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SUMS AND STRICT SUMS OF BIQUADRATES
IN F,[t], ¢ € {3,9}

LUIS H. GALLARDO AND LEONID N. VASERSTEIN

ABSTRACT. Let g be a power of a prime number. Observe
that just for ¢ € {3,9} some congruence obstructions occur
to the representation of polynomials in Fg[t] as a sum (and
so also as a strict sum) of biquadrates. We define g(4, Fq[t])
as the least g such that every polynomial that is a strict sum
of biquadrates is a strict sum of g biquadrates. We compare
the set of sums of biquadrates with the set of strict sums of
biquadrates for ¢ € {3,9}. Our main result is that

9(4,Fg[t]) < 14 when q € {3,9}.

The set of sums of cubes in Fy4[t] is also determined. This
completes the study of the case of representation by sums of
cubes (in which the congruence obstructions occur only for
q€{2,4}).

1. Introduction. Let F, be a finite field of characteristic p, with ¢
elements. Let £ > 1 be a positive integer. Let

Ar(q) = {P €F [t] | P = A" + .-, AcF,[t]}
be the set of all sums of kth powers in F,[t]. Let also:

SAk(q) = {P €F,t] | P=A* ... JA € Ft],
deg (AF) < k + deg (P)}

be the set of all strict sums of kth powers in F,[t]. Notice that one can
never write P as a sum of kth powers with deg (4) < [deg (P)/k], so
that the condition for a strict sum of kth powers imposes the tightest
possible constraint on the size of deg (A).
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When k is even we consider also the corresponding sets
MAk(q)7 MSAk(q)7

of mixed sum of kth powers in which we accept + and — signs in the
sums above.

We deal in this paper mainly with the case £k = 4 and k = 3 when
these sets are not equal to the entire ring Fy[t]. It is known that
congruence obstructions occur exactly when g € {2,4} for k = 3, and
when ¢ € {3,9} for k =4 (see [2, pages 2-3], [9, page 302]).

It is easy to identify the sets C(g) = As(q) of polynomials P € F[¢]
that are sums of cubes (see Theorem 1), respectively SC(q) = SAs(q)
of polynomials P € F[t] that are strict sums of cubes (see [4, 6]).
When ¢ > 4 the set C(q) is the entire ring F[t].

For ¢ = 4 the set C(q) consists of polynomials P € Fy[t] for which
P(r) lies in Fy for every r € F4, while the set SC(q) consists of
polynomials P € C(g) such that P is monic when 3 divides deg (P).
Finally C(2) = A3(2) = SA3(2) = SC(2) is the set of P € Fy[t] such
that P=0or P=1 (mod t* + ¢+ 1).

Let v(k,F4[t]) = v > 0 be the minimal integer such that every
P € MAg(q) is a mixed sum of v kth powers. We define as well: Let
w(k,F4[t]) = v > 0 be the minimal integer such that every P € A(q)
is a sum of v kth powers.

Let g(k,F4[t]) = v > 0 (in analogy to the definition of the “g(k)” for
Waring’s problem over the positive numbers) be the minimal integer
such that every P € SAg(q) is a sum of v kth powers.

Let gm(k,F4[t]) = v > 0 be the minimal integer such that every
P e MSAg(q) is a mixed sum of v kth powers.

Some results are known (mainly upper bounds) about these numbers
(and only for & = 3) in the case we deal with here, i.e., when q € {2,4}
for k =3 and g € {3,9} for k = 4:

In 1933, (see [8, 10]) Paley proved that
v(3,F,[t]) <5

for ¢ € {2,4}. Later, in [10, 11], Vaserstein improved the result for
q = 4, respectively for ¢ = 2, to:

v(3,Fgft]) < 4.
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Recently, (see [6]) Gallardo and Heath-Brown (for ¢ = 2) proved that
5 < g(3,F,[t]) <6,
and Gallardo (for ¢ = 4) (see [5]) proved that
9(3,F,[t]) <6.

The actual values of v(3,F,[t]), g(3,F,[t]), for ¢ € {2,4} are unknown.

It is interesting to observe that F, is the only finite field F, for
which the set of sums of cubes in F[t] contains strictly the set of strict
sums of cubes. In [10] Vaserstein characterizes (as a special case) for
any commutative ring A the set A3 of sums of cubes in A in terms
of ring homomorphisms from A to the finite field F4. We show here
that specializing these results to the ring A = Fy[t] we get the set
C(4) described above. See Theorem 1 for details. This set can also
be described (but we do not do it here) in terms of remainders of the
division by the polynomial ¢t* — ¢ by using Paley’s formulae; (these
formulae are in, e.g., [10]).

In this paper we study the analogue problem for biquadrates instead
of cubes.

More precisely, the main object of this paper is to prove, (see the last
section of the paper), the following upper bounds:

(1) U(47 Fq[t]) S 67 fOI‘ q € {379}7
(2) ’U)(4, Fq[t]) S 87 fOI‘ q € {37 9}7
(3) gm(4, Fq[t]) <10, for g € {3,9},
and

(4) 9(4,F[t]) < 14, for g € {3,9}.

Remark 1. Concerning the latter bound: Observe that every element
of F3 and of Fy is a sum of two biquadrates. By using (see [7, Corollary
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1.3]) we obtain only the weaker result g(4, Fy[t]) < 2(4*—2-4>—4+1) =
58, for ¢ € {3,9}.

Some computations are used to get our results. We shall describe the
(simple) algorithms used in the proofs.

The classical method of “descent” used in previous work (see, e.g., [1,
3, 4]) does not work well here (but it is still necessary as a first step of
our new method). We get better results by adapting the method used
for cubes in [5, 6] to biquadrates.

The resulting method (see next section) comes essentially from a
refinement of the (trivial) observation that every element of F, is a
cube when ¢ is a multiple of 3.

We denote by i a root of the (prime) polynomial t? + 1 € F3[t] in a
fixed algebraic closure of F3 so that Fg = F3[i].

All rings are assumed commutative and with 1.

2. Identities and descent. The following lemmas are the keys
in order to obtain our main results. First of all we introduce some
notation:

Lemma 1. Let T be a ring of characteristic 3. Let R = TJt] be
the polynomial ring in one indeterminate t over T. Let L : R — R
be defined by L(y) = y> +y. Let C : R X R — R be defined
by C(r,s) = rs(r? + s%). Let also Ly : R — R be defined by
Li(y) = C(y,t) = v3t + yt®, and let Ly : R — R be defined by
Lao(y) = C(y,t?) = y3t> + yt®. Then L, Ly and Ly are F3-linear
functions.

Secondly, by using the same notations as in Lemma 1 we present
three simple identities that hold when every element of the ground ring
T is a perfect cube (i.e., when T is perfect).

Lemma 2. Let T be a perfect ring of characteristic 3. Let R = T'[t]
be the polynomial ring in one indeterminate t over T'. Let a € T be
written as a = s3 with s € T, and let n > 0 be a non-negative integer.
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One has

(5) at®™ = (at®" + st™) — st™ = L(st™) — st™,

(6) at®™ ™t = (st™)3t 4 (st™)t® — st" T3 = Ly (st™) — st" 3,
and

(1)  at®™ 2 = (st™)?t? + (st™)t® — st" 0 = Lo(st™) — st O,

Let us recall the following identities, the second one being a general-
ization of a formula of Paley (see [8]) for cubes:

Lemma 3. Let T be a ring of characteristic 3. Let R = T'[t] be the
polynomial ring in one indeterminate t over B. Let x,y € R. Then
(i) zy(a® +9%) = (z —y)* — (@ + )™
(ii) y(z® —z) = (2® —y)* + (zy + 1)* — (23 + 9)* — (zy — )™

Our first (key) result is:

Lemma 4. Let n > 0 be a positive integer. Let q = 3", and let
P € F[t] be a polynomial. Then there exist R € Fy[t] with deg (R) <9
and A, Q1, Q2 € Fy[t] such that

(8) P =A%+ A+ Qit(Q3 + %) + Q2t*(Q3 + t*) + R,
where the following condition on degrees holds:

max{deg (A%), deg (Q7t), deg (Q3t*)} < deg (P).

Proof. When deg (P) < 9 we choose A = Q1 = Q2 = 0. While, when
deg (P) > 9 this follows immediately, by induction, from the reduction
formulae of Lemma 2, used to remove the leading term of P, together
with the addition properties proved in Lemma 1. More precisely: We
can collect all terms containing the function L together. Moreover, by
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doing the same for all terms where the functions L;, Lo appear we
obtain the result.

We need the definition:

Definition 1. Let ¢ € {3,9}. We set:

By(q) = {P(t) € Fy[t] | P(r) € F3 for all r € Fy}

and for specific degrees:

Now, a lemma follows concerning memberships of some polynomials
of small degree:

Lemma 5. One has:

(i) B4(3,8) = SA4(3,8) = A4(3,8) = S3. Moreover this set Ss has
exactly 729 elements. Furthermore, every element of Ss is a strict sum
of two biquadrates.

(ii) B4(9,8) = SA4(9,8) = A4(9,8) = Sy. Moreover, every element
of So is a strict sum of two biquadrates.

Proof. A short computation gives immediately the first assertion of
(i). The second assertion follows by applying Lemma 2 to the 729
elements of S3. More precisely the following computer program was
run in order to write a polynomial P € S3 as a (strict) sum of (at
most) two biquadrates:
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reduce all polys of degree <= 8 that are sums of 4

biquadrates in F3[x]

under the forms r**3+r, y**2xx+y*x**3, zZ**3*kx*k*2+z*x**6
observe that now we can take s = a to satisfy a = s**3

while for F9, we took: s = a**3. Accordingly, we have new rules
to get reduced a poly of degree at most 8 in F3[x]

that is a sum of biquadrates:

H HHHEH IR

reduce3 := proc(Po)

local P,Q,lis,a0,al,a2,a3,a4,ab,a6,a7,a8,
b0,b1,b2,b3,b4,b5,b6,b7,b8;

P := Po;

a0 := coeff(P,x,0);

al := coeff(P,x,1);

a2 := coeff(P,x,2);

a3 := coeff(P,x,3);

a4 := coeff(P,x,4);

ab := coeff(P,x,5);

a6 := coeff(P,x,6);

a7 := coeff(P,x,7);

a8 := coeff(P,x,8);

if a8=0 then b8 := 0; fi;

if member(a8,{1,-1}) then b8 := 1; fi;

if not(member (a8,{1,-1,0})) then b8 := a8; fi;

b7 := 03
b6 := 0;
b5 := mods(ab - a7**3,3);

if a4 = 0 then b4 := 0; £fi;

if member(a4,{1,-1}) then b4 := 1; fi;

if not(member(a4,{1,-1,0})) then b4 := ad; fi;

b3 := 03

b2 := mods(a2 -a6,3);

bl := mods(al - a3,3);

if member (a0,{0,1,-1}) then b0 := 0; fi;

if not(member (a0,{0,1,-1})) then b0 := a0; fi;

Q := bO+bl*x+b2*x**2+D3*x**3+bd*x**4+h5*x**5+DO*X**B+bT*x**x7+hB*x**8 ;
end;

We prove assertion (ii) similarly. No attempt was done here to
precompute the (huge) list of all elements of Sg. The computer (an
eighth processor machine) took some time (22408 seconds) to do the
reduction.

The following descent result is key.

Lemma 6. Let n > 1 be an integer. Let q be a power of 3. Let
P € F[t] be a monic polynomial, of degree d = 4n. Then there exist
polynomials A, R € Fy[t| such that:
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(a) P = A*+ R,
(b) deg (A) = n,
(c) deg (R) < 3n.

Proof. Set A = t"+a,_1t" '+ -4a;t+ag with unknown coefficients
a; € Fy. Now fix any ap € F, and choose an_1,...,a1 € Fy in such
a manner that R = P — A* has degree at most equal to 3n. This
results in a soluble system of n — 1 equations in 7 — 1 unknowns. More
precisely, observe that a,_; must equal the coefficient of t?~! in P
(we are working modulo 3). The coefficient of t¢~2 in A* is a sum of
an_2 and a monomial involving a, ;. So, we can compute a, 2. In
general, for i up to n — 2, the coefficient of t¥~(*+1) in A% is a sum
of a,_(i+1) and monomials involving a, 1,...,a,; so that knowing
Ap—1y--- ,dp—; We CAD COMPULE Ay (j41)-

This proves a), b) and c).

We are ready to establish the content of our main sets:

Lemma 7. One has:

(i) Aa(3) = M A4(3) = B4(3).
(i) SA4(3) = MSA4(3) = B4(3).
(iil) A4(9) = M A4(9) = B4(9).

) SA4(9) = MSA49) =

(iv

{P € B4(9) | the leading coefficient of P is in F3}.

Proof. Observe that —1 = 1*41% in F3 so that the set of mixed sums
of biquadrates equals the set of sums of biquadrates. It is also clear
that the A’s sets are contained in the B’s sets. Let P € By(3). Write
P in the form

P=yt® -t)+2

for some polynomials y,z € F3[t], with either z = 0 or deg(z) < 9.
By Lemmata 3 and 5 we obtain that P € A4(3). So we have proved
(i). The other proofs are similar. Just observe that when managing
strict sums we should use Lemma 4, once, instead of Lemma 3. More
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precisely, take ¢ € {3,9}, and take P € By(q) with deg(P) €
{4n,4n — 1,4n — 2,4n — 3}. Assume that P = ct?" + ... for some
c € F,. We distinguish two cases:

Case 1: ¢ = 0. We write P = (—1)t*" + (¢*" + P). Since —1 is a sum
of two biquadrates in F, and since P, = t4" + P is monic of degree 4n,
we get from Lemma 6 that P, = A* + Ry, with deg (Ry) < 3n. Now
apply Lemma 4 to represent Ry as a strict sum of biquadrates plus a
new remainder R3 with degree at most equal to 8. Finally, by Lemma 5
we conclude that P is indeed a strict sum of biquadrates.

Case 2: ¢ # 0. Here we write P = (¢ — 1)t'" + ¢4" + § with S being
the sum all monomials of degree less than 4n that appear in P. By the
preceding argument we see that ¢4 + S is a strict sum of biquadrates.
So, t*"+S € Ba(q). Therefore, the monomial M (t) = (c—1)t*" belongs
also to B4(g). Substituting 1 for ¢ into M (t) we get immediately that
c—1 € F3. Thus, M(t) € {t*",t'" +¢in}. So, P is a strict sum of
biquadrates, thereby finishing the proof of the lemma.

3. The case of cubes. The object of this section is to prove the
theorem:

Theorem 1. Let S = {P € Fy[t] | P(r) € Fy for all v € F4}. Then

C(4) = A3(4) = 8.

Proof. Clearly, C(4) is a subset of S. Take now P € S. We claim that
P € C(4). In order to prove the claim we apply Vaserstein result [9,
Theorem 1] in the special case when k = 3. This reduces the problem
to prove that the following subsets of F4[t] are equal.

A={PeFyt] | h(P)eFyforall hec H}
and

B ={P cFy[t]| h(P) e Fy for all h € K}
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where H = Hom (Fy[t],F4) = {h : F4[t] = F4 | h is a ring homomor-
phism} and K = {evy, ev1, evq, ev,2 } in which ev, € H satisfy ev, (P)
= P(y) for given v € F4. Here we write F4 = Fy[a] in which o? = a+1,
where « lives on some fixed algebraic closure of Fs.

Observe that the multiplicative set J generated by K equals the
subset H; of H formed by the ring homomorphisms that are F4—linear,
ie.,

J={h € H|h=evjevievievl, with a,b,c,d integers > 0}

equals
Hy ={h€ H|his Fy — linear} :

A simple computer program run some milliseconds to establish the
assertion. Moreover, we obtain that J;H and card(J) = 12 <
card (H) = 16. More precisely the following four homomorphisms are
the elements of H\K ={h € H|h ¢ K}: h; : 0 > 0,1 = 1, o — 0,
a2 —=0,t—=0;hy:0—-20,1=1,a—=0,02—=0,t—1;hs:0—0,
1-1,a—=0,a2—20,t—>0o;and hy:0—=0,1—=1, 0 —0,a®—0,
t— o2

It is now clear (since trivially j(P) € Fy for j € J) that it suffices
to prove that h;(P) € Fy for all 7. This is clear for h; and for hs.
From the definition of hs and hy4 it follows that we can assume that
P € Fy[t]. But then h3(P) = evo(P) € F2. Analogously we get that
ha(P) = ev,2(P) € Fa. This proves the claim thereby finishing the
proof of the theorem.

4. The case of biquadrates: Main results. Our first result is

Theorem 2. Let g € {3,9}. Then

v(4, F,[1) < 6.

Proof. Let P € F,[t] to decompose as a mixed sum of biquadrates.
Write

P=y(t—t)+R
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for some polynomials y, R with R of degree < 9. Now, by Lemma 6
the polynomial y(t° — t) is a mixed sum of four biquadrates with two
minus signs. But, from Lemma 5, R is a sum of two biquadrates. The
result follows.

The second result is:

Theorem 3. Let q € {3,9}. Then
w(4,Fy[t]) <8.

Proof. The proof is the same as the proof of Theorem 2. Just observe
that the polynomial y(t° — ¢) is a mixed sum of four biquadrates with
two minus signs, i.e., it is a sum of six biquadrates.

Our third result is:

Theorem 4. Let q € {3,9}. Then
gm (4, F, 1) < 10.

Proof. Let P € F,[t] decompose as a mixed sum of biquadrates.
By Lemmata 6 and 7, we can write P as a strict mixed sum of two
biquadrates plus a remainder R of the right degree. From Lemma 4
together with Lemma 3 we see that R is a mixed sum of six biquadrates
plus a remainder S of degree < 8. But, S is a sum of two biquadrates
by Lemma 5. The result follows.

Our fourth result is:
Theorem 5. Let q € {3,9}. Then

g9(4,F,Jt]) < 14.

Proof. Let P € F,[t] to decompose as a mixed sum of biquadrates.
The proof is the same that of Theorem 4. Observe that at the beginning
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we get P as a strict sum of three biquadrates plus a remainder R of
the right degree. Just observe that we get exactly three minus signs in
the representation of R so that R is a strict sum of nine biquadrates.
So P is a strict sum of 3 + 9 4+ 2 = 14 biquadrates.

Acknowledgments. We thank the referee for fruitful criticism.
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