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ABSTRACT. We are concerned in this paper with the
existence of solutions of the variational inequality

fQ z, Vu)(Vv — Vu) dz
+fQ (z,u)(v —u)de > (L,v —u),Yv € K
u € K,

where the functions A and f are multivalued. Both coercive
and noncoercive cases are considered. In the noncoercive case,
we follow a sub-supersolution approach and obtain further
properties of solutions and also of sub-supersolutions.

1. Introduction. This paper is the next step in our study of nons-
mooth nonconvex problems by sub-supersolution method developed in
[4-6, 12, 13, 15, 16], etc. We are concerned here with (multivalued)
variational inequalities of the form
(1.1)

{fQ (z, Vu)(Vo — Vu) dx + [, f(z,u)(v —u) de>(L,v — u),
Vve K, uekK,

where all involved terms are multivalued, that is, the functions A(z, )
in the principal term and f(z,u) in the lower order term are set-
valued functions and the right hand side L could vary in a subset
of the dual space. The integrals in (1.1) are therefore integrals of
set-valued functions. By considering multivalued lower order terms,
we include as a particular case hemivariational-variational inequalities
where f(z,u) = 0j(z,u), the Clarke generalized gradient of a locally
Lipschitz function j. However, f can be a general set-valued function
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without being a generalized derivative of some nonsmooth potential
function. On the other hand, the consideration of the multivalued prin-
cipal term A(z, &) could describe some cases of variational inequalities.
The theorems here therefore complement, generalize and unify several
results previously established in the works cited above. The consider-
ation of multivalued terms in (1.1) is motivated by the papers [8, 10].
Compared to [8], we consider here variational inequalities instead of
equations and the lower order term is not in general given by Clarke’s
subdifferentials of locally Lipschitz functions as considered there. The
principal operator function A(z,&) in (1.1) does not depend on u as
assumed in that paper; on the other hand, we obtain the existence
and comparison properties of solutions of (1.1), together with the ex-
istence of its extremal solutions as well. Moreover, the results here are
obtained by a different approach from that in [8] where a fixed point
theorem in [7] was employed. The main difference between [10] and
this paper is that all the operators here are multivalued. Moreover, the
right hand side L could vary in the dual space, which means that in
the sub-supersolution approach which we follow here for the noncoer-
cive case, the right hand sides L in (1.1) can be different from the right
hand sides in the inequalities that the sub- and supersolutions satisfy.
Therefore, the existence/enclosure theorem in the sequel could also be
seen as a range theorem. It also reflects in a certain sense the monotone
dependence of the solutions on the right hand side. Another property
of sub- and supersolutions, well known for equalities with single-valued
operators, is that the maximum (respectively, minimum) of subsolu-
tions (respectively, supersolutions) is also a subsolution (respectively,
supersolution) (cf., e.g., [6, 9, 11, 16]). We extend this property to
variational inequalities with multivalued terms.

The plan of this paper is as follows. In Section 2, we present a
precise setting of problem (1.1) together with necessary assumptions
and preparatory results. The existence of solutions of (1.1) under
certain coercivity conditions is next considered. Appropriate concepts
of sub- and supersolutions of (1.1) are introduced in Section 3. Next,
we present our main results about existence and other properties of
solutions of (1.1) such as the directness and compactness of the solution
sets and the existence of extremal solutions. The extension of the
property on minima of subsolutions to inequalities with multivalued
operators is given in Section 4.
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2. Setting of the problem—Coercive case. For a normed
vector space X, we use the notation K(X) = {P ¢ X : P #
@, P is convex and compact}. Let A : Q x RY — K(RY) satisfy the
following conditions:

(A1) A is graph measurable.

(A2) For almost every =z € Q, A(zx,-) is strictly monotone, i.e., for
all £,& € RN, all & € A(x,6),& € Az, &), if & # & then
(& —&)(&— &) >0.

(A3) For almost every x € Q, A(z,-) has closed graph.

(A4) There exist p € (1,00), a; € LP () (p' is the Holder conjugate
of p), and b; € [0, 00) such that for almost every z € Q, all £ € RV,

(2.1) sup{[¢| : ¢ € A(z,€)} < ar(@) + balg[P.

(A5) There exist as € L'(Q) and by € (0,00) such that for almost
every z € Q, all £ € RV,

(2.2) (€ > balé]P — az(z), forall ¢ € A(z,€).

Concerning f, we assume the following.
(F1) f: Q@ x R — K(R) is graph measurable.

(F2) For almost every = € Q, f(z,-) is upper semicontinuous from R

to K(R).
We also need the following (sub-critical) growth condition:

(F3) There exist ¢ € (1,p*) (p* is the Sobolev conjugate of p) and
as € LT (), bg > 0 such that

(2.3) sup{|v| : v € f(z,u)} < az(x) + bs|u|?™?,

for almost every z € 2, all u € R.
Let W1P(Q) be the first-order Sobolev space with the usual norm

N P 1/p
all = llwooiey = [ e+ > [ |22 a) ™,
Q e

u e WhHP(Q).

ou

0z
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Assume K is a (nonempty) closed, convex subset of W1P(Q2). For
measurable functions v : @ - R and w : Q@ — RY, we denote
by f(u) and A(u) the sets of measurable selections of f(-,u) and
A(-,w), that is, f(u) = {n : @ — R : 7 is measurable and n(z) €
f(z,u(z)) for almost every z € Q} and A(w) = {¢ : @ — RN :
€ is measurable and £{(z) € A(z, w(z)) for almost every « € 2}. From
our assumptions on A and f, f(u) and Z(w) are nonempty. Moreover,
from (A4), if u € W'P(Q) then A(Vu) C [LP (Q)]N. Similarly, (F3)
implies that f(u) C LY (2) whenever u € LI(Q).

Let us define A : WhP(Q) — 2W"PO) by A(w) = (A(Vu),V(-)),

ie.,

(24)  (A(w),0) = /

Q

A(Vu)Vode = {/ng dr: € e Z(vu)}.

Also, we use for simplicity the notation f for the mapping u = f (u)
from L9(Q) from L9 (). Let us recall some properties of A and f that
will be needed for our arguments later.

Lemma 2.1 ([8, Lemma 1]). Under assumptions (A1)—(A5), the
mapping A is mazimal monotone from K([WhP(Q)]*).

This result was in fact established in [8] for A on Wy?(Q). The
proofs there can however be extended to the case of W1P() with
trivial modifications.

Let i, : WHP(Q)—L9(2), u — i4(u) = u, be the identity embedding
of WhP(Q) into L4(Q), which is continuous (and compact) and @} :
LY(Q) = [LYQ)* — [W'P(Q)]* its adjoint, which is the usual
projection mapping for linear functionals on L9(£2), i7(w) = w|w1.»(q)
for w € [LI(2)]*. A useful property of the lower order term is given by
the following result.

Lemma 2.2 ([10, Lemma 3.4]). If f satisfies (F1)-(F3), then the
operator i fiq is pseudomonotone from WhP(Q) to K([WP(Q)]*).

With the above notation and definitions, we see that the multivalued
variational inequality (1.1) can be formulated in a precise way as:
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Find u € K and ¢ € A(u), ) € f(u) such that

(2.5) / (Vv —Vu) da:—i—/ n(v—u)de > (L,v—u), forallveK,
Q Q

where (-,-) now denotes the dual pairing between W?(2) and [W1?
()]*. This inequality is equivalent to finding v € K and ( €
(A + iy fig)(u) such that
(2.6) ((—Lyv—u)>0, foralvelk,
i.e.,

(¢—L,v—u) +Ig(v) — Ig(u) >0, forallve WIP(Q).

We have the following existence theorems for (2.5) (and (2.6)) under
some coercivity conditions.

Theorem 2.3. Under assumptions (A1)—(A5) and (F1)—(F3), f
L € [WYP(Q)]* is such that for some ug € K,

Hu||W1,p(n)—>oo 564(u
u€K nef(u)

(2.7) lim { inf : [/Q§V(u—uo)dx+/ﬂn(u—uo)dx]

—(Lyu — u0>} = 00,
then (2.5) (or equivalently (2.6)) has a solution.

As a corollary of Theorem 2.3, we have

Corollary 2.4. Under assumptions (A1)—(A5) and (F1)—(F3), if for
some ug € K,

(2.8)
lim { ot [fQ§V(u—u0) dz + [, n(u—uo)dw}} ~ oo,
[ullyyt,p )00 | €€A(u) lul[w.e (o)
uEK nef(u)

then for any L € [W1P(Q)]*, (2.5) (or equivalently (2.6)) has a solution.
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We state some preparatory results for the proof of Theorem 2.3 and
refer to the corresponding papers for further details.

Lemma 2.5. Let X be a reflexive Banach space.

(a) ([1, Proposition 8]). A mazimal monotone mapping T from X
into 2% with effective domain D(T) = X is pseudomonotone.

(b) ([1, Proposition 9]). If Ty and Ty are pseudomonotone mappings
from X into 2X7, then Ty + T is a pseudomonotone mapping from X
into 2%

Lemma 2.6 ([10, Theorem 3.1]). Let X be a reflexive Banach space
and T : X — 2% be a multivalued mapping such that:

(T1) For each x € X, T(x) is nonempty, convex, and closed in X*.

(T2) (Pseudomonotone property). If {z,} C X, {z} C X* are
sequences such that ¥ € T(z,), for all n € N, x,—z (weakly) in X,
and

lim sup(z},, z, — ) <0,

then to each y € X, there exists an z*(y) € T'(x) such that

lim inf(z};, z, — y) > (z*(y), = — y).

(T3) For each zo € K, each bounded subset B of X, there exists a
constant N(B,xzg) € R such that (z*,z—x¢) > N(B, ) for all z € B,
all z* € T(x).

Assume K is a nonempty closed convex subset of X and ¢ : X —
RU{oo} is a proper convez, lower semicontinuous functional such that
D(p)NK £ . Let f € X*.

If there exists a € D(¢) N K such that

o) n (L.t fte" = =)+ o)) = oo,

then there exist xo € K and zf € T'(zo) such that

(2.10) (g — frx—xo) + ¢(x) — d(x0) >0, forallx e K.
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Proof of Theorem 2.3. From the assumptions on A, we have D(A) =
WhP(Q). Hence, from Lemmas 2.1 and 2.5 (a), A is pseudomonotone
from W1P(Q) into 2WHP (@) which together with Lemmas 2.2 and
2.5 (b), implies that the sum A + i} fiq is also a pseudomonotone

mapping from WP(£) into oW (@)]",

Next, we note that because A and f are bounded operators on their
corresponding spaces, A—i—i;fiq is bounded from W?(Q) to oW (Q)]"
This property, together with the pseudomonotonicity of A + iy fz'q,
shows that the assumptions (T1), (T2), and (T3) in Lemma 2.6 are
fulfilled. The coercivity there, in the particular case of inequality (2.5),
is the same as (2.7). The existence of solutions of (2.5) now follows
from Lemma 2.6. O

3. Existence and enclosure properties by sub-supersolution
method. If coercivity conditions such as (2.7) or (2.8) do not hold
then the existence of solutions of (2.5) (or (2.6)) is in general not
guaranteed. However, if sub- and supersolutions of this inequality (in
certain appropriate sense) exist, then the growth condition of the lower
term could be reduced to a local one. In this case, not only the existence
but also some other qualitative properties of solutions of (2.5) can be
obtained. First, let us introduce the concepts of sub- and supersolutions
for (2.5).

Definition 3.1. Let L € [Wh?(Q)]*. We say that u € WP(Q) is
a subsolution of (2.5) with respect to L if there exist ¢ € [1,p*) and
[@s (L7 ()N, ne L9 (Q) such that:

(3.1) ((z) € Az, Vu(z)),
n(z) € f(z,u(z)) for almost every z € Q,

(that is, ¢ € [LP (Q)]N N A(Vu) and ne LY () N f(w)), and

(3.3) /QQ(VU—Vg)dm—i—/Qn(v—g)de (L,v —u),

forallv e u A K := {u A w:= min{u,w} : w € K}.
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_ Similarly, w € W"?(Q) is a supersolution of (2.5) with respect to
L € [W'P(Q)]* if there exists a ¢ € [1,p*) and { € [L* (Q)]V,
77 € L9 (Q) such that:

(3.4) C(z) € A(z, Vu(z))(ie. ¢ € [LP (Q)]N N A(Va)),

(3.5) T7(z) € f(z,u(z) for ae. z € Q (Le. 7 € LY (Q) N f(7)),

and
(3.6) /QC(VU — Vu)dz + /Qﬁ(v —u)dz > (L,v —u),

forallveuVv K :={uVw:=max{u,w}:we K}
Let Wi’p = {u € Wh?(Q) : u > 0 almost everywhere in Q} be the

positive cone of W1P(Q). We induce from Wj_’p the usual partial
ordering on W1?(Q) and on [WHYP(Q)]*: For uj,uz € WHP(Q) and
Ly, Ly € [WHP(Q)]*, we define the partial orderings “<” by

1
uy KUy <= Uz — Uy € W+’p,

and
L1 <Ly <= (Ly— Ly, w) >0, for all w € W}”

(for simplicity, we use the same notation for both ordering relations).

We are now ready to state and prove our main theorem of this section.

Theorem 3.2. Assume A and f satisfy (A1)—(A5) and (F1)—(F3)
and there exist subsolutions u; of (2.5) with respect to L; (1 =1,... ,k)
and supersolutions u; of (2.5) with respect to L; (j = 1,...,m).
Assume

(3.7) u=max{y;:1<i<k}<uw=min{g;:1<j<m},
and L € [WLP(Q)]* satisfies
(3.8) L, <L<Lj forallie{l,...,k}, forallje{l,...,m}

Furthermore, f has the following subcritical local growth between u and
u: There exist ¢ € [1,p*) and ag € L7 () such that

(3.9) sup{[¢| : € € f(z,u)} < as(x),
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for almost every x € Q, allu € [u(x),u(z)]. Then there exists a solution
u of (2.5) such that

(3.10)

I
IN
IS
IA
g

Proof. The proof follows the same lines as those in Theorem 3.7 of [10]
and only an outline is given here together with necessary adaptations
and modifications; we refer to [10] for more details and complete
arguments. First, we note that the exponents ¢’s in the definitions of
sub- and supersolutions and the growth condition (3.9) can be assumed,
without loss of generality, to be the same.

Let u;,n,,¢, (1 <i<k)and w;,7;,¢; (1 < j < m) satisfy (3.1)~(3.3)

and (3.4)- (3 6) as in the definitions of sub- and supersolutions. We
define the functions 7 and 7 as follows. Let Q; = {z € Q : u(z) =

u, ()}, and .
0= {ee o\ ()2 ute) = wlo)}

for i =2,...,k. Similarly, let Q' = {z € Q : u(z) = u(z)}, and

0 = {x € Q\ﬁﬂl () —Ej(:v)}

for j =2,...,m. From their definitions, ; (1 <14 < k) (respectively,
(1 < j < m)) are disjoint measurable subsets of Q and Q =
Uk Q= um Q7. We define n = ZZ 11, Xe, and 7 = Z] 1 MiXais
where X4 (A C Q) is the characteristic function of A. It is clear that
n,m € LT (Q) and n(z) € f(z,u(x)),7(x) € f(z,u(z)) for almost every
z €.

Next, we define the truncated function fo(z,u) of f(z,u) as in [10]:
fo is a function from © x R to 2B given by

{n(x)} ifu<u(xr)
(3.11) folz,u) =< f(z,u) ifu(z) <u<u(x)
{n(z)} if u> ().
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Then, as observed in [10], fy satisfies (F}) and (F3). Moreover, from
(3.9), we see that

sup{[¢| : € € fo(z,u(x))} < as(z) + [7(2)| + [n(2)] for a.e. z € Q,
where a4 + || + 9] € L7 (Q). We also need the truncation function
b: QxR — R given by

[u—u(z)P~t  if u > u(z)
b(z,u)=4¢ 0 if u(z) <u<u(z)
—[u(z) —uP~! if u < u(z), for z € Q, u € R,

and its corresponding Niemytskii operator B : LP(Q) — L (Q) =
[LP(Q)]* defined by

(B(w),v) 1o (), Lo () = / b(z,u)vde, for all u,v € LP(Q).
Q

We see that B is a bounded continuous operator and i;Bi, is a
pseudomonotone operator from W1P(Q) into its dual. Next, we put, for
z € Qandu € R, Ti(z,u) = [n,(z) —n(z)|o[(u — u;(z))/ (w(z) — v ()]
(1 <i<k),and T7(z, u) = [7;(x)—7(2)|[1-0(u — u(z)/ (@;(z) — ()]
(1 <j<m), where

1 5<0
o(s)=q1-s 0<s<1
0 s> 1.

Let us consider the following auxiliary variational inequality of finding
u€ K, ¢ € [LP(Q)]N, n € LI(Q) such that

(3.12) ¢(z) € A(z, Vu(z)),
(3.13) n(x) € fo(z,u(x)), for a.e. z € Q,
and

(3.14) /QC(Vv—Vu) d:v—i—/ﬂn(v—u) dac+/gb(ac,u)(v—u) da
—é/ﬁTi(m,u)(v—u)dm

+21/S)Tj(x,u)(v—u)dx_<L,v_u>

>0, forallve K.
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Note that Tj(-,u), T7(-,u) € L% () whenever v € L?(f2). Therefore
Ti:uws Ti(u)and 779t u s T9(u) (1 <i <k 1<j<m)are
bounded operators from L?(Q) to L (Q). Problem (3.12)—(3.14) can
be equivalently written as:

Find u € K, ¢ € A(u), n € (i;fgiq)(u), such that

(3.15) (¢ +n+ (ipBiy)(u (15 Titq

M?r

i=1
m
+ (05T iq) (u), v —u)
j=1

>(L,v—u), forallveK.

Note that the mappings A and i; foiq are multivalued while i}Bi,,
ixTitq and i} T/, are single-valued. The variational inequality (3.15)
is of the form (2.10) With X =W(@Q), f=L ¢ =0and T =
A+i;f0iq+i;l§ip—zz LG Tiig+> 5~ 13T ig. Since all components of
T are pseudomonotone, so is 7', that is, condition (T2) in Lemma 2.6 is
fulfilled. The verification that T' satisﬁes the coercivity condition ((T3)
in Lemma 2.6)

im [ inf (u"—L,u— u0>} = 00,
llullyy1,pq)y—o0 Lu*€T(u)

(up is any (fixed) element of K) is based on similar estimates as in the
case where A is single-valued, and is thus omitted. It now follows from
Lemma 2.6 that (3.15), that is, (3.12)—(3.14), has solutions in K.

Let u be any of such solution. Let us check that
(3.16) u, < u almost everywhere in €,

for all s € {1,...,k}. In fact, suppose u, (,n satisfy (3.12)—(3.14) and
ug, C,y 1, satlsfy (3 1)—(3.3) (with L,). Letting v = max{u,,u} € K in
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(3.14) yields
(3.17)

/Q (Vl(u, - u)*] do + /Q n(u, — )" de
+/ﬂb(ac,u)(gs —u)tdz

k
- / T, w) (s, — u)* da

+3 [ Titew, = )" do = (L0, - 0))

> 0.

From (3.3) with ¢ ,n_,u
u, A\ K, we have

(3.18) — /QQSV[(QS —u)t]dz — /Qﬂs(gs —u)tdx
+ <Ls7 (gs - ’U,)+> > 0.

s instead of ¢,n,u and with v = min{u,,u} €

Adding (3.17) and (3.18) yields
/ (€~ ¢)VI(w, —w)t)de
Q
— U. — U + i
+/Q(n n)(u, —u)* d

+ [ b, =)t do é/ﬁﬂ'(m,u)(ﬂs — )t de

+3 / T4 (2, ), — w)* d+ (L, — L, (1, — u)")

> 0.

It follows from (3.8) that (L, — L, (u, — u)™) > 0 and from (A2), (3.1)
and (3.12) that

/Q (€. = O)V[(u, — u)*] dz

Z / (¢, = OlVu, = Vu] da > 0.
{eeQu, (2)>u(x)}
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Using these estimates and the calculations in the proof of Theorem 4.2
of [10], we obtain (3.16). Since (3.16) holds for every s € {1,... ,k},
we have u > u. Analogously, we can demonstrate that v < u almost
everywhere in Q, that is, u satisfies (3.10). As a consequence of (3.10),
one can check easily that

b(z,u) = T;(z,u) = Tj(z,u) =0,

for almost every z € Q, all i € {1,... ,k}, j € {1,...,m}, and thus
(3.14) reduces to (2.5). O

Using this main theorem, we can derive other properties of solutions
between sub- and supersolutions. Assume there are subsolutions u;,
(1 <4 < k) and supersolutions u; (1 < j < m) of (2.5), and let S be
the set of solutions of (2.5) between u and @:

S ={uec WHP(Q) : u is a solution of (2.5) and u < u < @}.

Then § # @ by Theorem 3.2. Some properties of S are collected
in the following theorem, the proof of which is a combination of the
above arguments with those in the single-valued case, and is therefore
omitted.

Theorem 3.3. (a) S is a compact subset of WP(Q).
(b) If
(3.19) KANKCK and KVEKCK,

then S is a directed set in the following sense: If ui,us € S then there
are u and w in S such that u > max{u,uz} and w < min{uy,us}.

(c) Under assumption (3.19), there exist mazimal and minimal solu-
tions of (2.5) between u and T, that is, there are u*,u, € S such that
Uy <u<u* foralluesS.

Remark 3.4. To illustrate the ideas and to keep the notation simple,
we consider here the case where the higher order term A = A(z, Vu)
does not depend on u and the lower order term f = f(z,u) does not
depend on Vu. By imposing conditions on the continuity with respect
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to w on the higher order term and on the growth with respect to Vu
on the lower order term (cf., e.g., [6] and the corresponding references
therein), one can adapt and extend the above arguments and results to
variational inequalities in which A = A(z,u, Vu) and f = f(z,u, Vu).
Moreover, as in [16] (see also [2, 14]), by adding a lower order multi-
valued term on the boundary such as [, g(x,u)(v — u)dl' (dI is the
surface measure on 0f2) to (1.1), we can include as particular cases prob-
lems with multivalued /nonsmooth nonhomogeneous Neumann, Robin,
or no-flux boundary conditions.

The above argument in Section 3, with appropriate adaptations and
extensions, can be used to establish theorems similar to Theorems 2.3,
3.2 and 3.3, for inequalities of the following general form:

Jo Az, u, Vu) (Vo — Vu)dz + [, f(2,u, Vu)(v — u) dz
—|—faﬂg(x,u)(v7u)dlﬂ

> (L,v —u),Yv e K

u € K,

where A, f and g are all set-valued functions.

4. Minimum of subsolutions. We know in smooth equations
with single-valued operators that, under certain conditions, minima
of subsolutions are also subsolutions (see, e.g., [3, 6, 9, 11]). In
this section, we extend this property to variational inequalities with
multivalued operators. The following arguments are motivated by those
n [11]. We use the notation

(K- K)"={ve K- K:v>0 almost everywhere in Q}

={u—w:u,we K,u > w almost everywhere in Q}.

Theorem 4.1. Assume u; and u, are subsolutions of (2.5) corre-
sponding to L; and L, such that u; VK C K (i = 1,2). Suppose
furthermore that there exists a Ky C (K — K)* N L>®(Q) dense in
(K — K)" such that

(4.1) w—ACuyANK, i=1,2,
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where A = {fv : v € Ko,0 € WLP(Q),0 < 0 < 1}. Then,
u = min{u,,u,} is also a subsolution of (2.5) corresponding to any

L e [Wh'P(Q)]* such that L; < L (i =1,2).

Remark 4.2. Note that the conditions in Theorem 4.1 are satisfied
in the cases where K = W,**(Q) (Dirichlet boundary condition) or
K = W'?(Q) (Neumann boundary condition). Also, we have a similar
result for minima of supersolutions.

Proof of Theorem 4.1. Let £1’Q1 and QQ,QQ be the functions corre-
sponding to w; and u, as in Definition 3.1. Put

O ={zeQ:u(z) >uy(x)}, 0 =0\,

n = n,Xo, + nyXe,, and ¢ = £1XQI + £2XQ2. Then 7 € LY (Q),
¢ € LP (Q) satisfy (3.1) and (3.2) for u = u; Au,. We only need to check
(3.3). Let w € K and v = uAw. Wehave v—u = —(u—w)" = w—uVuw.
On the other hand, we have u Vw = w; V (uy V w) € K. Hence,
u—v=(uVw)—we (K- K)". Let {#,} be a sequence in Kj such
that

(4.2) Yp — u—v in WHP(Q).

Assume 7 is a nondecreasing function in C*°(R) such that 0 < y(¢) <1
forallt e R, y(t) =1ift >1and y(t) =0if t < 0. For n € N, we
define 7, (t) = y(nt) (t € R). Let ¢ € Ky and, for each n € N, put

é1= P10 = [1 - 7n(ﬂ2 - H1)]¢a ¢2 = Pon = [’Yn(ﬂz - H1)]¢

It is clear that v,(us — u;) € WHP(Q). Since 0 < 7y, (uy — uy) < 1,
we have ¢1, ¢ € A. Hence, from (4.1), there are vy, vs € K such that
u; — ¢ = u; Av; (i = 1,2). From (3.3) with u;,n.,¢., and v = u; A v;

(i = 1,2), noting that u; A v; — u; = —¢;, we obtain

Q= Q "t
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that is, with ¢, = (gil,... ,giN),

ws) [ i 6 s~ ) s~ )

+ /Qﬂl[l = Tn(up — wy)]p dz — (Ly, 1)

<0

)

and

al 0 0
ay [ ;g2j{~y;<u2 ) s = )6+ (0 ) g |

J

4 / 0,1ty — 1) $ d — (L, 2)

<o0.
Adding (4.3) and (4.4) yields
3 P
0> /Q]Z_I(QQJ o £1j)7;(22 *gl)%(% —uy)¢dax

J

N 96
oGy Gyt = g do

N
9¢
+/ .—da:—i—/ dx
Q;g]a% Qﬂ1¢

+ /Q(ﬂ2 =)V (U — uy)pda

- <L17¢71> - <L27¢2>‘
If x € Oy then (uy — uy)(x) < 0 and thus [y, (uy — uq)](z) = 0 for all
n € N. If x € Q9 then [y,(uy — u;)](z) =1 for all n sufficiently large.
Hence, by Lebesgue’s dominated convergence theorem,

/ (1, — uy)yn(uy — uy)pde
Q

:/Q (my = uy)Vn(uy — uy)pdz — ; (n, — )¢ dz,
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and thus
(4.6) /lecﬁd:c + /Q(g2 = Uy)Vn(Uy — uy)pda

—>/le¢dx+/92(g2—g1)¢dm

:/ ﬂlq,’)d:t;—i—/ QZ(}Sdac
Ql Q2

:AWM

Similarly,

/Q (&, — €)Vémluy —u)de — | (¢, —¢,)Voda,

Q2

and thus

(4.7) / (€, = €,)Vén(uy — y) da + / ¢ Védz
— Qz(gz—gl)v¢dx+/ﬂglv¢dx

= [ ¢Vgdz+ | (,Vedr
o Qs

= /Q (Véda.

Lastly, since ¢(z) > 0 and v/, (uy — uq)(z) > 0 for almost every z € Q,
from the monotonicity of A, we have

(48) (€, () = €, (@)]V (wy — ) (@) (12 — ) (x)(7) = 0
' for almost every x € Q.

Passing to the limit in (4.5) and taking into account (4.6)—(4.8), we get

02/S2§V¢dx+/gﬂ¢dx*<L1,¢1>*<L2,¢2>-
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Since L — L; > 0 (i = 1, 2), this implies that

/QQngd:v—i—/ﬂﬂcf)d:cf(L,qﬁ)

=/§V¢dm+/g¢dw—<L1,¢1>—<L2,¢2>

Q Q
+<L1_L7¢1>+<L2_L7¢2>

S/ngcbdwﬁL/QQcédw*<L1,¢1>*<L2,¢2>

<0.

In particular, for the sequence {¢,} in (4.2), we have

02/(V1/}nd:c+/n¢nd:c7<é,1/}n), for all n € N.
Q- Q-

Letting n — oo in this inequality yields

0> / ¢V u—v)d:p—i—/ n(u —v)de — (L,u — v),
Q
i.e., condition (3.3) also holds true for u = min{uy, u, }. O
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