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MULTIDIMENSIONAL GRAPH COMPLETIONS
AND CELLINA APPROXIMABLE MULTIFUNCTIONS

ALBERTO BRESSAN AND RUSSELL DEFOREST

ABSTRACT. Relying on the continuous approximate se-
lection method of Cellina, ideas and techniques from Sobolev
spaces can be applied to the theory of multifunctions and
differential inclusions. The first part of this paper intro-
duces a concept of graph completion, which extends the ear-
lier construction in [12] to functions of several space vari-
ables. The second part introduces the notion of Cellina
WLP_approzimable multifunction. To show its relevance,
we consider the Cauchy problem on the plane & € F(z),
z(0) = 0 € R2. If F is an upper semicontinuous multifunction
with compact but possibly non-convex values, this problem
may not have any solution, even if F' is Cellina-approximable
in the usual sense. However, we prove that a solution exists
under the assumption that F is Cellina W1:1-approximable.

1. Introduction. For a vector-valued function of a scalar variable,
the concept of a graph completion was introduced in [12]. Its main
motivation came from control theory. The control of mechanical
systems by means of active constraints [9, 11, 19, 22] leads to a
system of equations of the form

m

(1.1) &= fo(x)+ > fula)i.

k=1
Here t — z(t) € R™ describes the state of the system, while t — u(t) €
R™ is the control function. An upper dot denotes derivative with
respect to time. Assume that each f} is a globally Lipschitz continuous
vector field on R™. Since the right hand side of (1.1) contains the time
derivatives uy, given an initial data

(1.2) z(0) =7,

to achieve existence and uniqueness of the solution it is natural to
consider control functions ¢t — u(t) = (u1,...,uy)(t) which are
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absolutely continuous. As shown in [12], a solution to (1.1)—(1.2) can
be uniquely determined also in the case where the control function w(-)
is a function with bounded variation, provided that we “complete” its
graph, bridging the points where a jump occurs.

Definition 1. A graph-completion of a BV function w : [0,T] — R™
is a Lipschitz continuous path v = (y0,71,--- ,¥m) @ [0, 5] — [0,7] %
R™ such that

(i) 7(0) = (0,u(0)), 7(S) = (T, w(T)),
(ii) vo(s1) < vo(s2) whenever 0 < 51 < s < S,
(iii) for each t € [0, 7] there exists some s such that y(s) = (¢, u(t)).

Notice that the path « provides a continuous parametrization of the
graph of w in the (¢,u) space. At a time 7 where u has a jump,
the continuous curve 7y must include an arc joining the left and right
limits (7, u(7—)), (r,u(7+)). As soon as a graph completion of u(-) is
assigned, we can uniquely solve the Cauchy problem

(13) L y(s) = foluls) dols) + 3 fulw(s) n(s), () =
k=1

The (possibly multivalued) function

(1.4) t— z(t,7) = {y(s,7); 0(s) = t}

is then called the generalized trajectory of (1.1)—(1.2) determined by
the graph-completion (-) of the control function u(-).

This same construction has been later used in [16] and then in [15], in
order to define nonconservative products, in connection with hyperbolic
systems of PDEs which are not in conservation form.

The first part of the present paper develops an extension of these
concepts to functions of several variables. QOur basic approach is
here very different from [12], although in the one-dimensional case it
produces essentially the same construction.

Let Q@ C R™ be an open domain with compact closure Q. Denote by
Hom (£2) the family of all homeomorphisms ¢ : 2 — Q which keep fixed
the boundary of 2, namely,

(1.5) é(z) =z for all z € ON.
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Given two continuous maps f, g : 2 — R™, we consider an alternative
measure of their distance, defined as

(1L6)  d(f9)= it sup (v = 6le)| + |f(x) - 9(6(2))))-

¢€Hom () 2zcQ

In general, the space C(Q; R™) is not complete with respect to the
metric d®. As shown by our analysis, to a Cauchy sequence of functions
(fx)k>1, one can associate a unique multifunction F : Q < R™. The
graph of F' can be parameterized by a continuous map ® : Q — QxR™.
If f:Q+— R™ is a function such that graph (f) C graph (F), and
F(z) = {f(z)} for almost every z € {2, we regard F' as a graph
completion of f.

It is of interest to study Cauchy sequences (always with respect to
the metric d®) consisting of functions whose Sobolev norm | fellwir o)
is uniformly bounded. This gives rise to the notion of W1P-graph
completions. Taking p = 1, we obtain graph completions of bounded
variation. In the one-dimensional case, these are equivalent to the
graph completions introduced in [12].

In the second part of this paper we explore the connection between
graph completions and Cellina-approximable multifunctions [21, 23].
We recall that a compact valued multifunction F' : Q—R™ is Cellina-
approximable if for every £ > 0 there exists a continuous function
fe : @ — R™ such that

(1.7) graph (f:) C B(graph (F),s).

According to (1.7), the graph of f. should thus be contained in an e-
neighborhood of the graph of F.. A fundamental theorem proved in [13]
states that every upper semicontinuous multifunction with compact,
convex values is Cellina-approximable.

By definition, it is clear that every multifunction F', arising as a
limit of a Cauchy sequence of continuous functions (fx)r>1 with respect
to the metric d¥, is Cellina-approximable. Our analysis leads to the
introduction of a more refined concept:

Definition 2. Let @ C R", and let F : Q—R"™ be an upper
semicontinuous multifunction with compact values. For 1 < p < oo, we
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say that F is Cellina WP -approzimable if for every £ > 0 there exists
a smooth function f. : Q@ — R™ such that (1.7) holds, and the Sobolev
norm || fe|lw1.r(q) satisfies a bound independent of ¢.

As shown in the sequel, this definition can be relevant in the theory of
differential inclusions. Given a bounded, compact valued multifunction
F:R"™ — R", it is well known that the Cauchy problem

(1.8) € F(z), z(0)=0€cR"
admits a Carathéodory solution in the following cases.

(i) F is upper semicontinuous, with convex values [3, 4, 24].

(ii) F' is continuous [2, 18], or merely lower semicontinuous [6, 8],
possibly with non-convex values.

In the case where F' is upper semicontinuous but with non-convex
values, it is easy to see that the initial value problem (1.8) need not
have solutions. The standard one-dimensional example is

{-1} if x>0,
(1.9) € F(x)=1< {-1,1} ifz=0,
{1} if 2 < 0.
A two-dimensional example is
(1.10) (:i?l,i?z) € G(CEl,mz)
(V& F a3 (@2, —21) | if (21,22) # (0,0),
{(yl,yz); vi s = 1} if (z1,22) = (0,0).

Clearly, neither of the multifunctions F in (1.9) or G in (1.10) is
Cellina-approximable. For some time, this was regarded as the main
topological obstruction to the existence of solutions. Indeed, it seemed
natural to consider the following

Conjecture. Let F : R"—R"™ be a bounded upper semicontinu-
ous multifunction with compact values, which is Cellina-approrimable.
Then the Cauchy problem (1.8) has at least one solution.

As shown in [7], the conjecture is false. We recall here a counterex-
ample (see Figure 1).
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FIGURE 1. The multifunction F defined at (5.35) is Cellina-approximable. How-
ever, the corresponding differential inclusion has no solution starting from the origin.
Here the curve v has infinite length.

Example 1. Consider the continuous function

1
o(s) = s cos — if s#0, ¢(0)=0.
Define the multifunction F : R? — R? as

(1.11) F(zy,x2)
{(0,-1)} if zo > ¢(z1),
= 0 {(0,1)} if z2 < ¢(21),
{(yl,yz); y1 >0,y +y3 = 1} if z3 = @(z1).

Observe that this multifunction can be written as a composition:
F(z) = ¥(G(x)), where

() = (cos€, sing),
{—m/2} if xg > ¢(z1),
G(z1,22) = {7/2} if zo < ¢(z1),
[—7/2, 7/2] if 29 = ¢(zy).

(1.12)
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Since 1 is Lipschitz continuous and G is an upper semicontinuous
multifunction with compact, convex values, it follows that F' is Cellina-
approximable. However, in this case the Cauchy problem (1.8) has no
solution. Indeed, consider the curve v = graph (¢) = {(s,6(s)); s €
R}. By the definition of F', every solution starting on v cannot move
away from -y, at any positive time. On the other hand, a solution
starting at the origin cannot move along 7y, because every portion of
this curve connecting the origin to any other point has infinite length.

Apparently, what goes wrong in this example is that the multifunction
F has a jump along a curve of infinite length. This possibility is ruled
out if we impose that F is Cellina W'P-approximable, for a suitable
exponent p. A precise result in this direction, valid for differential
inclusions in the plane, is the following.

Theorem 1. Let F : R25R? be a bounded, upper semicontinuous
multifunction with compact, possibly non-convex values. Assume that F
is Cellina W' -approzimable. Then the Cauchy problem (1.8) admits
a Caratheodory solution, defined for all times t € R.

A key ingredient in the proof is the following lemma, which rules out
the existence of arbitrarily long trajectories remaining inside the square
Q = {(.’L‘l,xz); 0 S Il S 1, 0 S T2 S 1}

Lemma 1. Let f : Q — R? be a smooth vector field defined on the
square Q, such that |f(x)| =1 for every x € Q. Then every trajectory
of the ODE & = f(z) starting inside QQ reaches the boundary of Q
within time

. 1
(1.13) T =4+ (IDf @)

Here || D f|| is the norm of the 2 x 2 Jacobian matrix Df = (0f;/0x;).
More precisely,

af;
DAl = 3 /Q \8—;(@:1%

1,j=1,2
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Remark 1. Both Lemma 1 and Theorem 1 rely on topological
properties of the plane, related to the Jordan curve theorem and the
Poincaré-Bendixon theory, which have no analogue in dimension n > 3.
We observe that, by the classical Sobolev embedding theorems, when
p > n, every Cellina W'P-approximable multifunction F admits a
Holder continuous selection. In this case, the existence of solutions to
the Cauchy problem (1.8) is trivial. The really interesting case arises
when n — 1 < p < n. Notice that here one must choose p large enough,
so that functions f € W?(R") can be discontinuous only on small sets.
In particular, one must avoid the possibility of a vector field f having
jumps along a one-dimensional curve of infinite length; otherwise, a
counterexample such as (5.35) can again be produced. At the present
time it is not clear whether Theorem 1 can be extended to Cellina
Wwhn—1l_approximable multifunctions defined on R”, for n > 3. We
leave this as an open problem.

A comprehensive introduction to the theory of differential inclusions
and set valued functions can be found in [3, 4]. For the basic theory
of Sobolev spaces and BV functions in several variables we refer to [1,
17]. An elementary introduction to Sobolev spaces can also be found
in Chapter 8 of the lecture notes [10].

2. Multifunctions with continuously parameterizable graph.
Let © C R"™ be a compact domain with piecewise smooth boundary
0. Given two continuous maps f,g : Q — R™, we define their
graph distance according to (1.6). We recall that the Hausdorff distance
between two compact sets K1, K5 is

dy (K1, K2) = inf {s > 0; Ky C B(K1,¢) and K, C E(KQ,»;)}.

Here B(K;,e) denotes the closed e-neighborhood around the set Kj,
i.e., the set of all points having distance < € from K;.

Lemma 2. The function d°(-,-) defined at (1.6) provides a distance
within the space of all continuous functions f : Q — R™. Moreover,

(2.1) dir (graph (f), graph (g)) < d°(/,9),
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where dgy denotes the Hausdorff distance between two compact sets.

Proof. 1. We start by proving (2.1). Let d(-,-) denote Euclidean
distance on the product space R™ x R™.

We claim that, for any homeomorphism ¢ € Hom (£2), one has
(2.2)

dr (graph (1), graph (9)) < sup (lo — 9()| + | (z) ~ 9(0(2))])
= ag.

Indeed, the mapping (z, f(x)) — (¢(x), g(é(z)) is a one-to-one map-
ping from graph (f) onto graph (g). Moreover,

d((@ £@), (¥(), 9(¢()) < as
for every z € Q. This implies

graph (g) C B(graph (f), ag),
graph (f) C B(graph (g9), ag).

Taking the supremum over all homeomorphisms ¢ € Hom (2), our
claim is proved.

2. We now check that d®(-,-) is a distance on the set of all continuous
functions f : @ — R™. From the definition, it is clear that d*(f, g) > 0,
with equality holding if f = ¢g. On the other hand, if f # g, then by

(2.1) d°(f,9) > du (graph (f), graph (9)) > 0.

To show that d (-, -) is symmetric, take ¢ € Hom () and let ¢ = ¢~ .
Then

sup (& = 6(2)] +1/(x) ~ 9((x)])
= sup (\y =¥l +19(y) - f(¢(y))|)-

Since ¢ was arbitrary, taking a supremum we conclude that d<>( f,9) =
d®(g, ).
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Finally, to prove the triangle inequality, let f,g,h € C(Q,R™) and
¢ > 0 be given. Choose homeomorphisms ¢, 1 € Hom (£2) such that

sup (Jo — (2)| + 1£(2) ~ g(d(@))]) < d°(f,9) +,
zeQ

sup (ly = ()| + la(y) — AW))) < d°(g,h) + .
yeQ
Observing that the composition satisfies ¢ o ¢ € Hom (£2), we can write

4°(f,1) < sup (Jo = 9(6(z))| + |f(2) = (o))
< sup (|2 — ¢(a)| + I6(a) — $(6(2))]
zeQ
+1£() — 9(6(a))| + lo(#()) — h((o(@))])

< d®(f,9) +d®(g,h) + 2e.

Since ¢ > 0 was arbitrary, we conclude that d®(f,g) < d®(f,h) +
d®(h, g), completing the proof. o

We observe that, in general, the space C(£2; R™) is not complete with
respect to the distance d°.

Example 2. Take Q = [-1,1] and consider the sequence of
continuous functions

0 ifzel-1,0]
(2.3) fr(x) =1 kx ifx €0, 1/k],
1 ifze(l/k 1]

Clearly, this is not a Cauchy sequence with respect to the norm distance
in the Banach space C([—1, 1]; R). However, it is Cauchy with respect to
the distance d¥. Indeed, for any given k,£ > 1, let ¢ : [—1,1] — [—1,1]
be the piecewise affine map such that

o1 =1, 60 =0, o(3) =7 o=t
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Then

1

Pt < s (lo=o@]+ 106 - 2o@)]) = |§ - 5

Hence limsupy, ;_, d®(fx, fe) = 0.
It is interesting to study the completion of the space C(Q; R™)
with respect to the metric d(-,-). As will become apparent from

the following analysis, elements of this completion can be identified

with multifunctions whose graph admits a continuous parametrization:
Q= QxR™

Given any sequence (f¢)¢>1 which is Cauchy for the metric (1.6), one
can extract a subsequence such that (after relabeling)

(2.4) d° (frt1, fr) <275

This means that, for each k, there exists a homeomorphism ¢, € 2
such that

(25) s (Jo = ou(@)] + [ fusa (@) = fu(d(@))]) <275,
zeQ
By (2.4), for each z € 2 the sequence

(2.6) Xp(x) = Gr o dpp—10--- 0 p1(x)

is Cauchy. The same is true of fr(Xx(z)). We thus obtain two
continuous maps

(2.7) z+— X(z) = klin;o Xi(z), z— f(z)= klln;o Tre(Xe(2)).

Let F be the (possibly multivalued) function whose graph is

(2.8) graph (F) = {(X(2), f(2)); = € Q}.

This graph is a compact subset of 2 x R™, hence the multifunction
F is upper semicontinuous. Since the map z — X(z) need not be
one-to-one, F' may indeed be multivalued.
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Remark 2. Instead of the parameterization (2.8), one can fix an
integer v and perform the same construction starting with f, instead
of f1. The definition (2.6) would thus be replaced by

(29) Xk($)2¢k0¢k7100¢y($), kZl/

In this case, the formulas (2.7)-(2.8) still yield a continuous parame-
terization of the graph of F, satisfying the sharper estimate

|z — X ()| + [ f(z) — fulz)| <277

(2.10) —
for all z € Q.

Lemma 3. The multifunction F : Q—R™ defined at (2.8) is upper
semicontinuous and has nonempty, compact, connected values.

Proof. 1. Let Y denote the product space Q@ x R™, and let K(Y)
denote the collection of all nonempty compact subsets of Y. Recall
that C(Y") with the Hausdorff distance dy is a complete metric space.
Consider the sequence of graphs {graph (f;)},>1 as a sequence of
compact sets in K£(Y). By (2.1), this sequence is Cauchy and hence
it converges to a unique compact set S C Y, in the Hausdorff metric.

We claim that S = graph (F'). For this purpose, it is sufficient to show
that the subsequence {graph (fx)}xr>1 in (2.4) converges to graph (F'),
in the Hausdorff metric. Given € > 0, choose k large enough so that
for every x € Q,

X(z) = Xp()| <5 and |f(z) — fe(Xi(2))| <

| ™
| ™

Consider the homeomorphism ¢ = X, ! € Hom (), i.e., the inverse
of the map X in (2.6). Observing that Xx(¢(z)) = = and setting
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y = ¢(x), we obtain
du (graph (fx), graph (F ))

< sup d((z, (@), (X(6(2)), £(9())))

e
< supd( (@, fi(@)), (Xu(#(@), fi(Xx(6(2)))
e
+sup d((Xu(9(@), fu(Xe(9(@), (X(8(z)), F(6(2)
< sup (IXk(y) = X @)+ 7K @) - FW)I) <.
ye
This proves our claim. ]

We conclude that {graph (f;)} converges to graph (F) as { — oo.
Notice that the subsequences{fx} and {¢x} determine the continuous
maps (2.7) which provide a parametrization of graph (F'). This param-
eterization depends on the chosen subsequence, while graph (F') does
not.

2. Since S = graph (F) is a compact subset of the product space
Q x R™, it is clear that the multifunction F has closed graph, hence it
is upper semicontinuous.

We claim that F is defined on the whole set . Towards this goal,
let 7: Q x R™ — Q be the projection operator. Since {graph (f¢)} is
a convergent sequence of compact sets, the continuity of 7 implies

(2.11) dy (w(graph (fe)), m(graph (F))) —0 as{— oo.

For each ¢, the domain of f, is the entire set 2, hence 7(graph (f;)) = €.
Taking the limit, we conclude that m(graph (F)) = Q as well. Hence
the domain of F is the whole set Q. This also implies that the map
X : Q — Q is surjective (but possibly not one-to-one).

3. Using the parametrization (2.7), for every = € Q one has
(2.12) F(z) = {f(y); X(y) = z}.

The surjectivity of X(-) implies F(z) is non-empty. We claim that
F(z) is connected. Indeed, consider any two points a,b € F(z). By
assumption, there exist sequences

@k fr(2r)) — (2,a), (Yo fr(yn)) — (2,0).
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For each k > 1, the segment joining xj with y; can be parameterized
as
0zl =0xy +(1—0)yr, 6€[0,1].

Consider the compact sets

Se = {(af, fr(22)); 0 € [0, 1]} C graph ().

Taking a subsequence, we can assume the convergence S — S in the
Hausdorff metric, for some compact set S C graph (F'). Since f is
continuous, each set Sy is path connected, hence S is connected as
well. Clearly, (z,a) € S and (z,b) € S.

We claim that every point (y,v) € S has the same first component,
namely y = z. Indeed, given € > 0, from the definitions it follows that
|2 — x| < ¢ for all § € [0,1] and all k large enough. If (y,v) € S, the
above implies |y — z| < €. Since € > 0 was arbitrary, this proves our
claim.

We have thus proved that every two points a,b € F(z) are contained
in a compact connected subset of F(z). Therefore the set F(x) is
connected. O

The fact that the graph of F' is obtained as a limit of graphs of
continuous functions imposes further topological properties on the
multifunction F'.

Lemma 4. Let m = 1, and assume that the domain Q C R" is
convex. Then for any two real numbers a < b there exist finitely many
compact connected sets Ky,... , Ky such that

(2.13) {a: €Q; F(z)N[a,o00] # @} 2 ZL;JI K;

Q{xGQ; F(z)N[b, o] ;é@}

Proof. Fix ¢ = (b—a)/3. Recalling (2.10), we can choose v large
enough so that the corresponding parameterization y — (X (y), f(v))
of the graph of F' satisfies

(2.14) sup (X () = ol +1£0) - L)) <
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Since f,, is uniformly continuous on the compact set €, there exists a
d > 0 such that |y — 3’| < § implies |f,(y) — f.(¥')| < e. Consider the
compact sets

Voo = {y € fuly) > b—s}
Vate = {y € fuly) > a+s}.

Cover Vj, with finitely many closed balls B(z;,d), i = 1,... N, centered
at points x; € V,_. with radius §. Define

Ki = X(ﬁﬂgl(m“&))

Being the continuous image of a closed convex set, it is clear that each
K; is a compact connected set. By (2.14) it follows that

()

2 {meﬁ;m:X(y), fu(y) Za—i—sforsomeyeﬁ}
(y), fo(y) >b— 2e for someyeﬁ}
()

> {ze®z=xX(), ye Ul (@ Bi(e:,9) }

1=

{weﬁ;w:X(y), f,,(y)zb—eforsomeyeﬁ}
Q{meﬁ;m:X(y), f(y)zbforsomeyeﬁ}
{ Q; F(z) N [b, oo ;é@}.

This proves (2.13). O

3. A multidimensional example. As shown by Example 2, the
map F' can indeed be multivalued. In the one-dimensional case, where
Q = [0,7) is an interval, the multifunction F' must be single-valued
at all but countably many points z;. Indeed, in this case the map
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,,,,, 0

10} | 1

FIGURE 2. The initial curve g, enclosing the square Wpy.

X :[0,T] — [0,T] must be a surjective, nondecreasing map. If F(z)
is multivalued at some point z € [0,T], then there exists an o < 8
such that X(y) = z for all y € [a, B]. Since [0,T] can contain at
most countably many disjoint intervals [o;, 8;], the map F' can be
multivalued only at countably many points.

On the other hand, in dimension n > 2, the map F' can be multivalued
at all points x € Q.

Example 3. Let Q = [0,1] x [0,1] be the closed unit square. We
construct a sequence of functions fi : Q — R which is Cauchy for the
metric d© in (1.6). The limit as k — oo will determine a multifunction
F, multivalued at every point = € Q.

1. We start with a simple, closed curve vy in the interior of {2 enclosing
a compact set W.

2. We use a sequence of homeomorphisms ¢y, : Q — Q to continuously
deform ~g into a Peano curve, filling 2.

3. We consider a continuous function fy such that fo =1 on Wy and
fo = 0 outside of some e-neighborhood of Wj.

4. The sequence (fi)r>1 is defined recursively, by setting f1(¢r+1())
5. The resulting multifunction then satisfies F'(z) = [0,1] at every
z € Q.

These steps are now explained in more detail.
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1. As initial curve 7y (see Figure 2) we take the perimeter of the

square
|13 1 3
Wo = [1’ 1] X [z’ 1]-

Next consider the curve 7, depicted in Figure 3. This curve bounds a
region W; consisting of 5 squares having sides of length 1/4, connected
by narrow necks as shown. These necks have some small width § > 0,
so that v, is again a closed, simple curve. The curve ; can be obtained
as the image of 7y under a certain homeomorphism ¢;:— Q.

Referring to Figure 2, we divide Q into 4 equal squares, each having
sides of length 1/2. We can choose a homeomorphism ¢; having the
following properties.

e 1 keeps fixed the boundary 9.
e 1 maps each of the 4 smaller squares onto itself.

e p; maps the boundary of each smaller square into itself. In fact
each side of every smaller square is mapped to itself, although not by
the identity map.

e When we further subdivide each square into 4 smaller squares
having sides of length 1/4, the curve 7; passes through each of the
resulting 16 subregions.

The procedure can now be iterated. After k iterations, we achieve
the following:

(i) The original square Q has been divided into 4! smaller squares,
each having sides of length 271,

(ii) The curve -, is a simple, closed curve, enclosing a compact region
Wy.

(iii) Wy consists of Ef:o 4% squares joined by “necks” of width 6/2F~1.

(iv) i is the image of 74x_; under a homeomorphism ¢y : Q — Q
which keeps fixed the boundary 0.

(v) vk passes through each of the 4**1 smaller square regions in Q.

Figures 2, 3 and 4 show the cases £k =0, 1, 2.
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Rt

0 ‘ ‘ 1

FIGURE 3. The curve =1, enclosing the connected region Wj.

0 : : : s : : : 1

FIGURE 4. The curve 73, enclosing the connected region W3, and the two different
types of subregions.

1 1
| ok+1 | k42
I 1

Tk VA

FIGURE 5. The transformation @1, in a type I region.
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1 1
1 kt1 | Dk+2

FIGURE 6. The transformation ¢g41, in a type II region.

Notice that, up to rotations, there are two distinct types of regions,
which we label type I and type 11, as shown in Figure 4. We describe the
homeomorphism @41 by its action on each type of region, see Figures
5 and 6.

(i) The homeomorphism ¢j; maps each region onto itself, main-
taining the orientation of the boundary of each region. Consequently,
for each = € Q2 we have the inequality

.15 o o) < 7

(ii) The boundary of each region consists of 4 segments. If v; does
not pass through a given segment, then 1 keeps fixed all points on
that segment. In particular, ¢ keeps fixed all points in 9.

(iii) Let yx+1 be the image of vy under ¢g11. Then 741 is a simple
closed curve, bounding a region Wy consisting of squares joined by
“necks” of width §/2%.

Asin (2.7), let us define Xy (x) = g 0 --- 0 ¢1(z), and set

X(z) = klirr;o Xi(x).

For each z € Q, the sequence {Xj(x)} is Cauchy. Hence the limit
X (z) is well-defined for every x € 2. Furthermore, v, is constructed
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so that each point of 2 is within a distance v/2/2* of some point in .
It follows that the limit curve

(3.16) v = lim v = X(y0)
k— o0

is dense in Q. But since X (-) is continuous and ~y is closed, v must be
all of Q.

2. Choose € = 1/4, and define a continuous function fo : Q ~— [0, 1]
by setting

1 if z € Wy,
(3.17) foz) =40 if d(x, Wo) > 1/4,
1—4d(CE,Wo) if 0 < d(:l?, W()) < 1/4

3. Now consider the sequence of functions (fx)r>1 defined recursively
as

(3.18) fe(pr(@)) = fra(z)

Since ¢y, is a homeomorphism, fy is well defined on the whole square
Q. Furthermore, calling Yy = {z € , d(x, W, > 1/4}, we have

fe(Xk(x)) = fo(z) forall z e Q
fe=1 on Wy = X(W))
fe=0 onY; = Xi(Yp).
Moreover, by construction the sequence (fx)x>1 is Cauchy with respect
to the distance d°.

4. Consider the limit functions X(-) and f(-), defined at (2.7), and
the corresponding multifunction F' in (2.8). Let any point z € § be
given.

Since 7 is a Peano curve, there exists a point w € 7y such that
X (w) = z. Hence

(3.19) f(w) = lim fi(Xp(w)) = 1,

Therefore 1 = f(w) € F(X(w)) = F(x).
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On the other hand, the set X (Yp) is also dense and closed in Q. Hence
it is equal to Q. We can thus find a point z € ¥) such that x = X (2)
and

(3.20) f(z) = lim f(Xk(2)) = 0.

Therefore 0 = f(z) € F(X(z)) = F(z).

By Lemma 2, F(z) is a connected set. We thus conclude that
F(z) = [0, 1] for every x € Q.

4. Multidimensional graph completions. Given a function
f: Q+— R™, relying on the previous ideas we would like to construct
a “graph completion” of f. Roughly speaking, this should be a
multifunction F' whose graph is obtained as limit of graphs of functions
fx, converging in the d® metric. Moreover, F(x) should be single
valued and coincide with {f(z)} at almost every point z. As shown by
Example 3, however, in several space dimensions the multifunction F
can be multivalued everywhere. One can easily achieve the inclusion
graph (f) C graph (F), but there may be little relation between F' and
the original function f.

To make further progress, we need to impose some restrictions on the
Cauchy sequences of continuous functions fj used in (2.4). A natural
assumption is that all these functions fj should have uniformly bounded
WLl norm. This leads to

Definition 3. Given a bounded open set 2 C R™ and function
f : Q — R™ having bounded variation, we say that a multifunction
F : Q—=R™ is a graph completion of f if there exists a sequence of
functions f, which is Cauchy with respect to the distance d and
satisfies

(421) Sl;p ||fk||W1,1(Q) < 00,

(4.22)
du (graph(fk), graph (F )) — 0,  graph(f) C graph (F).

Notice that in this case there exists a continuous surjective map
f:Q — graph(F).
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In the one-dimensional case, a slight modification of the arguments
in [12] yields the existence of a graph completion, for every map
f:[0,7] = R™ having bounded variation.

Proposition 1. Let f : [0,T] — R™ be a right continuous function
with bounded variation. Then f admits a graph completion.

Proof. For t € [0,T] and k > 1, define

sk(t) = t + %Tot. Var. {f; [0,4]}

where the right hand side involves the total variation of f on the
subinterval [0,t]. The map t — si(t) is strictly increasing, right
continuous, from [0, 7] into [0, Sk|, with

1
Sp=T+ ETot. Var. {f; [0, T]}.

Its inverse s — t(s) is Lipschitz continuous.

Define the Lipschitz continuous function fy, : [0, Sk] — R™ by setting

s, (t) =inf{s; t = tx(s)},
sy, (t) = sup{s; t = ti(s)}
)

Fils) = 0F (1) + (1 - 0)f(t-) if ¢ = ti(s),
Osy; () + (1 = 0)s, (¢)-

By a reparameterization, we obtain a function fj : [0,7] — R™, defined

) fult) = f(%t)

One now checks that the functions f; form a Cauchy sequence with
respect to the distance d¥. Moreover, their limit yields a multifunction
F satisfying (4.22). O

On the other hand, when the domain 2 has dimension n > 2,
Lemma 4 puts some topological obstructions to the general existence
of a graph completion.
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oC

1

FIGURE 7. A function with bounded variation, which does not admit a graph
completion.

Example 4. Let B; be the open disc centered at the point p; =
((1/4), 0), with radius r; = j 3. Observe that, for j > 4 the countably
many discs B; are mutually disjoint. Moreover, since the radii r;
converge to zero very fast, the union of their boundaries U;>4 0B;
has finite length. Therefore, the function f : R? — R defined as

1 ifze Uj>4 Bj,
0 otherwise,

(423) )=

has bounded variation. The multifunction

{1} ifx e U]'24 Bj,
[O, 1] ifxe Uj>q 8BJ orif z = (0, 0),

is upper semicontinuous with compact convex values. However, by
Lemma 4 the BV function f in (4.23) does not admit a graph comple-
tion. Here the obstruction lies in the fact that, although the graph
of the multifunction F' has locally bounded two-dimensional mea-
sure, there does not exist any continuous parameterization ¢ : R? —
graph (F).

Proposition 2. Let Q C R"™ be a bounded open set, and let F' be a
graph completion of a function f: Q — R™. Then

(i) The graph of F has bounded n-dimensional measure.

(ii) For almost every = € 2 one has F(z) = {f(z)}.



MULTIDIMENSIONAL GRAPH COMPLETIONS 433

Proof. By the assumption (4.21), for every k > 1 the graph of f; has
bounded n-dimensional Hausdorff measure, namely

My (graph (fk)) <C

for some constant C' independent of k. We now consider the maps
z o Ui(zr) = (Xk(:c), fk(Xk(:c))> defined at (2.6)(2.7). These

are continuous maps, converging to a continuous map z — ¥(z) =
(X (), f(x)) uniformly on Q. Define the functional

J(¥) = mn(¥(Q)).

Taking the Hausdorff limit of the graphs of f; and using the lower
semicontinuity result in [1], we conclude

M, (graph (F)) = J(¥) < liminf J(Tg)

k— oo

= hkrgloréf Mn (graph(fk)> <C.

This already implies that F (z) must be single-valued for almost every
z € (). Since graph (f) C graph (F), this implies F'(z) = {f(z)} for
almost every z € (. o

5. Upper semicontinuous differential inclusions. The main
goal of this section is to prove Theorem 1, on the existence of solutions
to differential inclusions with Cellina W' !-approximable right hand
side.

We begin with a couple of results, providing interesting classes of
multifunctions which are Cellina W' !-approximable. In the following,
we denote by BV (R™) the set of all maps g : R™ — R™ having bounded
variation. See [17] for the general theory of BV functions of several
variables.

Proposition 3. Let G : R" — R™ be an upper semicontinuous
multifunction with compact, conver values. Assume that G admits a
(possibly discontinuous) selection g(z) € G(z), with g € BV (Q). Then
G is Cellina Wh'-approzimable.
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P é%

©»
—
>

FIGURE 8. If a vector field f with [f(z)] = 1 has a very long integral curve
remaining inside the unit square, then the total variation of f must be large.

Proof. Indeed, consider the mollifications g. = J. * g. Here the
function J; : R™ — R is defined by setting

2 _ .
J(z) = {Cn exp{1/(|z|* = 1)} ?f lz|] < 1,
0 if 2] > 1,

where the constant Cy, is chosen so that [;,J(z)dz = 1. For each
€ > 0 we then define
1 T
Je(x)=—J(—-].

For every € > 0, standard properties of mollifications now imply

gellwrr < llgllsv
Since the graph of g. is contained in an e-neighborhood of the graph

of the multifunction G, we conclude that G is W11-Cellina approx-
imable. O

Proposition 4. If G : Q — R™ is W'P-Cellina approzimable and
¥ : R™ — RF is a Lipschitz continuous function, then the composition
F(z) = ¢(G(z)) is WhP-Cellina approzimable.
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Proof. If g. : 2 — R™ is a continuous approximate selection of
G, then the composition f.(z) = 9¥(g.(z)) is a continuous approxi-
mate selection of F. Moreover, there exists a constant C' such that
[fellwrr < Cllgellwrr. O

Proof of Lemma 1. To derive a lower bound on the total variation of
f, we proceed as follows. Consider the square @ = [—1, 1] x [-1, 1].
Let v : [0,T] — Q be a trajectory of the vector field f. Denote its
components along the axes as y(t) = (v1(¢),v2(t)). Then its length is

computed as
T
== [ 32+
0

Consider the domains

J1 = {z1 € [-1, 1]; 71(t) = 1 for finitely many times ¢},
Jy = {z9 € [-1, 1]; 72(t) = 2 for finitely many times ¢}.

Since v is a smooth curve, we must have
meas (J1) = meas (J2) = 2.

For s € J; we shall denote by po(s) < p1(s) < -+ < pn(s) the za-
coordinates of the intersections of the trajectory v with the vertical line
{(z1,2); ©1 = s}. Similarly, for s € J, we denote by go(s) < q1(s) <
-+ < gum(s) the z1-coordinates of the intersections of the trajectory ~y
with the horizontal line {(z1,z2); 2 = s}. By 7(pr(s)) and 7/(gx(s))
we denote the times where these intersections occur.

Observing that dt = (%2 + 42)dt = |¥1| dz1 + |§2|dz2, the length of
can be estimated as

(5.25)
Il = / S Faldn+ [0S Fat)] des

I () =21 J

N(s) 2 VJZVEZ;:M
= [ [neromas+ [ 3 @i as

J1 k=0 2 k=0
N(s) M(s)

— [ St men]ds+ [ 3 |nlals). 5| ds
J1 k=0 J2 =
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To relate this length with the total variation of the vector field f =
(f1, f2) : @ — R?2, we observe that

1
1Dl = [ [
Jy J—1

We claim that the component f; must have a zero on each subinterval
[pr—1(s), pr(s)]. To see this, consider the simple closed curve obtained
as the union of the portion of trajectory v between Pr_; = (s, pr—1(s))
and P, = (s,pk(s)), together with the vertical segment S joining the
two points Py_1, Px. By the Jordan curve theorem, this curve encloses
a compact region Ag(s) C Q. If the component f; does not change
sign on the segment S, then the set Ag(s) would be either positively
invariant or negatively invariant for the flow of the vector field f. Since
f is continuous, by the classical Poincaré-Bendixon theory it must have
a zero inside Ag(s). But this is impossible, because we are assuming
f(@)] = 1.

For k = 0,1,...N(s) — 1, let z;_1(s) denote the location of a
zero of the component f; on the subinterval [pg_i(s), px(s)]. For
a fixed s € [—1,1], we estimate the total variation of the function
x2 — f1(s,x2) using the partition

0N (5,25)

025 dsdxs.

po(s) < zp(s) < p1(s) < z1(s) < -+ < zny_1(s) < pn(s).

For a fixed s € Jy, this yields

Y ofs
/_1 8—962(&532) dza > |f1(s,po(s))] + [f1(s,pn(5))]
N(s)—1
+ Y 2|nlspels)
k=1
N(s)

>-2+2) ‘fl(xl,pk(S))‘-
k=0

Similarly, for a given s € J;, we have

/.

8f M(s)
(21, 8)|doy > —242 ) ‘fZ(Qk(S)vs)"
k=0

8:171
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Using the two above inequalities in (5.25) we obtain

1 1

<[ {iegf
J1 -1

1 1

NS,

Jo 2 -1

1
<4+ §||Df”L1(Q)- u]

%(Ila x2)

81‘2
of

=2 (24, z0)

61‘1

dl‘g} dl‘l

diL‘l } diL‘Q

Proof of Theorem 1. In the trivial case 0 € F(0), the function
z(t) = 0 is a global solution. Throughout the following, we thus assume
0 ¢ F(0). Since F is bounded, to prove the theorem it suffices to show
the existence of a local solution, defined for ¢ € [0, ¢], with § > 0 small.
The proof will be worked out in various steps.

1. By upper semicontinuity one has 0 ¢ F(z) for all z in a
neighborhood of the origin. By a rescaling of coordinates, we can
assume B(0,p) N F(z) =@ forall z € Q = [-1,1] x [-1,1].

Next, we observe that it is not restrictive to further assume
(5.26) w|=1 forallve F(z), x¢&R%

Indeed, consider the normalized multifunction
~ v
v

Observe that F is also Cellina W1 1-approximable. Indeed, if f. is an e-
approximate selection of F, then the map = — f-(z) = f.(z)/|f-(z)| is
an e-approximate selection of F'. Moreover \|f5||W1,1(Q) <Ol fellwrr @y,
for some constant C' depending only on p.

If ¢ — y(t) is a solution to the auxiliary problem
(5.27) jy€F(y), y(0)=0€¢R?
then there exists a bounded measurable function A(t) > p such that

M) 5(t) € F(y(t)) for ae. t.
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Define the rescaled time

0= [ %

and call 7 — ¢(7) the inverse transformation. Setting z(7) = y(¢(7)),

we find
do _dy dt _

T =D E =) A(Hr)) € Fla(r).

2. From now on, we thus assume that (5.26) holds. Given a sequence
€x 4 0, consider a corresponding sequence of smooth approximate
selections { fx}, whose norms{|| fx||w1.:} remain uniformly bounded.

For each k, the Cauchy problem
(5.28) i(t) = fx(x), =z(0)=0¢€R?

has a unique solution, which we denote as ¢t — z(¢). By Lemma 1,
each trajectory z(-) reaches the boundary 0Q of the unit square @ at
a finite time ¢y, with T = sup,{tx} < co.

By possibly taking a subsequence, using the Ascoli-Arzela compact-
ness theorem we obtain the existence of 7' > 0 and a Lipschitz contin-
uous map z(-) such that ¢t — T > 0 and xx(¢t) — «(¢), uniformly for
te0,T].

3. We now parameterize this limit trajectory z(-) by arc-length. For
this purpose, we first define

(5.29) s(t) = /0 l(r)| dr.

Since #(t) € co F(z(t)), one has

Furthermore,

(5.30) S =

I
Vo)
—
S
SN—
v
-

=

@

[

7
Y
—N

Vo)

—
~
el
&
S
S—r
I

o
——
N———

Il

o
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Consider the inverse transformation s — #(s), so that

t
(5.31) (s) = min {t; / (7| dr > s},
0

and reparameterize the trajectory z(-) by arc-length, setting
(5.32) z(s) = z(t(s)), se€][0,9]

4. We claim that, with the parameterization (5.32), one has

d

(5.33) 7 z(s) € F(x(s)) for a.e. s€]0,5].

Indeed, if this is not the case, we could find a time 0 < 7 < 7" such that
(i) 7 is a Lebesgue point of the bounded measurable map ¢ — &(t),
(ii) |Z(7)| > 0, and

(iii) the inclusion (5.33) fails at s = s(7).

Without loss of generality, we can assume that the conditions are chosen
so that #(7) = (A,0) € R?, for some A > 0.

If (5.33) fails, by upper semicontinuity there exists a cone I's =
{(z1, z2); |x2| < dx1} such that

(5.34) F(z)NT's=o forallze N.
where A is a neighborhood of z(7). With reference to Figure 9, we
now consider a rectangle R with vertices A, B,C, D, contained in N

and with sides parallel to the coordinate axes, containing the point
z(7) in its interior. By choosing h > 0 small enough, we achieve

(5.35) o(r +h) € RNint (m(T) + ra).
By the uniform convergence xy — x, we can assume that

zg (1) — z(7), zp(t+h) — z(r+h) ask — oo,

while z(t) € R, for all t € [r, 7+ h] and all k sufficiently large.



440 ALBERTO BRESSAN AND RUSSELL DEFOREST

However, we now show that this leads to a contradiction.

Call A, By, the intersections of the boundary z(7) + OT's with the
segments AD and BC, as shown in Figure 9. By shrinking the height of
the rectangle R, these points are well defined, for every k large enough.
Since x (T + h) — x(7) € int Ty, there will be a smallest time

= inf{t > 7; xp(t) — xzk(7) € int F(;}.

Call P = z(7') € xi(7) + OI's. Without loss of generality, assume P =
(p1,p2) with po > 1, 2(7). Notice that, by (5.34), the second coordinate
of the trajectory xx = (zk,1,2k,2) cannot attain its maximum at the
crossing time ¢ = 7', because this would imply

p1 >0, 0L app < 0p 1,

in contradiction with (5.34). We thus have
Mo = max {$k72(t); t e, T']} > pa.

Therefore, there exists an intermediate time 7 < tp; < 7' where this
maximum is attained. Set M = (my,ms) = z(tp). Consider the
domain D (the shaded domain in Figure 9), bounded by:

— the curve {z(t); 7 <t <71um},

— the horizontal line {(z1,z2); 2 = ma},
— the vertical segment AB,

— the horizontal segment BBy,

— the segment joining z(7) with By.

The previous construction implies that, for ¢t € [r,7 + h], the tra-
jectory z(-) cannot leave the domain D. This yields a contradiction,
because, for k large, zy (7 + h) is arbitrarily close to (7 + h).

This contradiction shows that (5.33) holds, thus proving the theo-
rem. O

Example 5. We now show that in dimension n = 3 the assumption
that the multifunction F is W1 !-Cellina approximable does not guar-
antee the existence of solutions to the Cauchy problem (1.8). This is
obtained as a modification of the multifunction in Example 1.
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FIGURE 9. If &, = fr(xr), where fi is an approximate selection from F, the
sequence of functions z(-) cannot converge to a function z(-) with & ~ fe1, for any
0> 0.

Consider the continuous function

z1 cos(1/z1) 0 < |zg| < |z1],
d(z1,x3) = S o1 cos(1/x3) if |z1| < |z3),
0 if Ir] = T3 = 0.

Define the multifunction F : R?2 — R? as

(536) F(l’l,mg)
{(0,—1,0)} if To > ¢($1,$3),
= {(0,1,0)} lf Io < ([5(1‘1,1‘3),

{(y17y270); y1 >0,y +y3 = 1} if o = ¢(z1,x3).

Since the third component of every velocity vector v € F(z) vanishes,
the third component of any solution of the Cauchy problem (1.8) must
be identically zero. However, restricted to the plane {z3 = 0}, the
multifunction F' coincides with the multifunction in (1.11). Hence no
solution exists.

We observe that the multifunction F is Cellina W' '-approximable.
Indeed, we can write F(x) = ¥(G(z)) where

P(§) = (cosg, sing, 0),
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and G : R® — R is the upper semicontinuous, convex valued multi-
function defined as

{-m/2} if zo > ¢(z1,x3),
(5.37) G(z1,me,x3) = {7/2} if zo < ¢(z1,x3),
[—71'/2, 7T/2] if Lo = ¢7($1,£E3).

We observe that G is almost everywhere single valued. Indeed,
G(z) = {g(x)} for some function g and all x = (z1,z2,x3) with
xzo # ¢(x1,23). We claim that this function g, defined by (5.37), has
bounded variation restricted to bounded sets 2 C R3. Indeed, the
partial derivatives of ¢ are computed by

d¢ cos(1/zy) — (1/z1) sin(1/zq) if 0 < |z3| < |z1],
—(z1,23) = .

Oz, cos(1/x3) if 0 < |zq| < |zs],
d¢ 0 if 0 < |zs| < |z1],

5 —(21,23) = 2\ :

O —(@1/23) sin(1/z3) if 0 < |z1] < |@3].

Hence, both partial derivatives are locally integrable. As a consequence,
the two-dimensional measure of the graph of ¢ (i.e., the set where g is
discontinuous), restricted to any bounded domain, is bounded. Hence
the restriction of g to any bounded domain Q@ C R? is in BV. By
Propositions 3 and 4, we conclude that F is Cellina W'''-approximable
on any bounded domain Q C R3.

This example shows that an n-dimensional extension of Theorem 1
cannot be valid if n > 3 and we only assume F to be W!!-Cellina
approximable. As remarked earlier, to achieve an existence result one
apparently should assume that F is Cellina W'P-approximable, for
some p > n — 1.
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