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OSCILLATION OF NONLINEAR IMPULSIVE
PARABOLIC DIFFERENTIAL EQUATIONS
OF NEUTRAL TYPE

ANPING LIU, TING LIU AND MIN ZOU

ABSTRACT. In this paper, oscillatory properties of solu-
tions for certain nonlinear impulsive parabolic partial differ-
ential equation of neutral type are investigated and a series of
new sufficient conditions and a necessary and sufficient condi-
tion for oscillation of the equations are established.

1. Introduction. The theory of delay partial differential equations
can be applied to many fields, such as to biology, population growth,
engineering, generic repression, control theory and climate model. In
the last few years, the fundamental theory of partial differential equa-
tions with deviating argument has undergone intensive development.
The qualitative theory of this class of equations, however, is still in an
initial stage of development. A few papers have been published on os-
cillation theory of partial differential equations with delay. Many have
been done under the assumption that the state variables and system
parameters change continuously. However, one may easily visualize sit-
uations in nature where abrupt change such as shock and disasters may
occur. These phenomena are short-time perturbations whose duration
is negligible in comparison with the duration of the whole evolution
process. Consequently, it is natural to assume, in modeling these prob-
lems, that these perturbations act instantaneously, that is, in the form
of impulses. In 1991, the first paper [8] on this class of equations was
published. But, for instance, on oscillation theory of impulsive par-
tial differential equations only a few of papers have been published.
Recently, Bainov, Minchev, Luo and Liu [3, 4, 7, 18, 20, 22] in-
vestigated the oscillation of solutions of impulsive partial differential
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equations with or without deviating argument. But there is a scarcity
in the study of oscillation theory of nonlinear impulsive parabolic par-
tial differential equations of neutral type.

In this paper, we discuss oscillatory properties of solutions for a
class of nonlinear impulsive parabolic partial differential equations with
several delays (1), (2), under the boundary condition (3).

(1)
o (ult ) + a(ult ) = alt)h(u) A
Za, u(t — 7, ) Au(t — 7, ) qu t,x)fi(u(t —oj,x))
t # ty, (t,x)€R+><QzG
(2) u(tf, ) — u(ty ,z) = bpu(ty, z),

with the boundary condition

(3) u=0, (t,z) € Ry x O

and the initial condition u(t,z) = ®(¢,z), (¢,x) € [—6,0] x Q where
Q2 C RY is a bounded domain with boundary 0% mooth enough
and n is a unit exterior normal vector of 0, § = max{y, 7, 0,},

B(t,z) € C2([=6,0] x Q, R).

This article is organized as follows: Section 2 studies the oscillatory
properties of solutions for problem (1)—(3). In Section 3, we, for the
linear case, obtain a necessary and sufficient condition for oscillation of
solutions.

Assume that the following conditions are fulfilled:

Hy) a(t),ai(t) € PC(Ry,Ry),q(t) € PC(Ry,(=1,0]), p, 7,05 =
const. > 0, ¢;(t,z) € C(R4+ x ,(0,00)),t=1,2,... ,m,j=1,2,...n
where PC' denotes the class of functions which are piecewise continuous
in ¢ with discontinuities of first kind only at ¢t = ¢, and left continuous
att=tg, k=1,2,.... q(t;)) = (1 + bx)q(t;)-

Hs) h'(u), hi(u), fj(u) € C(R,R); fj(u)/u > C; = const. > 0, for
u # 0; uh'(u) > 0, uhl(u) > 0, h(0) = 0, h;(0) = O, bg,dr =
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const. > —1, 0 < t; < g <--- <t <---, lim & = oco. Q(t) =
k— o0

Htf,u.gtk<t(]‘ +bk)"'q(t) € C(R4, (—1,0]).

Hj) u(t, z) is piecewise continuous in ¢ with discontinuities of the first
kind only at ¢ = t; and left continuous at ¢t = ti, u(ty,z) = u(t,,z),
k=1,2,....

We introduce the notations: wv(t) = [,u(t,z)dr and p;(t) =
ming;(t,z),z € Q.

Definition 1.2. The solution u € C%(T') N C*(T) of problem (1)—(3)
is called nonoscillatory in domain G if it is either eventually positive or
eventually negative. Otherwise, it is called oscillatory.

2. Oscillation properties of the problem (1)—(3). The following
Theorem 2.2 is the main theorem of this paper. The proof of the
theorem needs the following lemma [24].

Lemma 2.1. Let p = const. > 0, ao(t), p(t) € ([0, +00), R) be locally
summable functions and p(t) > 0; y(tx) = y(t; ), k = 1,2,.... If the
following condition is satisfied

t s 1
.. 1
tllglo inf /tpp(s) exp (/Sp ao(r) dr) | I (14+dg)~ " ds> =

s—p<tp<s

then the following differential inequality has no eventually positive
solution.

Y (t) + ao(t)y(t) + p(t)y(t —p) <0, t>0, t # tg,
y(t) — y(ty) = dey(ts), k=1,2,....

Theorem 2.2. Suppose that conditions H,), Ha) and the following
condition (4) hold for some j € {1,...,n},

t

1
4 lim inf D 1 -t =.
(4) im in t Cip;(s) H (I+bk) " ds> -

t— o0 .
Tj s—0;j<tp<s

Then every solution of the problem (1)—(3) oscillates in G.
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Proof. Suppose that the assertion is not true and u(t, ) is a nonoscil-
latory solution of problem (1)—(3). Without loss of generality, we may
assume that there exists a tp > 7" such that u(¢,z) > 0,u(t — p,x) > 0,
u(t—7,x) >0,i=1,2,... ,mand u(t —oj,z) >0,j=1,2,... ,n for
any (t,x) € [tg,00) x €.

For t > tg, t # tr, k =1,2,..., integrating (1) with respect to x over
Q yields

%Vﬂ(u(tvw) +q(t)U(t—M,w))dr] = a(t)/ﬂh(u)Audx
+ é a;i(t) /Q hi(u(t — 7, 2))Au(t — 74, ) dz

-3 [ wault o) de (¢t t£10).

j=179
By Green’s formula and the boundary condition we have
/ h(u)Audz = h(u )— ds — / R’ (u)|grad u|* dz
Q 29
< —/ R (u)|grad u|? dz < 0,
o

/ hiu(t — 7, 2)) Aut — 75, 2) da < 0.

Q

From condition H3), we can easily obtain
/qu(t, z)fi(u(t —oj,x)) de > C;p;(t) /Q u(t — oj, ) dz.
Then v(t) > 0, and it follows that

o)+ atthol +chp] 0) <0, (t>to, t#t).

Hence we obtain

(5) :ljt[ ( )+Q( ) ( M)]+ijj(t)v(t—aj) <0, (tZtO, t;’étk).



NONLINEAR PARABOLIC DIFFERENTIAL EQUATIONS 837

In inequality (5), set w(t) =[], <;, <;(1+bx) "v(t). We can obtain the
following results: (1) w(t) is continuous on [ty, +00), (2) Inequality (5)
has no eventually positive solution if and only if the following inequality
(6) has no eventually positive solution.

(6) %[w(t)JrQ(t)w(t—M)] +CiP(Hw(t—oj) <0, (t>tg, t #tk),
where
Qty= J[ @+b)la@), )= [ (@+0b)  ps().

t—p<tp<t t—o;<tp<t

In fact, v(t) is continuous on each interval (t,tx+1], and in view of
v(t) = (1 + bg)v(tg), it follows that for ¢ > ¢,

witt)= JI @+b) o) = I @+b)  olte) = wlt),

togtjgtk toStj<tk

and for all ¢t > ty,

wity)= I a+o) )= [ @+b)  ot) =w(te),

to<t;<tp_1 to<t; <t

which implies that w(t) is continuous on [ty, +00). Moreover, we obtain
that for almost everywhere t € [tg, +00)

d

() + Q)w(t — u)] + Ci P (t)w(t — oj)

_%[ [T -+ e

to<trp<t

S | QECRRS RO | (A SR

t—p<tp<t to<tp<t—p

+¢; I @+ ey [ (A +b) ot -oy)

t—oj<tp<t to<tp<t—o;

= T (4007 (o0 + atete = ]+ Cony(oe - ) <0,

to<tp<t
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which implies that w(t) is a positive solution.

Conversely, let w(t) be an eventually positive solution and w(¢t) >
0,w(t — p) > 0 and w(t —a;) > 0 for t > to, set v(t) = [[, <, (1 +
br)w(t). As w(t) is continuous on [tg, +00), v(t) is continuous on each
interval (ty,tk41],tx > to and for almost everywhere t € [tg, +00),

L 1o(0) + a0yl — )] + Cips(eo(t — o) = & [ I a+outy
ra) T1 (bute—n] + G

X . Htogt::;k)w(t ~ ;)

- 1II o+ b o) + Qe - ] + Pt - o) <o.

On the other hand, for every ¢ > to,

and

’U(tk) = H (1 + bj)w(tk).

toStj <tp

Thus, for every ty > tg, k € N, we have
v(t) = (1 + bg)v(tr).

Hence we obtain that v(t) is a positive solution. This completes the
proof of the claim.

Now in inequality (6), set

(7) y(t) = w(t) + Q)w(t — p)-
Hence we have

(8) Y () + CiP(tw(t —0;) <0, (t=to, t#tk),
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From inequality (8) it is easy to see that y(¢) is non-increasing, so we
obtain that lim y(¢) = L.
t—o0
Now we discuss L.
(1) If we suppose that L = —oo, then Jim y(t) = —oo. From
—00

inequality (7), we can get that w(¢) is unbounded; consequently, there
exists {sx : k — 00, s — 00}, such that y(sx) < 0,w(sr) = maxw(r),
r € [to, k] Therefore y(sk) = w(se) + Qse)w(sk — 1) > w(sk)[l +
Q(sk)] > 0. This contradicts y(sx) < 0.

(2) If we suppose that L # 0 is limited, then integrating inequality
(8) from ¢y to t, we obtain

/t C; P (tywlt — o) < y(to) — y(8),

or
—+o00

Cij(t)w(t — Uj) S y(to) — L.

to
This implies w(t) — 0; hence, we have y(t) — 0. This contradicts
L #0.

It follows that L = 0. Since y(¢) is non-increasing, y(¢) > 0. Hence,
from inequality (7), we get y(¢t) < w(t) and from inequality (8), we
obtain the following differential inequality

(9) Y'(t) + CiPi(t)y(t — o) <0, (t>to, tF#tx).

For t > tg, t = tg, k = 1,2,..., since w(t) is continuous on [ty, +00)
and Q(t]) = Q(t;,), it is easy to verify that

(10) y(th) = y(t).

Hence, we obtain that y(t) > 0 is an eventually positive solution of
differential inequality (9), (10). But according to Lemma 2.1 (where
Pi(t) = Ili—o;<trce(X + br)"'p;j(t),dr = 0) and condition (4), the
differential inequality (9), (10) has no eventually positive solution. This
is a contradiction. This ends the proof of the theorem. ]

Similarly, we can obtain the following theorems
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Theorem 2.3. Suppose that the conditions Hy), Hy) and the
following condition hold for some j € {1,... ,n},

t
tll>rlolo sup/ C;p;(s) H (1+bg) tds > 1.
t—oj s—0;<tp<s

Then every solution of the problem (1)—(3) oscillates in G.
We introduce the following conditions.

h1) There exists a constant M > 0 such that 0 < b, < M for all
ke N.

ha) There exists an integer my such that mq(tx1 — tx) > oj,7; for
all k € N and for some j € {1,... ,n}, i€ {1,... ,m}.

Theorem 2.4. Suppose that the conditions Hy), Hs), h1), hs) and
the following condition hold for some j € {1,... ,n},

t mi
lim inf C;pj(s)ds > w

t—o00 t—o; e

Then every solution of the problem (1)—(3) oscillates in G.

Theorem 2.5. Suppose that the conditions Hy), Hs), h1), ha) and
the following condition hold for some j € {1,--- ,n},

t
lim sup/ Cjpj(s)ds > (1 +M)™.
t—o00 t—o;
Then every solution of the problem (1)—(3) oscillates in G.
More generally, we have the following Theorem 2.6.

Theorem 2.6. Suppose that the conditions of Theorem 2.2 still hold
and condition (4) is replaced by the differential inequality (9), (10) has
no eventually positive solution. Then every solution of the problem
(1)—(3) oscillates in G.
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The proofs are easy, we just omit it.

Making use of the following lemma of eigenvalue, we can obtain many
results for problem (1)—(3). We suppose that h(u), h;(u) are constants
(suppose them all 1).

Lemma 2.7. Suppose that Ao is the smallest eigenvalue of the
problem

and ¢(x) is the corresponding eigenfunction of Ag. Then Ay > 0,
o(xz) >0, z € Q.

Theorem 2.8. Suppose that the conditions H), Hy) and the
following condition hold for some j € {1,... ,n}.

t s
(11) tlim inf C;p;(s)exp </ Aoa(r) dr)
o t—oj §—0;

1
X H (l+bk)71ds> .

s—0;<tp<s

Then every solution of the problem (1)—(3) oscillates in G.

Proof. Suppose that the assertion is not true and u(t, z) is a nonoscil-
latory solution of problem (1)—(3). Without loss of generality, we may
assume that there exists a tg > T such that u(t,z) > 0,u(t — u,z) > 0,
u(t—71;,z) >0,i=1,2,... ,mand u(t —oj,z) >0,j=1,2,... ,n for
any (t,z) € [tg,00) x 2.

For t > tg, t # tg, k = 1,2,..., multiplying equation (1) with ¢(z),
which is the same as that in Lemma 2.7 and then integrating (1) with
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respect to x over {2 yields

| [ @ta) + a0t - poyete)do

= ()/QAW dm+2al /Aut—n, z)p(z) dz

—Z/%twfa — oy a))ple) de (¢ > to, £ 1)

By Green’s formula and the boundary condition we have

/uA(pdxf/npAud:v:/ 8—Saudsf/ aug&ds—o
Q Q o On oq On

It follows that
/Q Ault, 2)p(z) da = /Q Ap(@)ult,z) do
== | pla)utt.a)da,
/QAu(t—Tj, da:—/Aga w(t — 3, 7) da
_ f/\o/ﬂgo(ac)u(tfn,x) da.

From condition Hs), we can easily obtain
(12) [ g8t - 0y,0)p(e) do

> ijj(t)/g;u(t —oj,z)p(x)dz (t > to, t # ty).
Denote v(t) = [, u(t,z)p(x) dz. Then v(t) > 0, and it follows that

(13)  S1o() + a(B)u(t — )] + Aoalt) —i—)\oZaz ot = 72)

+chp] Jo(t — ;) <O (t>to, t #ty).
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Hence we obtain a similar differential inequality as (5).

d

(14) 7108 +a@)v(t = p)]+ Aoa(t)v(t) + Cjp;(t)o(t — 05) <0,
(t > to, t # tr).

The following proof is similar to that used in Theorem 2.2. We omit
it. This ends the proof of the theorem. a

The problem that papers [7, 18] discussed is a special case of
Theorem 2.8 here.

Theorem 2.9. Suppose that the conditions Hy), Hz) and the
following condition hold for some j € {1,... ,n},

t s
(15) tlggo sup/ Cjp;j(s) exp </ Xoa(r) d’l‘>
t—o; s—0;
[T +be)tds>1.
s—0;<tp<s

Then every solution of the problem (1)—(3) oscillates in G.

Theorem 2.10. Suppose that the conditions Hy), Hy) and the
following condition hold for some a;(t),

t s
(16)  lim inf / Xoai(s) exp ( / Aoa(r) dr)
t—o0 t—7; S—T;
1
II (+b)tds> -

s—T;<tp<s

Then every solution of the problem (1)—(3) oscillates in G.

Proof. From differential inequality (13) we can obtain

(17) %[v(t) + q(t)v(t — p)] + Aoa(t)v(t) + Xoai(t)v(t — ;) <0,
(t > to, t# tr).
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The following proof is the same as that used in Theorem 2.8. We just
omit it. This ends the proof of Theorem 2.10. u]

It should be noted that the criteria in this theorem only depends on
diffusion coefficient a;(t).

Theorem 2.11. Suppose that the conditions Hy), Hy) and the
following condition hold for some a;(t),

t s
. ' -1
tlg{.lo sup /tir Xoai(s) exp </ST Aoa(r) dr) H (14bg) " ds > 1.
i i s—T;<tp<s
Then every solution of the problem (1)—(3) oscillates in G.
3. Necessary and sufficient condition. In this section, we will
establish a necessary and sufficient condition for oscillation of impulsive

parabolic partial differential equation with several delays. We consider
the following linear problem.

%(u(t, )+ q(t)ult — p,x)) = a()Au+ > ai(t)Au(t — 7, )

i=1
(18) —zn:pj(t)u(t—aj,w), t#tg, (t,x) ERLxQ=G
(19) u(ty,z) —u(ty ,z) = bulty,z), k=1,2,...

with boundary condition (3).

Theorem 3.1. Every solution of the problem (3), (18), (19) is
oscillatory in domain G if and only if every solution of the following
impulsive delay differential equation (20), (21) is oscillatory.

(20) S Io(6) + a(e)olt — )] + alt) oo +Aozaz ot =)

+ij o(t —o;) =0,
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(21) v(tf) —v(ty) = bro(te), k=1,2,....

Proof.  Sufficiency. Using reduction to absurdity, let u(t,z) be a
nonoscillatory solution of the problem (3), (18), (19). Without loss
of generality, we may assume that there exists a ¢y > 7 such that
u(t,z) > 0, u(t — p,z) > 0, u(t — 7,2) > 0 and u(t — oj,z) > 0,
i=1,...,m;j=1,...,n for any (¢, z) € [tg, +00) X Q.

For t > tg, t # tg, k = 1,2, ..., multiplying equation (18) with ¢(z),
which is the same as that in Lemma 2.7, then integrating (18) with
respect to x over §2 yields

(22) % /Q[u(t,:v) + q(t)u(t — p)]p(z) dz = a(t) /Q Au(t, z)p(z) dx
+ Z (J,Z / Au —Ti, T ( ) dx
: g [ 300t ~ o3, 20p(0)

By Green’s formula, we have

/QuAgo(w)da:—/an(w)Audac:/(muaai)d —/ o(z )g—st

Since boundary condition (3) is the first kind of boundary condition,
the right side of the above equality vanishes. It follows that

/an(ac)Audx:/ﬂuAnp(x) dr = —)\O/ﬂga(x)u(t,x) dx
/ng(m)Au(t —7,x)dr = / u(t — 7, 2)Ap(z) dz

Q

_ —)\O/ng(ac)u(t—n,x) dz.

Denote v( fQ o(x)u(t, z) de. Then v(t) > 0. It follows that we can
easily obtaln

d
(28) o) + gepolt — ) +al)Aan +Aozaz o(t - 7)

—i—Zp] v(t—o;)=0.
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Fort > tg,t =tg, k=1,2,..., we have

/u(t;,m)d:p—/u(t,;,m)dx:bk/u(tk,m)da:.
Q Q Q

This implies
(24) o(tf) — vl(ty) = byo(te).

Hence we obtain that v(¢) > 0 satisfies equation (20), (21). This means
that impulsive delay differential equation (20), (21) has a nonoscillatory
solution. A contradiction. This ends the proof of sufficient condition.

Necessity. Still using reduction to absurdity, let v(¢) be a nonoscil-
latory solution of the equation (20), (21). Without loss of generality,
we may assume that there exists a t; large enough such that v(t) > 0,
v(t—p),v(it—m)>0andv(t—o0;) >0,i=1,... , m;j=1,...,nfor
any t € [t1, +00).

For t > ty, t # tg, k = 1,2,..., set u(t,z) = v(t)p(z); we have
u(t,z) > 0 and we can easily obtain

Au(t, z) = Alv(t)p(z)] = v(t) Ap(z) = —Aov(t)p()
Au(t — 1, 2) = Alv(t — 1) e(z)] = v(t — 1) Ap(x)

= —Aov(t — 7i)p(x).
Making use of these results, from equation (20), we obtain

(25)  S1(6(6) + a(O)e(t — )el@)] + al)Aor(Bp(0)
20 ) ai(t)olt — m)ee) + D pi(t)olt - oy)ple) = 0.

1

This means that u(¢,z) = v(¢)p(z) satisfies equation (18).

For t > t1, t = tx, k = 1,2,..., from condition (21), it is easy
to see that function u(¢,z) = v(t)p(z) satisfies (19). And, because
p(x) = 0, x € 00, we have that u(t,z) = v(t)p(x) also satisfies
boundary condition (3). This indicates that problem (3), (18) and
(19) has a nonoscillatory solution. This is a contradiction. This ends
the proof of Theorem 3.1. a
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4. Remarks and examples. The results of this paper, from a prac-
tical standpoint, are very convenient because these criteria only depend
on the coefficients of the equations, impulsive term and the time-delays;
from the theoretical viewpoint, they uncovered the essential difference
between partial differential equations with impulses, functional argu-
ments and partial differential equations without impulses, functional
arguments. The results of this paper improve the results in the papers
[3, 7, 15, 18, etc.]. For example paper [18] only discussed the case of
by = b = Const., and in this paper that by may be different for every
k.

The following are examples that justify the applicability of the con-
ditions.

Example 1.

%(u(t,:p) +q(t)u<t - gw>> — u®Au + u? <t - g,:E)Au(t - g:p>

Cult 3T L) el 3n/2). 202
2 )
t#te, (to)eRyxQ=G

1
u(t;x) - U(t/;x) = _Eu(tkax)a
with the boundary condition
u=0, ()€ Ry x0Q,

where a(t) = 1,a1(t) = 1, p = 7/2; h(u) = u?, hi(u) = u?
flu) = ue™, qt,z) = 1; b = —1/2; q(t) = —(1/2)%, t € [k — 1,k),
k=1,.... It is easy to verify that the conditions of Theorem 2.2 are
satisfied. Hence the all solutions are oscillating.

Example 2.

%(u(t,:v) +q(t)u<t - g:c>> — w2 Au + u? <t - g,m>Au<t - %x)
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u(t;,m) —u(t,,z) = u(ty, ),

k41

with the boundary condition

u=0, (tx)e Ry x0Q,

where a(t) = 1, ay(t) = 1, p = ©/2; h(u) = u?, hi(u) = u?
2

f(u) = ue", q(t,z) = 1; b = —k/(k+1); q(t) = —(1/2)1/((k + 1)}),

t €lk,k+1), k=1,.... It is easy to verify that the conditions of

Theorem 2.2 are satisfied. Hence the all solutions are oscillating.

Example 3.

0 3

% <u(t, z) + q(t)u(t - 7,:2))
.2 2({, T T
=u’Au+u <t 2,:U>Au<t 2,:c>

_ u(t .7 373) olcostsing)? _ u(t _3m x) Clult—(37/2).2)
2’ 2’

t#ty, (t,z)€ Ry xQ=G

_ 1
u(tz—ax) - u(tk 737) = 72_ku(tkax)a

with the boundary condition
u=0, (tx)e Ry x0Q,

where a(t) = 1, a;(t) = 1, p = (3m)/2; h(u) = u?, hi(u) = u?; fi(u) =
u, qi(t,z) = elcostsimo)® () = e, go(t,x) = 1; by = —1/(2%);
q(t) = —(1/2)[(2" — 1)/@F)[ER* = /(@ Y)] - 1/2, t € [k, k+1),
k=1,.... It is easy to verify that the conditions of Theorem 2.2 are
satisfied. Hence all of the solutions are oscillating.
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