ds.

In addition, f (z,u) and F (z,u) are required to meet some of the
following conditions as is needed.

There are a real number p > 2 and a constant & > 0 such that:

(Ch) lim sup £lau)

< —a, uniformly in z.
Ju|—+o0 |’LL|

There are a real number p > 2 and a constant 8 > 0 such that:

F
(cy) lim sup < (3, uniformly in z.

There are a real number p > 2 and a constant § > 0 such that:

F
(C9) lim inf (ac,pu) > 6, uniformly in z.
|u|—+oo \u|

There are a real number p > 2 and a constant 1 > 0 such that:

(c3) lim inf F(z,u)

75— = —n, uniformly in z.
Ju|—+o0 |u\
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There exist a constant 0 < o < 1/2 and p > 0 such that:

(Cs) |u| > p = F (z,u) < ouf (z,u), uniformly in .

(C4) f(z,u) =o0(u|), |u| = 0, uniformly in x.

Note that when (C4) and (C?) are used together, we naturally require
B = 6. When (C}) and (C3) are used together, we require n > a. We
set up our problem on the following Hilbert space with norm |||,

X =H*(0,L)NH; (0,L),

I 1/2
] = ( / [+ w’] dm> -

The organization of this paper is as follows. In Section one, we first
find the minimizer of

(min Py) 113&12 o (u),

where

o (u) = /OL {% (@) + k@)~ c(@)w] - F (2.0) } da.

In the proof of existence of the minimizer, f (z,w) is not required to be
odd in u. However, if F (z, u) is also even in u (equivalently f (x,u) is
odd in u), then we can further construct a periodic solution from the
minimizer. In fact when F (x, ) is even, we can construct 2L-periodic
solution from any nontrivial solution by extending it antisymmetrically
to the real line.

Theorem 1. Assume (Ch) is satisfied. Then (min P1) achieves its
minimizer.

Next, we study the influence of L on the existence of nontrivial
solutions. By employing the abstract critical point theory from [3], we
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show that problem (P;) has several numbers of geometrically distinct
pairs of orbits according to the variance of L under the condition that
f(z,—u) = —f (z,u). Define

\/k + /B 1 dey
L1,2 =T .

20172

Theorem 2. Suppose f (z,u) is odd in u and satisfies (Cy), (C3),
(Cy). If L > mLy for some m € N, then problem (Pi) has m
geometrically distinct periodic solutions.

In Section two, we first prove an existence theorem in a general case.

Consider the following eigenvalue problem

1) {ui“—ku”—i—c(w)u:)\u,me(O,L),

w(0) = u (L) =u" (0) = u’ (L) =0,

we will see that the principle eigenvalue A\; > —oo and then we denote
the sequence of eigenvalues by

A< A< <A <0< A K A2 <0

where the eigenvalues repeat according to its multiplicity. We have

Theorem 3. Suppose F (z,u) satisfies (Cs), (Cy). Moreover

A
u?.

(C5) Flauw)> 3

Then the problem

(P) {u“’—ku”%—c(x)u:f(a:,u),:ce(O,L),

u(0) = u (L) = u" (0) = u" (L) = 0,

has a nontrivial solution.

Next, we prove that
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Theorem 4. If f(z,u) is odd in u and satisfies (C3), (C4), then
problem (Py) has infinitely many pairs of solutions, u, and —u,,, which
are critical points of ¢ (u) and ¢ (u,) = +00, as n — +o00.

In the last section, we find a homoclinic solution for (Ps).
(P) u® +ku e (2)u = f (2,u),

where ¢ (z) is 1-periodic and satisfies (A1), 2cé/2 > k. We obtain the
following

Theorem 5. Suppose f (z,u) is 1-periodic in = and meets (C}),
(C3), (C4). Moreover, there exist constants o, 7 > 0, a > 2 and two
integers q > q > 1, such that

1 _
§uf (z,u) — F (z,u) < pu? + Tuf,
1
—uf (z,u) — F (z,u) > 0.
o
Then there ezists a homoclinic solution u € H? (R) of problem (P3).

Convention: The constants in this paper are mostly denoted by C,

¢, C, ¢, which are different from line to line.
2. Minimizer.
2.1. Minimizer.

Lemma 6. Suppose u is a minimizer of (min Py). Then u must solve
problem (Py).

Proof. By the standard regularity theory, v € C*([0,L]). It is
sufficient to show that u also satisfies the boundary conditions in (P;).

In fact, since v € X, v(0) = w(L) = 0. It remains to prove
u” (0) = u" (L) = 0. Let n € C*([0,L]) and n (0) = n (L) = 0, because



890 YUANLONG RUAN

u is a minimizer, so

d
%go (u+ sn) - =0.

Precisely,

L
|k = e (@) un = (@ do = .
0
By integration, we obtain
u" (L)n' (L) —u" (0)n" (0
+ [ w4 ku"n —c(x)un — f (z,u)n] dz

"(L)n' (L) =" (0) 7' (0)

~—

h

=u

=0.
Since ' (0) and 1’ (L) can be chosen arbitrarily, we must have v” (0) =
v (L)y=0. o

Proof of Theorem 1. We first show ¢ (u) is bounded from below, thus
we can find a minimizing sequence.

According to (C), there is a constant p > 0, whenever |u| > p we
have

—F (z,u) > @|uf’, uniformly in z.

/{
=[] 3l

Therefore,

k() - ¢() uZ] _ F(z,u) } dz

— [\3"—‘

<>+c<>2]dw

+ /{I [—c(z)u® — F (z,u)] do

llul>p Yu{z||u|<p}

> /OL % [(u")2 +k (u')2 +c(x) uz] dz
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+ /{xu|>p} [—c(z)u® +auf] dz+C
> /0 % [(u")2 + kW) + c(m)uz] dz +C
> /OL % [(u")2 +k (u')z] dr +C.

Hence ¢ (u) is bounded from below and the minimizing sequence of
¢ (u) must be bounded in X. Going if necessary to a subsequence, we

may assume that
U, — u, in H*(0,L).

The functional ¢ (u) is weakly lower semicontinuous on X (the main
ingredients of the proof are Egorov’s theorem and Lusin’s theorem; for
a detailed proof, see for example [6]). Therefore, following standard
procedure, one obtains a minimizer of problem (min P;) in X. O

2.2. The parameter L.

Lemma 8. If f(z,u)u < 0. Then, whenever L < Ly, the problem
(Py) has only a trivial solution.

Proof. Suppose u is a nontrivial solution of problem (P;); then we
have

((10, (u),u) =0,
that is,
L
/ [(u")2 + kW)~ c(x)u? — f(z,u) u} dx = 0.
0

Therefore, employing the Poincaré and Holder inequalities (cf. [10]),
we obtain

0> /OL [f (z,u) u] dz
= /OL [(u")2 —i—k(u')2 —c(x) uﬂ dx

L) () ol
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but the integrand in the last inequality is nonnegative whenever L <
L1, which is a contradiction. ]

Lemma 9. If L > Lo, f (z,u) satisfies (C3) and (Cy), then problem
(Py) has a nontrivial solution.

Proof. It suffices to show

min ¢ (u) <O.

Let

~ X
= esin—, &> 0.
u(z) = esin 7 €

Plugging the function into ¢ (u) we obtain

~ 1, LreaeNYr | wa\?
e (1) (=)
> A A
+k<f> <COST> —c(x)<31nf> ]d:v
L T
—/0 {F (:c,ssinfﬂ dr
L m\* m\?
< =2 = Z) -
<2(7) ++(5) -«
L
. T
—/0 [F(ac,asmf>]dac
Using (Cy) and (C3), we have, for all £, there exists C~ > 0,
(1) P (e,u) > —Juf® = C= uf?.

Hence, using the above inequality with

SHGRORE
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we arrive at

uklh

™\’ +L~2
17 Cca 5 £€
Cgf/
0
o\ o\ 2 L
2|1 = ) P
€ [(L) —i—k(L) Cz:|+Cg'E/0
It is easy to verify that

4 2
™ ™
(f) +k<z> — C2 <0, VL > Ls.

Therefore, for £ > 0 small enough, we have

sm—‘ dx

p

dx.

o~

.
sin —

.
min ¢ (u) < ¢ (@) <0,

which indicates there is a nontrivial minimizer of ¢ (u). o
Remark. Note that Lo > L.
2.3. Geometrically distinct periodic solutions.

Theorem 10 ([3] P112). Assume that

(f1) f € C*(X,R) is G-invariant, G = Zy or S'.

(f2) There exist two regular values a < b such that (PS.) hold for all
¢ € [a,b].

(f3) There ezxists Gq-invariant subspaces X4 and X_ with

1 1
j= EcodimX+ <m = EcodimX_ < 4oo, d=1or2

where j and m are integers, such that
(1) Fixg C X4, Fixg N X_ = {9},
(2) f(z)>a, forallz € X4,
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(3) f(z) <b, for allz € X_N X, for some p >0,
(4) Fixg N f~[a,b] = {6}.

Then f has at least m — j distinct critical orbits.

Proof of Theorem 2. To employ Theorem 10 to serve our purpose, we
need to verify that: ¢ (u) is even, ¢ (0) = 0 and ¢ (u) is bounded from
below by some constant a. These conditions are trivial in our situation.
Apart from that we have to show ¢ (u) meets the (PS) condition and
there exists an m-dimensional subspace X,,,, for 1 < m < oo, such that
¢ (u) is bounded from above by a constant b > a on X,,, N X, for some
p > 0. We divide the proof into two steps.

Step 1: (PS) condition.
Let u, € X be a (PS) sequence, i.e.,

¢ (uy,) is bounded and ¢’ (u,) — 0 as n — +o00.

By similar argument as in Theorem 1, one easily verifies u,, is bounded
in X. Hence we may assume

Uy — U, in X.

By the Sobolev imbedding theorem, we obtain

L
(@ (un) ,u) = / [uru” + kulu' — c(x) upu — f (z,u,) u] dz

_>/OL[<u~>2+k(u'>2—c<x>u2—f(sw)u da
=0.

Meanwhile, since ¢ (u;,) is bounded and ¢’ (u,) — 0 as n — +o0, we
deduce that

(@' (un) ,un) — 0, as n — +o0.
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[ [0 k] de = 6 ) )+ [ [etead] ae
0 5 0
+/0 [f (z, un) up] dz
— /OL lc(z)u? + f (z,u)u] da.

Thus we have
[[unl] = lull,
which together with w, — u in X implies ||u, — u|| = 0, as n — +o0.
Step 2: Geometric condition.

Consider the subspace

. T . mnx
Xm:{smf,- ,sin 17 }
Any w € X, can be written as
" imx
w = kg_l wW; s1n T

Using (1) with € satisfying

s EAl(E) () o]

we have
1. , Lrrin\*( . ira\?
o=yt [ |(F) ()
2

+k<%> <cos”7‘"”>2 —c(a) <sinm7$>2] do
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L L
+5/ |w\2dx+C;/ |w|? dz
0 0

Since mLy < L, there is a constant £ > 0 such that
ir\* i\ 2
l<f> +k<f> —c(w)] < -k, VI<i<m.

L & L
P < —5rY W+ 0 [ ol da
i=1 0

Thus

Since any norms on a finite dimensional space are equivalent, for p > 0
small enough, we have

P @) <0, i Jwlly, <p O

Remark. This theorem remains valid if (C4) is replaced with (Cj).
3. Nontrivial solutions of problem (P).

3.1. General case. In the general case, F (z,u) is not assumed to
be odd in u and typically assumed to satisfy (C}), (Cs), (C4), (Cs).

Lemma 11. For c¢(z) satisfying (A1), k > 0, we have

L
A= _inf " 4k () 2| dz > —oo.
1 ueX,ﬁI;HLz:l/O [(u )"+ k(u) —i—c(m)u} x 00

Proof. Apparently, the functional in question is bounded from below.
Consider the minimizing sequence:

[ o w1, 2 )" ) o) o

— A1,
([t 2 '
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Going if necessary to a subsequence, we may assume
U, — u, in H*(0,L).
According to the Rellich theorem, we have
L L
s — o [ le@)ad] de— [ [e@)a?] da.
Since \; < +o0 and u # 0, we obtain

0 @+ e(e)22] ds

A > > —00. O
[l
Remark 12. If ¢ (z) satisfies (A7), then A; > 0.
Let ey, e9,€e3,... be the corresponding orthonormal eigenfunctions of

( )in L2(0,L).

Lemma 13. Under the assumptions of the preceding lemma, if
Y = Spa'n{ela €2y..., en}a

L
Z:{ueHQ(o,L)mHg(o,L) ‘ / usz,veY}.
0

Then
L

9 = inf [(u”)2 + kW) +c(x) u2] dz > 0.
iz 70

Proof. By definition, on Z we have

L L
/ [(u")2 + kW) +c(x) uz} dx > At / u?dz.
0 0
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Take a minimizing sequence u,, € Z:
o 2 2
/ [()? 4k ))?] e = 1,
0
o 2 2
/ [(ug) +k(u,)” +c(z) ui} dz — 9.
0
Going if necessary to a subsequence, we may assume

Up — u, in H?(0,L).

By the Rellich theorem,
L
9= 1—|—/ [c(x)uz] dx
0
E 2 2
> / [(u") +k W) +c(x) u2] dx
0
L
> /\n+1/ w?dz.
0
fu=0,0=1andifu#0,9> A\y1 fy udz >0. O

Proof of Theorem 3. Step 1: (PS) condition.

As usual we choose

Let

then ||lu||, is an equivalent norm of X. From (Cj3), we deduce there is
a constant ¢ > 0 such that

o1
(Cs) c (|u| - 1) < F(z,u).
Let u, be a (PS) sequence, i.e.,

¢ (up) is bounded and ¢’ (u,) — 0 as n — +oo.
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Then by the preceding lemmas and (C3), we obtain

1 s 1 [F )
p(un) = 5 lunll™ + 5 [ [e(@)uy] da
2 2/
—/ F(z,up) dz - C
{z|un|>p}

L
> (5= o)l + o Bl = [ 7 @) e | -
0
1
(3-2) (91l + 2 lonls2)
L
sof il = [ f v unds | -

1

(5 7) (Pl 4 A nls2) + 0 (9 () )~ €,

WV

where u, = zp + Yn, Yn €Y, 2, € Z. Since ¢’ (u,) — 0, we have
(¢’ (un) ,un)| < ||lunll, for n large enough.

Thus

~ 1
G2 ) > (5-0) (0l + 20 llz) = o luall = €,

which indicates ||u, || must be bounded in X. Without loss of generality,
we may assume that
Uy — u, in X.

Hence

lanll, = (&' (tn)  0m) + / [F (@ tn) tn] d

L
— [f (z,u) u] dz

which together with u, — u in X implies ||u, — u|| = 0, as n — +o0.

Step 2: Linking geometry. From condition (Cy4), we have, for all €,
there exists a C’;> 0,

F(z,u) <Elul” + C=Julf.
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By virtue of the Sobolev imbedding theorem, we obtain
1 2
(5 - )l - =l

where ¢is Sobolev imbedding constant and & satisfies é¢ < 1/2. Whence
@ (u) > 0 if ||u||, = p is chosen small enough.

WV

¢ (u)

Besides, from (Cg), we have, on Y,

o (u) g/OL {%"UZ—F(M)} dz < 0.

Let
_ Plnt1

el

Then using (C3) we obtain
1 2, 1 2 ot
¢ (u) < 5 llull” + 5 llall s [lullz — elluffe—s + L.

Since on the finite dimensional space Y @ Rz, all norms are equivalent,
we have ¢ (u) <0, if u € Y @ Rz and ||u|| is large enough.

Thus by virtue of linking Theorem [15, P43], Problem (P;) has a
nontrivial solution. O

3.2. Periodic solutions—even functional case. In the case where

o (u) = /OL [(u")2 +k@W) +c(x)u®—F (:c,u)} dzr

is an even functional and c(z) satisfies (A;), we can further obtain
infinitely many solutions by using the following abstract critical point
theorem.

Theorem 14 (Rabinowitz). Let X be an infinite dimensional Banach
space and X, is the sequence of finite dimensional subspace of X with
dim X,, = n, and

XicXoCc---C X, CX, UTJLFSX”:X
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¢ (u) € C* (X,R) is an even functional, ¢ (0) = 0, and ¢ (u) satisfies
the (PS) condition. Suppose that

(i) there are constants p,a > 0 such that ¢ (u)l, -, > @, and
(ii) for every n there is a pn, > 0 such that ¢ (u) < 0 on X,\B,,

Then ¢ possesses infinitely many pairs of critical points with unbounded
sequence of critical values.

Proof of Theorem 4. Step 1: (PS) condition.

Let u, € X be a (PS) sequence; we claim that u, is bounded in X.
As before we use the equivalent norm

ul|? = /OL [(U”)z kW) +c(z)u?]| da.

By condition (C3),

1
o) > 5wl = [ F@u)de-C
{=zllunl>p}
1 L
>l =o [ 1 @) ude -0

> (3-0) Il 4 o{ hual? = [ 1 @) e}~

(5 ) Il + 0 (¢ (1) ) - C.
Since ¢’ (up,) — 0, we have

|(¢" (un),un)| < |lunll,, for n large enough.

Thus )
C2 > (57 lunll - o lunl. - C.

which indicates ||uy||, and then ||u,|| must be bounded in X. Without
loss of generality, we may assume that

Uy, — u, in X.
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which together with u, — u in X implies |lu, — u|| — 0,as n — +oo.

Step 2: Geometric condition. Consider the subspace
X, = {sin%---sin@}, n > 1.

From condition (C4), we have, for all £ that there exists a C~ > 0,
F (z,u) < (c | — 5) .
By virtue of the Sobolev imbedding theorem, we obtain

1 2
o) > (5~ 2) Il - Czlull.

where ¢is Sobolev imbedding constant and & satisfies €¢ < 1/2. Whence
condition (i) holds if ||u||, = p is chosen small enough.

Similarly, from condition (C3), we have that there exists a C, C >0,
F(z,u) > (c | — (7) .

Hence
9 =
@) <Clull; = Cllullf, ueX.

Now we can choose p > 0 large enough such that, for u € X,
¢ (u) <O, if [lullx, > p,

where we use again the fact that all norms on a finite dimensional space
are equivalent. ]
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4. Homoclinic solution. In this section, we consider the following
functional

o (u) = /R {% {(u”)2 — kW)’ = c(z) uﬂ — F (z,u) } dz,
where ¢ (z) satisfies (4;) and
2cé/2 > k.

Correspondingly, the space H? (R) becomes our protagonist with
norm

lull = lull g2 gy = /R [ + W)? + 2] da.
Lemma 16. There exists a constant ¢ > 0 such that

/R [ k) +e(@)w] do > clul?

Proof. The proof is not difficult and is left as an exercise. Alterna-
tively, the readers could refer to [2, 14] for inspiration. ]

Lemma 17. Under conditions (C7), (Cz2) and (Cyi), the functional
¢ € C* (H,R) and meets the following mountain pass conditions:

(i) There exists a p > 0 such that ¢ (u) > 0 on the sphere ||ul| = p.
(ii) There exists a u € X such that ||u|| > p and ¢ (u) < 0.

Proof. As before, from conditions (C}) and (C4), we have, for all &
that there exists a O~ > 0,

F(z,u) <Elul* + C=Julf .
From the preceding lemma, we obtain, as long as ||u|| = p is small,

1 ~
o) > (o) lul® - Celul? > 0,
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where ¢, ¢, € are constants satisfying
elull > [ fu(@) do
R
- 1
llul® = / lu(z)]?dz, =c—&¢>0.
R 2

On the other hand, from conditions (Cz) and (C4), we have that there
exists a C, C > 0,
F(z,u) > —Clul* + C|ulf.

Fix any w € H? (R), @ > 0 on r. For ¢t > 0 we achieve

@(tw)fl m2 _ "2 2
2~ 5 R[(w) k(@) +c(w)w]dw
1
2| F
Z /. (z,tw) de
<l |:( m2 2 2
< w") —k(w') +c(z)w®| da
2 /r
+C’/ wzd:cfétpfz/ \w|? dx
R R
— —00, ast— +oo.

Therefore, for some ¢ > p, we have ¢ (u) < 0 with u = tw. o

Proof of Theorem 5. By the preceding lemma, there is a sequence u,,
in H? (R) such that

(P(un) —m > Oa ||<pl (un)||H2(R)* —>O’
where

— inf t
m ;‘e‘m‘g?gﬁ”@())’

I'={ye(C[0,1],H*(R)) |7(0) =0, v(1) =17}.

As in the proof of Theorem 4, one easily deduces that u, must be
bounded in H? (R), whence (¢’ (uy,),u,) — 0. Therefore

(@' (un),un) — ¢ >0.

DN | =

/WHWDMW*
R
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‘zs. Then

For notational simplicity, we denote fJ IS by | ,
J

cé/ gu%—i—TuZ

R
J+1 _
<[ (etunl 7 1ual?)
i J

<3 (lunlty + ol )

J

< supma {57 7'
J 7 i

« 3 (lualleg + lunl )
J

—1 q—1
< Csupmax {unlfy" 5"} il
J J

1 q—1
< Csmpmax ' o7}
j J

< Csupmax {un |33 3"}
i ! !

which leads to

0<z— min{cl/(qfl),cl/(ﬁfl)} < sup HunHL; .
J
Consequently,

it
liminfsqp/ Uy ()7 dz > ¢/ >0,

n—-+o0o j j

and we are in a position to apply concentration compactness principle,
cf. [13, P39]. Choose a sequence i, € Z such that

1
liminf/ |tun (in + z)|Tdz > 0.
0

n—-+o0o

Then the sequence of functions v, (z) = wu, (i, +z) € H%(R) is
bounded and we may assume

v, —v, in H*(R).
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One easily sees that v # 0. By presumption c¢(z) and F (z,u) are
1-periodic functions with respect to x, we obtain

¢ (un) = ¢ (vn),

and
1" (a)ll g2y < 19" (un)ll g2y — 0

It follows that ¢’ (v) = 0, and the proof is complete. o

Remark 18. From the proof, one may notice that the conclusion
remains true if there exist constants ¢ > 0 and an integer ¢ > 1 such
that

1
F (z,u) — §uf (z,u) < ouf.
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