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HARMONICITY ON COSYMPLECTIC MANIFOLDS

CATALIN GHERGHE

ABSTRACT. We prove that a (¢, J)-holomorphic map from
a compact cosymplectic manifold to a Kéhler manifold is not
only a harmonic map but also an energy minimizer in its
homotopy class. We also prove a converse result.

1. Introduction. Combining both global and local aspects and
borrowing both from Riemannian geometry and from analysis, the
theory of harmonic maps between Riemannian manifolds has developed
in many diverse branches. In particular, there is now a whole battery of
deep and interesting results about harmonic maps to or from complex
manifolds and K&hler spaces.

Within almost contact geometry, there are several classes of manifolds
that can be considered as odd-dimensional analogs of Kahler spaces, the
most important ones being Sasakian and cosymplectic spaces.

The theory of harmonic maps on smooth manifolds endowed with
some special structures has its origin in the paper of Lichnerowicz [6],
in which he considered holomorphic maps between Kahler manifolds.

In general the construction of energy minimizing maps is much more
difficult than finding harmonic ones. The main purpose of this paper
is to show that structure-preserving maps on cosymplectic manifolds
minimize the energy of maps. We prove that a (p, J)-holomorphic map
from a compact cosymplectic manifold to a K&hler manifold is not only
harmonic but also a minimizer for its energy.

We also prove a converse of the previous result, that is, a smooth
energy minimizer map from a cosymplectic manifold to a Kahler man-
ifold, which is homotopic with a (¢, J)-holomorphic one is also (g, J)-
holomorphic.
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2. Cosymplectic manifolds. In the formal sense the odd-
dimensional counterpart of Kahler manifolds are cosymplectic mani-
folds. Let M be a smooth manifold of dimension 2n + 1. We recall
that an almost contact structure on M is a triple (§,7, ¢), where £ is a
vector field, 7 is a one-form and ¢ is a tensor field of type (1,1) which
satisfy (see [1]):

(1) p?=-Id+n®¢ and n() =1

where Id is the identity endomorphism on 7M. Then we have ¢(§) =0
and n o ¢ = 0. Furthermore, if g is an associated Riemannian metric
on M, that is, a metric which satisfies for any X,Y € X (M),

(2) 9(p(X),(Y)) = 9(X,Y) = n(X)n(Y),

then we say that (£,7,p,9) is an almost contact metric structure. A
manifold equipped with such a structure is an almost contact metric
manifold. The existence of an almost contact structure on M is
equivalent to the existence of a reduction of the structural group to
U(n) x 1.

The fundamental 2-form ® of M is defined by
(3) 2(X,Y) = g(X, pY),

for X,Y € X(M). The almost contact metric structure (£,7, ¢, g) is
said to be normal if the Nijenhuis tensor N, of ¢ satisfies the condition
(see [1]):

(4) N, +2dnp® ¢ = 0.

An almost contact metric manifold M (&, n, ¢, g) is called cosymplectic
if it is normal and dn =0, d® = 0.

The canonical example of compact cosymplectic manifold is given by
the product B?" x S! of a compact Kéahler manifold B?"(J, h) with
the circle S* (see [2]). Nontrivial examples are obtained by using the
suspensions technique. We explain in short this construction. Let
N be a 2n-dimensional compact Kahler manifold with the Hermitian
structure (J,h). Consider an Hermitian isometry f : N — N, that is,
f is a diffeomorphism and

feod=Jofe, [*h=h.
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We define the action A of Z on the product manifold N x R by

A(n, (z,2)) = (f"(2),2 — n),

for all n € Z and (z,2) € N x R. This action is free and properly
discontinuous. Thus, the orbit space (N x R)/A of the Z-action is a
(2n + 1)-dimensional compact manifold and the canonical projection
p' : N xR — M is a covering map. Moreover, we can define a fibration
7 of M on S' = R/Z by 7([(z,2)]) = [z] for all (z,2z) € N x R. It is
clear that the fibers of 7 are diffeomorphic to V.

Denote by p : Z — Diff (N) the representation of Z on the group
of the diffeomorphisms of N, Diff (N), given by p(k) = f*, for all
k € Z. Then the manifold M is called the suspension with fibre N of
the representation p.

Next we shall obtain a cosymplectic structure on M. We consider on
N x R to be the cosymplectic structure (%,7,£,9) given by

_ - 0
(p:JO(prl)*a é.:aa

where pri : N X R — N and pry : N x R — R are the canonical
projections onto the first and the second factor, respectively, and ¢
is the usual coordinate on R. Since f is an Hermitian isometry, we
deduce that the cosymplectic structure (3,7, £, §) is invariant under the
action A of Z on N x R. Therefore, it induces a cosymplectic structure
(&,m,¢,9) on M. For more details, see [7]. For a generalization of this
construction see [5].

n=pry(dt), g=pri(h)+pri(dt?),

3. Lichnerowicz type invariant on almost contact metric
manifolds. Let M(p,n,&,g) be an almost contact metric manifold.
TM¢€ denotes the complexification of the tangent bundle TM of M.
The complex-linear extension of ¢ on TM¢ has eigenvalues +1/—1 and
0, with corresponding eigenspaces

1 1
T*M = { - §¢2X F 5\/—1<pX,X € TM},
T°M = {X + ¢*X,X € TM}.

The complexification T'M¢ splits into eigenbundles: TM¢ = TTM ¢
T9M @ T~ M, in which the decomposition is orthogonal with respect
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to the Hermitian metric (X,Y) = go(X,Y), (where gy denotes the C-
bilinear extension on T'M¢ of the given metric on M). Now let N(J, h)
be an almost Hermitian manifold, and let f : M — N be a smooth
map from M to N. Then the decompositions of TM¢ and T'N€¢ induce
the corresponding splitting of the differential of f, and hence we can
define the following three maps

d*f:T"M — TTN
d“f:T"M —TtN
df f: T°M — TTN.

The energy density e(f) of f is defined by e(f)(p) = ||df,|*/2 for
p € M, where ||dfy||* is the norm of the differential df, € Ty M @Ty,) N
at p € M. We set

et (f) = ld fI1% e (f) = ld™ FII* e (f) = lldg £11%,

which are called the partial energy densities of f. These partial
energy densities are useful to give us precise information about how
the differential df of f acts on each eigenspace.

Lemma 1. Let M be an almost contact metric manifold, and let N
be an almost Hermitian manifold. Let f be a smooth map from M to
N. Then we have the following decomposition for the energy density
e(f) of f:

e(f) = et (f) +e (f) +eq (f).

Proof. Let {ex, pex, &}y _15 be an orthonormal basis (with respect to

g) on TM. Then Z;, = 1/v/2(ey, — +/—1gpes,) is an orthonormal basis
on TM™ (with respect to (-, })).

Then we have

et (f) =D ho(d* f(Zx),d* f(Z)).

k=1

e™(f) =Y ho(d™ f(Zk),d" f(Z))-
k=1
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and
ey (f) = ho(dg f(€), dg f(£))-

If we make the notations Xy = df (e), Yi = df (per) and Z = df (£),
a direct computation gives:

(5)
e (f) = i ; {h(Xk, Xi) + h(Yi, Vi) } + % ;h(JXk,Yk),
(6) .
e (f)= iz ( Xk, X)) + h(Ye, Yi)} — —Zh (J Xk, Y),
k=1 k=1
and
(7)

&5 (/) = 3h(Z,2)

Finally we add the above three relations to obtain the decomposition
in Lemma 1. u]

Now let 2 and w be the fundamental 2-forms of the almost contact
metric manifold M and almost Hermitian manifold N, respectively.
That is, Q(X,Y) = g(X,¢Y), X,Y € X(M) and w(V,W) = h(V, JW),
V,W € X(N). We have the following lemma.

Lemma 2. Let M be an almost contact metric manifold, let N be
an almost Hermitian manifold, and let f be a smooth map from M to
N. Then it holds that

et (f) —e (f) = (f'w, ),

where the right side above means the inner product of 2-forms on M
induced by g.
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Proof. From relations (5) and (6) we obtain

e (f) = 3" h(Jdf(er), df (er)).
k=1

On the other hand,

(f*w, ) =D [ w(Vp, Vo) QVp, Vo),

p<q

2n+1

for any orthonormal frame {V,} 7" on M. If we choose the frame

{ek, ek, £} for k = 1,n, we obtain the formula. o
We recall here the homotopy lemma given in [3]:

Lemma 3. Let fy : M — N be a smooth family of maps between
smooth manifolds M and N parametrized by the real number t, w a
closed two-form on N and & f;/dt the variation field of fi. Then

8 * _ ft
gt =a(5:i( %)),
where i(X) is the interior product with respect to a vector field X on

N.

In the complex case, Lichnerowicz defined a smooth homotopy in-
variant associated with a smooth map [6]. Let ¥, denote the volume
measure on M associated to the metric g. Assuming M is compact,
we can define a similar one for the case when the source manifold is
endowed with an almost contact metric structure:

K(f)=E*(f)-E(f),

where E1(f) denotes the partial energy of f defined by integrating
et (f) on M for 9. Likewise, E~(f) and E (f) are also defined:

24() = [ 0o, EH0 = [ o,

See also [8] for the case when the source manifold is almost Hermitian.
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By Lemma 2 we have
K= [ (£ra0)d,.
M

Now let f; be a smooth variation of f. Then, if we suppose that w is
closed and €2 is coclosed, it follows from Lemma 3 that

G5 = [ (gurae)o,
ey
] ({2 Yoo o

Thus, we have just obtained the following theorem:

Theorem 1. Let f : (M, ¢, g) — (N, J, h) be a smooth map between
an almost contact metric manifold and an almost Hermitian manifold.
Suppose that M is compact, w closed and Q coclosed. Then K(f) is a
smooth homotopy invariant.

4. Harmonic maps on cosymplectic manifolds. Let M and N
be Riemannian manifolds with Riemannian metrics g and h, respec-
tively. Suppose that M is compact. A smooth map f: M — N is said
to be harmonic if it is a critical point of the energy functional

B = [ e(pi,

The Euler-Lagrange equation of this variational problem is 1r,V'df =
0 where V' is the connection on T*M ® f~'TN induced by the Levi-
Civita connection V™ of M and the f-pullback V of V¥. We denote
the left side of the last equation by 7(f). This is the section of f~1TN
called the tension field of f. For more information concerning harmonic
maps see [3].

Let M(n,&,,9) be an almost contact metric manifold, and let
N(J,h) be an almost Hermitian manifold. A smooth map f: M — N
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is called (¢, J)-holomorphic if its differential intertwines the structures:
df oo = J o df. We know (see [4]) that the tension field 7(f) of an
(p, J)-holomorphic map f satisfies the equation

J(T(£)) = df (div o) — Tryp,

where 3(X,Y) = (VxJ)dfY for X,Y € I(TM). If M is a cosymplec-
tic manifold, then divy = 0, and N being Kéhlerian implies 8 = 0.
Hence any (¢, J)-holomorphic map from a cosymplectic manifold to
a Kahler manifold is harmonic. A natural question to ask is whether
such a map is also an absolute minimum of its energy functional or not.
With the invariant K(f) on hand we are able to answer the question
as follows:

Theorem 2. Let (M, y,g) be a compact cosymplectic manifold and
(N, J,h) a Kdhler manifold. Then any (g, J)-holomorphic map f from
M to N attains an absolute minimum of the energy functional in its
homotopy class.

Proof. First we have to remark that, as IV is a Kdhler manifold, the
fundamental 2-form w is closed and, because M is cosymplectic, {2 is
coclosed. Then, if f : M — N is a smooth map homotopic to f, by
Theorem 1, K(f) = K(f). Since f is (p, J)-holomorphic, it is easy to
see that df (T+(M)) C T*N (see [8]) and that df (¢) = 0, and thus the

partial energies E~(f) and EJ (f) of f vanish. So Lemma 1 implies:

proving that f attains an absolute minimum of E in its homotopy
class. O

Example 1. It is clear that, if B is a compact K&hler manifold
and S! is the unit circle, then the projection on the first factor of the
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cosymplectic manifold B x S! (see Section 1) is (¢, J) holomorphic and
thus is a harmonic map which is also a minimizer of the functional
energy.

After the conclusion of Theorem 2, a good question to ask is if the
converse is true, that is, when a harmonic map from a cosymplectic
manifold into a Ké&hler manifold is (¢, J)-holomorphic. We can prove
the following.

Theorem 3. Let (M, ,&,n,9) be a compact cosymplectic manifold,
(N, J,h) Kdhlerian and fo : M — N a harmonic map minimizing the
enerqy functional E in its homotopy class. If fy is homotopic to a
(¢, J)-holomorphic map, then it is also (¢, J)-holomorphic.

Proof. Let f1 be a (g, J)-holomorphic map homotopic with map fj.
By Theorem 2 we have E(f;) < E(fy). On the other hand, f, attains
the minimum of the energy functional in its homotopy class, and thus
E(fo) = E(f1). Now by Theorem 1, as fo and f; are homotopic we
have K (fo) = K(f1), and thus E*(fo) — E~(fo) = E*(f1) — E~(f1)-

As we have seen, because f; is (g, J)-holomorphic we have E~(f;) =
E{ (f1) = 0. We have just obtained the following two relations:

E*(fo) — E™ (fo) = E*(f1)
and
E™*(fo) + E (fo) + Ef (fo) = E*(f1).

Thus we have:
2E—(f0) + EJ(fO) = 07
which implies

E " (fo) = Eq (fo) = 0.

Now, from the definition of the partial energy E~ (fy) of fo, as e (fo)
is continuous we obtain e~ (fp) = 0. On the other hand, using relation
(6) we have

(o) = § D hJdfer — df (pe), Jdfer  df (pex) > 0.
k=1
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Thus, e (fo) = 0 if and only if dfo(per) = Jdfo(ex) for any k =1, n.
It is easy to see that we also have dfy(¢(per)) = Jdfo(pex) for any
k=1,n.

Similarly, e (fo) is a positive continuous function as
1
eg (f) = Fh(dfo€, dfof)-
But ef (fo) = 0, and thus dfy(€) = 0 = dfo(¢€) = Jdfp(£). So we have

just obtained that dfy(pX) = Jdfo(X) for any X in an orthonormal
basis of M, so fy is (¢, J)-holomorphic. O

A nice geometric interpretation of the homotopy invariant K(f) is
given by the following proposition:

Proposition 1. Let f : M — N be a smooth map from a compact
cosymplectic manifold M of dimension 2n + 1 into a Kdhler manifold
N. If there exists a real constant ¢ € R such that [f*w] = ¢[Q], then

K(f)=mn-c-vol(M).

Proof. We know that
K= [ (w2,

As [f*w] = c[], there exists a 1-form 0 € Q' (M) such that f*w—cQ =
df, so

K(f) = /M (e +df, Q) 9,

—. /M (Q,0)9, + /M (d6,9) 9,

:c-n-vol(M)—l—/M (0,60) 3,

=c-n-vol(M). u]

From Proposition 1 we can obtain the following corollary.
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Corollary 1. For a map as in Proposition 1 which is also (p,J)-
holomorphic and, if [f*w] =0, then K(f) =0 and f is constant.

Proof. From Proposition 1 we have K(f) =n-c-vol (M), and thus
E*(f)—E (f) = 0. On the other hand, as f is (¢, J)-holomorphic, we
have E~(f) = Ef (f) = 0, and so we also have E*(f) = 0. But in this
case the total energy E(f) vanishes, and thus the map f is constant. O

REFERENCES

1. D.E. Blair, Riemannian geometry of contact and symplectic manifolds,
Progress Math. 203, Birkh&user, Inc., Boston, MA, 2002.

2. D.E. Blair and S.I. Goldberg, Topology of almost contact manifolds, J. Differ-
ential Geometry 1 (1967), 347-354.

3. J. Eells and L. Lemaire, A report on harmonic maps, Bull. London Math. Soc.
10 (1978), 1-68.

4. C. Gherghe, S. Ianus and A.M. Pastore, Harmonic maps, harmonic morphisms
and stability, Bull. Math. Soc. Sci. Math. Roum. 43 (2000), 247-254.

5. C. Gherghe and K. Kenmotsu, Energy minimizer maps on C-manifolds,
Differential Geometry Appl. 21 (2004), 55-63.

6. A. Lichnerowicz, Applications harmoniques et variétés kdhleriennes, Sympo-
sium Math. 3 (1970), 341-402.

7. J.C. Marrero and E. Padrén, New ezamples of compact cosymplectic solvman-
ifolds, Arch. Math. 34 (1998), 337-345.

8. J. Rawnsley, f-structures, f-twistor spaces and harmonic maps, Lecture Notes
Math. 1164, Springer-Verlag, 1984, New York.

UNIVERSITY OF BUCHAREST, FACULTY OF MATHEMATICS AND INFORMATICS,
ACADEMIEI STR. NO. 14, 010014,BUCHAREST, ROMANIA
Email address: gherghe@gta.math.unibuc.ro




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


