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ON IRREDUCIBLE POLYNOMIALS OVER Q
WHICH ARE REDUCIBLE OVER F, FOR ALL p

MOHAMED AYAD

ABSTRACT. Examples of polynomials having the property
of being irreducible over Q but reducible over F, for all primes
p are constructed. If some conditions of linear disjointness are
satisfied by two number fields, then any integer generating
the compositum of these fields satisfies this property. We
study the question of whether the above property is preserved
for a given polynomial under translations. It is shown, in
particular, that the polynomial 2™ — naz™~! — b satisfies the
above property, for any even integer n > 4, any integer a # 0
and all but finitely b of the form b = (—1)"/2¢2 —a™(n—1)" "1,
where c is a positive integer.

1. Introduction. Let f(z) be a monic polynomial with integral
coefficients. In order to prove that this polynomial is irreducible over
Q, one may try to find a prime p such that f(x) is irreducible modulo p.
But some authors, the first one being Hilbert, have shown that such a
prime may as well not exist. Lee [13] has shown that if a is a square-free
rational integer neither equal to 1 nor to —1, then the polynomial

f(z) =2* +2(1 — a)z® + (1 + a)?

is irreducible over Q but reducible modulo p for every prime p.

Definition 1. A given monic polynomial with integral coefficients
has the property (P) if it is irreducible over Q but reducible over F,,
for every prime p.

Golomb [8, Theorem 2] proved that the cyclotomic polynomial ¢,,(x)
satisfies (P) if and only if n # 1,2,p*,2p* where p is an odd prime
and k is a positive integer. Indeed, Lee’s and Golomb’s examples are
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instances of irreducible polynomials over Z whose Galois groups are
abelian but noncyclic, and we will explain in Section 2 why in this case
property (P) is satisfied. Brandl [4] has shown that, for any positive
integer n > 1, not prime, there exists a monic polynomial of degree
n satisfying (P). This result was proved again by Guralnick et al. [9,
Theorem 2]. These authors considered in [9] the similar problem of
finding irreducible polynomials over Z but reducible over Q, for all
primes p.

In Section 2, we state some conditions which are equivalent to (P).
Some of them appear explicitly or implicitly in [4] or in [9]. Here we
prove that the minimal polynomial of any algebraic integer generating
the compositum of two number fields, linearly disjoint over Q, and of
noncoprime degrees, satisfies (P). The same conclusion holds if we
replace "noncoprime degrees” by coprime degrees but such that one
of the number fields is not linearly disjoint from the Galoisian closure
of the second one. We also show that if the roots of an irreducible
polynomial are related by a linear relation of noncyclotomial type then
this polynomial satisfies (P), see Definition 3.

In Section 3, we consider the question of whether property (P) is
preserved under translations. It turns out that if h(z) = 2™ — naz™~!
where a is a nonzero integer and n is an even integer > 4, then for all but
finitely many b € Z of the form b = (—1)"/2¢? —a™(n —1)""1, h(z) —b
satisfies (P). Furthermore, we show that there exist infinitely many
numbers fields of degree n, generated by trinomials ” — naz™ ' — b
which satisfy (P). There exist as well infinitely many b € Z such that
h(z) — b is irreducible over Z but does not satisfy (P).

2. New examples. Before stating properties equivalent to (P) we
make the following definition.

Definition 2. Let K be a number field, and let f(z) be a monic
polynomial with integral coefficients, irreducible over Q. We say that
[ generates K, and we write K = Q; if K = Q(«a) for some root « of

f(z).

Proposition 1. Let K be a number field of degree n, and let f be
such that K = Q. Then the following conditions are equivalent:
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(i) No rational prime is inert in K.

)
(i) Any polynomial g such that K = Qg satisfies (P).
)

(iii) f satisfies (P).
(iv) Gal(f(z), Q) contains no cycle of length n.

(v) For all but finitely many p, f(x) is reducible over Q.

Proof. (i) = (ii). Let p be any prime number. Let g(z) be a
polynomial such that K = Qg, and let p be a root of g(r) in K.
If p does not divide the index of u, then by [15, Chapter 3, Theorem
27], g(z) is reducible modulo p. If p divides the index of p, then p
divides the discriminant of g(z), so g(x) is reducible modulo p in this
case also.

(if) = (iii). Clear.
(iii) = (iv). See [20, Chapter 8.10].

(iv) = (i). Suppose that there exists some rational prime inert in K.
Let N be the normal closure of K over Q, and let G be the Galois group
of N/Q. LetP be a prime ideal of N lying over p, and let ¢ = ¢(P/p)
be the Frobenius automorphism. Let H = Gal (N/K). Since p is inert
and since the action of ¢ on the set of the roots of f is similar to the
action of ¢ on the set of the right cosets of the elements of G modulo
H, then ¢ acts as an n-cycle and G contains an n-cycle.

(i) & (v). Let €2 be the set of rational primes p such that (p) = P¢,
where P is a prime ideal in K and e is an integer > 2. It is
known that if the decomposition of a rational prime p has the form
(p) = P;* --- P then the factorization of f(xz) in the p-adic field Q,, is
given by f(z) = fi(z) - - - fr(x), where the polynomials fi(z),..., f-(z)
are irreducible over Q, and deg f; = e;deg ;. Hence, the equivalence
follows if one excludes the finite set (2.

Proposition 2. Let f(x) be a monic polynomial irreducible over Q,
0 be a root of f and G be its Galois group. Suppose that K(0) is the
splitting field of f (this happens for example when G is abelian). Then
f satisfies P if and only if G is noncyclic.

Proof. The proof follows easily from (iv) of Proposition 1. o
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Remark. Let K and L be number fields such that K C L, and let
f(z) and g(x) be polynomials such that K = Q; and L = Q,. By (i)
of Proposition 1, if f satisfies (P), then g satisfies (P).

Suppose that the Galois group of the irreducible polynomial f(z) of
degree n is the alternating group and that n is even. Then by Propo-
sition 1 (iv), f(z) satisfies (P). One can find parametric polynomials
whose Galois group is A, in [14, page 74] or [19, page 44].

Theorem 1. Let f(z) and g(z) be two monic polynomials with
integral coefficients. Let 8, m (§, n) be the root and degree of f(z) and
g(z), respectively. Suppose that f(z) and g(x) are irreducible over Q
and that the fields Q(0) and Q(¢) are linearly disjoint over Q. Suppose
furthermore that one of the following conditions holds:

(i) ged (myn) > 1.

(ii) ged (m,n) = 1 and the splitting field of g(x) is not linearly
disjoint from Q(0) over Q.

Let v be an algebraic integer which is a primitive element of Q(6, @),
and let h(z) be its minimal polynomial over Q. Then h(z) satisfies the

property (P).

Proof. Write v in the form
v=7'/d=u(,¢)/d,

where 7' is an algebraic integer, d is a rational integer and u(z,y)
is a polynomial with integral coefficients. By Proposition 1 (ii), we
may replace v by 7' and thus suppose d = 1. Fix a prime p and
denote as usual by u(z) the reduced polynomial of u(z) modulo p. Let
O1,-..,0,, respectively ®,... , ®,,, be the roots of f(z), respectively
g(x) in an algebraic closure of F,,, and let d = gcd (m,n). Suppose
first that we are in the case (i). Set 71 = w(©1,P1). Since 11 is a
root of h(z), the minimal polynomial of v; over F,, divides h(z). Since
©, € Fpmi and ®; € Fpny, where 1 < m; < mand 1 < n; < n,
we deduce that 7; € Fpmi . Fyny = Fpr where k = lem (my,ny). If
my < morny <n,then k <min; < mn. If m; = m and ny = n, then
k =lcm (m,n) = mn/d < mn. In all cases we have k < mn; hence, the
minimal polynomial of y; over F, is of degree smaller than mn. This
implies that h(z) is reducible over F,,.
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Suppose now that we are in the case (ii). We have [Fp(®1) : F,] < n.
Let E be the splitting field of g(z) over Q, and let f;(x) be the minimal
polynomial of § over E. Then deg f; < m. Reducing modulo p, and
writing each ®; as a polynomial in ®; with coefficients in F,, shows
that [F,(®1,01) : F,(®1)] < m; hence, h(z) is reducible over F,,.

Example 1. Let f(z) = 2® — 2 and g(x) = 2% + 2 + 1. Then these
polynomials satisfy the conditions of Theorem 1, case (ii).

Example 2. Let f(z) = 22 — 2, g(z) = 2> —z + 1 and a be a
root of f, let 8 be a root of g and let v = af. Then 7 is a root of
h(z) = 25 — 4z* + 422 — 8, but h(z) does not satisfy (P), since it is
irreducible modulo 3. Here the splitting field of g(z) is linearly disjoint
from the field generated by a root of f(z). The same assertion is true
if we permute f(z) and g(z).

It is easy to find examples satisfying case (i) of Theorem 1 (see
Corollary 2 hereafter).

From Theorem 1 we deduce the following corollaries. The second one
produces examples similar to those of Lee.

Corollary 1. Consider the polynomial

h(x) = Resy(f(y),g(x o y))a

where the polynomials f(x) and g(z) fulfill the conditions of Theorem 1
and Res, denotes the resultant with respect to y. Then h(z) satisfies

property (P).

For the proof of Corollary 1 we need the following result of Isaacs
[11].

Lemma 1. Let F be a field of characteristic 0, and let F(y) and F(f)
be algebraic separable extensions of F' of degrees n and m, respectively,
such that [F(v,8) : F] = mn. Then v+ (3 is a primitive element of

F(v,B).
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Proof. See [11]. The author in [11] assumes that (m,n) = 1 but he
uses only the fact that [F(8,7) : F] = mn. He also proved this result
for fields of characteristic p > 0 under some conditions. One can also
consult [5, 6]. O

Proof of Corollary 1. Let oy, ... ,aun,, respectively By, ..., Bn, be the
roots of f(z), respectively g(x), and let v = a; + 3;. By Lemma 1, v is
a primitive element of Q(ay,8;1). Let h(z) be the minimal polynomial
of 7. Then by Theorem 1 this polynomial satisfies property (P). We
can express this polynomial via the resultant as follows:

(z—a; — Bj) = | [ 9(= — ai) = Resy (f(y), 9(z — v).

m n
=1 i=1

o - [1]

i=1j

Corollary 2. Let a and b be distinct square-free rational integers,
not equal to 1. Then the polynomial

h(z) = 2* — 2(a + b)z* + (a — b)?

satisfies property (P).

Proof of Corollary 2. Apply Corollary 1 to f(z) = 2% — a and

g(z) = 2% —b. If one puts b = —1 one recovers Lee’s examples. Setting
a+b= —a' and a — b =V, one finds Hilbert’s examples mentioned in
[9]. O

Definition 3. Let f(x) be a monic irreducible polynomial with
rational coefficients and let aq,...,a, be its roots. These roots are
said to be linearly related if there exist coefficients a1,... ,a, € Z, not
all zero such that a;aq + -+ 4+ ana, = 0. The linear relation is said to
be of cyclotomial type if the polynomial p(z) = a; +asz+---+ap,z" !
is not coprime with ™ — 1.

Example. Let K/Q be a cyclic extension of degree n, and let « be
a primitive element of K. It can be shown that o generates no normal
basis of K/Q if and only if there exists a linear relation between the
conjugates of « of cyclotomial type [2, ’enoncé 7. 2].



ON IRREDUCIBLE POLYNOMIALS OVER Q 1383

Proposition 3. Let f(z) be a monic irreducible polynomial with
rational coefficients of degree n, and suppose that its roots satisfy a
linear relation of non-cyclotomial type. Then f satisfies (P).

Proof. Suppose the contrary. Then the Galois group of f contains
a cycle o of length n. Suppose that the roots ag,...,a, are labeled
such that o = (a1,...,a,). Suppose that the roots of f satisfy the
linear relation: a;a; + --- 4+ apa, = 0, where a4, ... ,a, are integers
not all zero. Applying successively o, ... ,0™ ! to this relation we get
the following system of homogeneous linear equations:

a1 + asas + -+ + apa, =0
a,a1 + a1as + -+ ap_10, =0

The determinant of this system is known as a circulant determinant.
Its value is given by A = P(¢&;) ... P(&,), where P(z) = a; +asz+---+
anz™ ' and &;,...,&, are the roots of ™ — 1. Since this system has
a non trivial solution, then P(z) has a common root with z” — 1 and
the linear relation is of cyclotomial type contradicting our hypothesis.

The converse of this proposition is false. One can see this by taking
an algebraic integer with zero trace whose minimal polynomial satisfies
(P). Here is a “less trivial” example. Let f(z) = z* — 222 + 9 whose
roots are ooy = ¢ + \/5, Qo = —Qp, Q3 =1 — V2 and a4 = —ag. Then,
by Corollary 2, f(x) satisfies (P) and the relation as + a3 = 0 is linear
of cyclotomial type.

3. Perturbing the constant term of a polynomial. Letting
f(z) be a monic polynomial with integral coefficients, we look at the
values of t* € Z such that f(z) — t* satisfies or does not satisfy the
property (P). We will need the following:

Lemma 2. Letn > 4 be an even integer. Let a € Z \ {0} and
e € {—1,1} be fized. Then the Diophantine equation:

2

ex? —a"(n—1)""' =y" —nay" !

has at most a finite number of integer solutions (z,y).
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Proof. The Diophantine equation may be written in the form:
®=e(y" —nay" ' +a"(n—1)""").

Suppose first that n > 4. Simple calculations of P’'(y) and P"(y) show
that P(y) has only one multiple root. Namely, y = (n —1)a is a double
root of P(y). So P(y) has at least 3 distinct roots if n > 4. By a
well-known result of Siegel the equation has a finite number of integer
solutions [17, Theorem 3, Chapter 28]. Suppose now that n = 4. The
Diophantine equation takes the form:

z? = E(y4 — day® + 27a4) =e(y — 3a)2((y +a)? + 2a2).

Since the conclusion of Lemma 2 is evident if ¢ = —1, we suppose now
that ¢ = 1. This equation implies that (y + a)? + 2a% = 2? is a square,
hence (z —y — a)(z +y +a) = 2a*>. We deduce that z —y —a = d; and
2z 41y +a = dg, where dy, do are divisors of 2a2 and didy = 2a%. We
conclude that y = (dy 4+ d2)/2 — a and that the Diophantine equation
has a finite number of solutions in the case n = 4. O

Lemma 3. Let m and n be positive integers, relatively prime such
that n > m + 1 and let f(z) = 2™ + az™ + b, where a,b € C, a # 0.
Then f(x) is (functionally) indecomposable over C.

Proof. See [1, Theorem 2] or [18, Lemma 1, Chapter 3] for a more
general result. |

Lemma 4. Let h(z) be a nonconstant polynomial with rational
coefficients of degree not equal to 5. Suppose that h(z) is (functionally)
indecomposable. Let

R={te€Z, h(z)—t is reducible over Q}.
Then R = h(Z) U A, where A is a finite set.

Proof. See [7]. O

Theorem 2. Let f(z) be a monic polynomial with integer coeffi-
cients. Then there exist infinitely many t* € Z such that f(z) — t* is
irreducible over Q and does not satisfy (P).
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Let h(z) = 2™ — naz™ !, where a is a nonzero integer and n > 4 is
an even rational integer. Then, for all but finitely many t* € Z of the
form t* = (=1)"/2¢? — a™(n — 1), where c is a positive integer, the
polynomial h(x) — t* is irreducible over Q and satisfies (P).

Proof. Let F(t,x) = f(z) —t, and let 6 be a root of F in Q(t). Let
be a primitive element for the splitting field ¥ of F(t, z) over Q(t), and
let ﬁ(t, x) be its minimal polynomial over Q(t). Let 71, ... ,yn be the
conjugates of v over Q(t). Set 8 = P(t,~)/S(t) and ~; = P;(¢t,v)/Si(t)
fori=2,...,N, where P and P; € Z[t,z] and S, S; € Z[t]. Consider
the set A of rational integers ¢* such that F (t*,z) is irreducible over
Q, S(t*) # 0 and S;(t*) # 0. By Hilbert’s irreducibility theorem, the
set A is infinite and Gal (F(t*,z), Q) = Gal (F(t,z), Q(¢)). It is known
that this last group contains an n-cycle [18, Lemma 6, Chapter 1.5].
Moreover, since S(t*) # 0, then f(z) — ¢* is irreducible over Q. The
conclusion relative to the property (P) follows from Proposition 1 (iv).

To prove the second part of the theorem, we first compute the
discriminant D(H(t)) of the polynomial H(t,z) = h(z) — t as a
polynomial in . We have:

H n n—

Res, <%—,H> =n"(—t)"*[((n — 1)a)" — na((n — 1)a) ' t]

i
— (7l)n71nntnf2 [an(n o l)nfl + t].
It follows that

D(R)(t) = (=1)"*n"t""[a" (n — 1)" 7" +1]
= en™t" 2 [a" (n — 1)t 4],

where £ = (—1)"/2. Let
B={t"€Z\{0}, t* =ec® —a"(n—1)"""! for some integer c}.

Then D(H(t*)) = n"t*™ 2c%. We deduce that D(H(t*)) is a nonzero
square and so Gal (H(t*,z),Q) is contained in the alternating group
for any t* € B. We show that, for all but finitely many t* € B, H(t*, z)
is irreducible over Q. Let C be the set of rational integers t* such that
H(t*, z) is reducible over Q. By Lemma 3, h is not the composition of
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two polynomials of degree > 2. Since degh # 5, we can apply Lemma 4
and then get C = C; U h(Z), where C} is a finite set. By Lemma 2,
BN h(Z) is finite. Hence, B\ C is infinite and the conclusion of the
theorem follows by Proposition 1 (iv). o

Consider the set A of (a,b) € Z?2 such that the polynomial flap () =
2" —naz™ ' — b satisfies (P). For any (a,b) € A, let K, ;) be the field
generated by some root of f(, ). From Theorem 2, A is infinite, but it
is not clear whether the family of number fields (K (4 5))(4,5)ca contains
infinitely many distinct fields.

Conjecture. Let F be a field (of characteristic 07), and let fi(x)
and fo(x) be monic and irreducible polynomials over F of the form:

filz) =z" — a1zt — b and fo(z) =" — asz™ ! — by,

where n > 5. Then there exists a root 01 of f1, respectively 02 of fa,
such that F(01) = F(02) if and only if 02 = A0y for some X\ € F.

It seems that this conjecture is true (see [3] for some contribution
toward this conjecture). Although this conjecture is not proved, it is
however possible to get the following:

Corollary 3. For any even integer n > 4, there exist infinitely
many number fields of degree n generated by trinomials fiqp)(z) =
z" —naz" ! — b which satisfy (P).

For the proof of this result, we will use the following auxiliary lemmas.

Lemma 5. Let n be an even positive integer. Set d = (—1)"/?(n —
)"t Let

Y ={p € Z, p odd prime, such that d is a square
inF, and ptn— 1}
Then Y is infinite.

Proof. Note that d is not a square. Consider the rational primes p
which decompose in the quadratic field Q(v/d). o



ON IRREDUCIBLE POLYNOMIALS OVER Q 1387

Lemma 6. Let p be a prime number, K a number field, 8 an algebraic
integer of K, primitive over Q, and let f(x) be its minimal polynomial.
Suppose that

f(@) = fi(@) - fr(z) (mod p),

where f1,...,fr are monic polynomials with integer coefficients irre-
ducible over Fp,. Write f(x) in the form:

f(x) = fu(z)® - fr(2)* + pg(z),

where g(x) is an integer polynomial. Then p divides the index of 0 if
and only if fi(x) | g(z) for some i € {1,... ,r} with e; > 2.

Proof. [10, art. 95, pages 172-175].

Proof of Corollary 3. We keep the notations introduced in Lemma 5
above of d and Y. We show that the family of number fields
(K(a,b))(ab)ea contains infinitely many which are distinct.

Step 1. We show that for any p € Y there exists an (a,b) € A such
that p | b and p? 1 b.

Let p € Y (hence p is odd). Let ¢ be a primitive root of unity
modulo p2. Since d is a square modulo p, it is a square modulo p?,
hence d = ¢* (mod p?) with k even. Let a, and c, be integers such
that a, = (7, ¢, = ¢* (mod p?), where j, i are integers, j arbitrary and
i=k/2+ jn/2+4 (p—1)/2. Set b, = (—1)"/2(cZ — dal). It is easy to
verify that b, = 0 (mod p), but b, Z 0 (mod p?).

Step 2. Apply Lemma 4. Let f(o,s,)(2) = 2" — napa™* — by, and
let 0, be a root of f(q, 5,). Write f(,,s,) in the form fi, , \(z) =
z"~Y(z — na,) — p(bp/p). We see by Lemma 6 that p does not divide
the index of 6,. On the other hand, the discriminant of 8, is given by
D(6,) = n"by~2cZ (see the proof of Theorem 2). It follows that there
are infinitely many primes, each of them ramified in some number field
belonging to the family (K (qp))(a,5)ca, and the proof of Corollary 3 is
complete. ]
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Remarks. Notice that in the examples of polynomials f(x) satisfying
(P), constructed in [4, 8, 9, 13], Gal (f(z), Q) contains no element of
degree n, hence no n-cycle. This appears directly from the examples
or from their proofs. For our examples, we have proved that the Galois
group of h(xz) — t* is contained in the alternating group operating on
a set of n elements. It is clear that, if n is a power of 2, then the
alternating group, hence also the Galois group, contains no element of
order n. If n is even and at least equal to 10, but not a power of 2,
set n = m2°. Choose in the alternating group a permutation which is
a product of 3 disjoint cycles of respective orders: m, 2° and 2, then
this permutation has order n. But it is not clear whether or not our
Galois group contains an element of order n. It might be interesting
to construct examples of polynomials with property (P) having odd
degree or having Galois groups containing elements of order n but no
n-cycle.

If one has in mind to prove that some polynomial f(z) is irreducible
over Q, and if f is reducible modulo all primes p, one may try to use
the criteria proposed in [16, Chapter 1, Theorem 1.8.1].

Acknowledgments. The author is indebted to the referee for
suggesting some corrections.
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