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THE RATLIFF-RUSH CLOSURE OF
INITIAL IDEALS OF CERTAIN PRIME IDEALS

IBRAHIM AL-AYYOUB

ABSTRACT. Let K be a field, and let mg,... ,m, be an
almost arithmetic sequence of positive integers. Let C be a
monomial curve in the affine (n + 1)-space, defined paramet-

rically by zg = t™0,... ,xp, = t™n. In this article we prove
that the initial ideal of the defining ideal of C is Ratliff-Rush
closed.

The Ratliff-Rush closure. Let R be a commutative Noetherian
ring with unity and I a regular ideal in R, that is, an ideal that contains
a nonzero divisor. Then the ideals of the form I"*! : " = {z € R |
xI™ C It} give the ascending chain I : [© C 12 : [' C -.- C I" :
I"1 C ... Let us denote

I= mtimy.
ngl( )

As R is Noetherian, I =17 I" for all sufficiently large n. Ratliff
and Rush [8, Theorem 2.1] proved that I is the unique largest ideal
for which (I)® = I™ for sufficiently large n. The ideal I is called the
Ratliff-Rush closure of I, and I is called Ratliff-Rush closed if I = I.
It is easy to see that I C I and that an element of (I" : I"*1) is an

integral over I. Hence, for all regular ideals I,
ICICICVI,

where T is the integral closure of I. Thus, all radical and integrally
closed regular ideals are Ratliff-Rush closed. But there are many ideals
which are Ratliff-Rush closed but not integrally closed. For example,
the ideal I = (z2,y?) C k[z,y] is clearly not integrally closed as zy € I.
Note that if (zy) I" C I"*! for some n, then by the z-degree count we

must have (zy) (y2)n € (yz)n+1 which contradicts the y-degree count.
Hence xy ¢ 1. As I C I = (a2, zy,y?), then I is Ratliff-Rush closed.
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Rossi and Swanson [9] examine the behavior of the Ratliff-Rush
closure with respect to some properties such as the Ratliff-Rush closure
of powers of ideals. They established new classes of ideals for which all
the powers are Ratliff-Rush closed. They also show that the Ratliff-
Rush closure does not behave well under certain operations, such as,
taking powers of ideals, leading terms ideals, and the minimal number
of generators. They present many examples illustrating the different
behaviors of the Ratliff-Rush closure.

As yet, there is no algorithm to compute the Ratliff-Rush closure for
regular ideals in general. To compute U, (I"*! : I™) we need to find
a positive integer N such that U, (1"t : [") = [N*! : IV, However,
It [m = [7+2; "t does not imply that I*+1 : [? = 3 [n+2
(see Example 1.8 in [9]). Several different approaches have been used
to decide the Ratliff-Rush closure; Heinzer et al. [4] established that
a regular ideal I (and also every power of I) is Ratliff-Rush closed if
and only if the associated graded ring, gr7(R) = ®n>0l"/I"T!, has a
nonzero divisor (has positive depth). Elias [3] established a procedure
for computing the Ratliff-Rush closure of m-primary ideals of a Cohen-
Macaulay local ring with maximal ideal m. Al-Ayyoub [2] produced
an algorithm for computing the Ratliff-Rush closure of (z,y)-primary
ideals in the polynomial ring Kz, y] with K a field.

From the definition, it is clear that the Ratliff-Rush closure of a
monomial ideal is a monomial ideal, and this makes some computations
easier. The following two theorems and proposition serve us as a
technique to compute the Ratliff-Rush closure of the monomial ideals
of interest in this article.

Lemma 1.1 [4, Property 1.7]. Let R, S be Noetherian rings. Assume
R is a faithfully flat S-algebra and I C S an ideal. Then R is Ratliff-
Rush closed in R if and only if I is Ratliff-Rush closed in S.

Proof. The proof follows directly from Theorems 7.4 and 7.5 of [5]. O

In the proof of the main theorem of the paper we need the following
proposition which is a special case of the above lemma.
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Proposition 1.2. Let R = Klzg,... ,z,] and S = K[zo,... ,Zp]
with m < n where K is a field. Let I C S be an ideal. Then R is
Ratliff-Rush closed in R if and only if I is Ratliff-Rush closed in S.

Theorem 1.3. Let I be an ideal in the polynomial ring R =
Kzo,... ,z,] with K a field. Letr > 1. If I is primary to (2., ... ,2,)
and IN(I:(xp,...,2,)) C 1, then I is Ratliff-Rush closed.

Proof. Assume I is not Ratliff-Rush closed. Let m be an element such
that m € I\I. As I is primary to (z,...,x,), then there exists an
integer k such that (x,,...,z,)* C I. In particular, (z,,...,2z,)'m C
I for some [. Choose [ > 1 the smallest possible such integer. Then
(Trsooos@n)™tm € I. Let m' € (xy,...,2,)""' be a monomial
such that m'm ¢ I. Then (z,,... ,z,)m'm C (@,,...,z,)'m C I.
Thus, m'm € I : (x,...,x,) and m'm € I as m € I. Therefore,

m'm e TN : (@r... z,))\]. a

The defining ideals of certain monomial curves. Letn > 2, K a

field, and let xo, ... ,Z,,t be indeterminates. Let mg,... ,m, be an al-
most arithmetic sequence of positive integers, that is, some n—1 of these
form an arithmetic sequence, and assume ged(mo,...,m,) = 1. Let
P be the kernel of the K-algebra homomorphism 7 : K|zg,...,z,] —

K|t], defined by n(x;) = t™i. A set of generators for the ideal P was
explicitly constructed in [7]. We call these generators the “Patil-Singh
generators”. Al-Ayyoub [1] proved that Patil-Singh generators form a
Groebner basis for the prime ideal P with respect to the grevlex mono-
mial order using the grading wt (z;) = m; with zg < z; < -+ < z,, (in

this case
n n
a; bi
H Zz; >grev1ex H xZ;
i=0 =0

if in the ordered tuple (ag—bo, a1 —b1, ... ,a,—by,) the left-most nonzero
entry is negative).

We first introduce some notation and terminology that [7] used in
their construction of the generating set for the ideal P. Let n > 2 be an
integer, and let p = n—1. Let my,... ,m;, m, be an almost arithmetic
sequence of positive integers and ged(mg, ... ,my) =1,0<my < -+ <
my, and m, arbitrary. Let I' denote the numerical semi-group that is
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minimally generated by my,... ,mp, my, ie., I' = Z?:o Nom; where
No =NU{0}. Put I'" =Y /Nom; and I' = I" + Nom,,.

Notation 1.4. For ¢,d € Z let [e,d| ={t € Z | ¢ < t < d}. For
t>0,let g €Z,rs €[1,p] and g; € I'be defined by ¢ = ¢;p + r¢ and
gt = qityp + my,.

Let S ={y eI |~y—mg ¢TI} The following is a part of Lemma
(1.6) given in [6] that gives an explicit description of S.

Lemma 1.5 [6, Lemma 1.6]. Let v = min{t > 0 | g ¢ S}
and v = min{b > 1 | bm,, € I'}. Then there exist unique integers
wel0,v—1],z€[0,u—1], A\ >1, p >0, and v > 2 such that

(i)
(i) vmy, = pmo + g

(iii)

Ju = Amg + wimy,

A+p+1)mg ifry , <ry;

Ju—z + (U - w)mn = { ()\ +'u) mo if 7y L > T

Notation 1.6. Let ¢ = q,, r = r,. For the rest of this article the
symbols ¢, r, u, v, w, z, A and p will have the meaning assigned to them
by the lemma and the notations above.

Let
0 ifr>ry
£ =
1 ifr<r,,

We state Patil-Singh generators as follows:

Y = xH_rmg — xé_lxixz, for 0<i<p-—r;

— A-"-[.L—E .
n = xzj, for je

[07(1_€)p+7'z_r];

_ =Gz
Vj = Tepyr—r.+jTp © T

— U LM q
0=z, —zgz, Ty

Qij = Ti%j — Ti—1%j+1 for 1<i<j<p-1L
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Theorem 1.7 [1, Theorem 2.11]. The set {p; |0 <i<p—r}u{d}U
{aij |1<i<j<p-1}U{; |0 < j<(1—e)p+r.—r} forms
a Groebner basis for the ideal P with respect to the grevlex monomial
order with xg < 1 < -+ < &, and with the grading wt(x;) = m;.

The main result. In this section we prove that the initial ideal
in P, of the defining ideal of the monomial curves introduced above, is
Ratliff-Rush closed. The previous section states a Groebner basis for
the defining ideal P with respect to the grevlex monomial order with
the grading wt (z;) = m; with g < 1 < -+ < @,. Therefore, in P is
generated by the following monomials

zixd, for i€lrp|;

zjzh =", for j€lep+r—rs,p];
2,

Z;Tj, for 1<i<j<p-1

Now we state the main result of the article.

Theorem 1.8. Let P be the defining ideal of the monomial curves
as defined before. Then the ideal in P is Ratliff-Rush closed.

Here is an outline for the proof of Theorem 1.8: from the gener-
ators above, it is clear that the monomial ideal in P is primary to
(®1,...,2s). Therefore, we can use Theorem 1.3 to prove that (in P) R
is Ratliff-Rush closed in the polynomial ring R = Klz1,...,2,], and
hence by Proposition 1.2, Ratliff-Rush closed in the polynomial ring
Klzg,... ,z,]. In order to establish the details of this outline, we need
to compute (in P : (z1,...,2y))/in P. The following proposition is the
first step in doing so.

Proposition 1.9. With notation as before, then
(inP: (x1,...,2p_1))/in P = (T1,... ,Tp_1),

where T; 1s the image of x; in the ring R/in P.
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Proof. Let A\ = min{r,ep+r — r.}, and let 0 = max{r,ep +r — r,}.
Note that (in P : (2;))/in P = (Z1,... ,Zp-1) for 1 <i< A, and (in P :

(z:))/in P = (Z1,...,Tp 1,ex}, (1 — )z} =7, ") for A < i < 0.
Also note that (in P : (z;))/in P = (T1,... ,Tp 1, Zp, T4 == ~°x, ") for
0 < i < p—1. Hence, it follows that (inP : (z1,...,Tp—1))/inP =

W (nP: (z))/inP = (F1,... ,Tp_1). O

Notation 1.10. To simplify notation, in the sequel if a monomial
happens to have an indeterminate with a negative exponent, then that
monomial is treated as 0. For example, =] 2x3 + 23 — z13 is ©3 — x123.

Proposition 1.11. Let p = n — 1 as before, then (inP
(x1,.-.,2p))/iInP is minimally generated in Klxq,...,x,|/iInP by
Tzl |1<i<r-1}u{zzl ' |r<i<p-1}U{zzl &z, " |
1< < 6p+1"71"zfl}U{Eﬁg*qZ’“lfff’” lep+r—r, <i<p-—1}.

Proof. We need to compute (ﬂf;ll(inP : (:ci))/inP) N (inP
(zp))/inP. Note that (inP : (xp))/in P is minimally generated by
the following set of monomials

—q—q-:—€e—1zv—w
X z Ty, .-

- =q—q:—€e—1Zv—w =q—q.:—emv—w
{meerrfrz p Z, z x » Ty =Tz, }

<3 Tpo1 n

= 7q—1 = =a—1 =q
U {xrxp e 1 Tp_1Ty ,acp}.

As the intersection of two monomial ideals is generated by the least
common multiple of the monomial generators of each of the two ideals,
then the proposition follows by Proposition 1.9. u]

We next compute (inP : (z,))/in P . For the sake of notation we
do so in two cases. Also, at the same time we will prove Theorem 1.8
for each of these cases separately. With the notation from the previous
section, consider the following two cases. Case 1: ¢ > 0 or ¢, > 0, and
Case 2: e =¢q, = 0.

Casel: € > 0 orq, > 0. In this case in P is generated by the following
set of monomials
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Ty, for r<i<p;

zjxl” ", Y, for eptr—r. <j<p;
x,,

z;ixj, for 1<i<j<p-1.

Therefore, (in P : (x,,))/in P is minimally generated by

{Zppr_r. @m0 BT
U {fgfqueJrlfszfl}
u{zy '}
As the intersection of two monomial ideals is generated by the least
common multiple of the monomial generators of each of the two ide-
als, then by Proposition 1.11 it is straightforward to compute that
inP : ((z1,...,2n))/InP = (N4 (inP : (z;))/inP = (M_;(inP :
(x;))/in PN (in P : (z,))/in P is generated by the monomials in the set
o UX, where o = {fﬁg"h’s’lfz’l |ep+r—r, <i<p-—1}and X
consists of the following monomials

Ty for 1<i<r—1;

= 7= 1zv—w—1 : .
0q.0TiTy T, , for r<i<ep+r-—r,—1;
fﬁg*lfz*w*l, for ep+r—cer,<i<p-—1;

Eﬁg_q_f , for 1<i<ep+r—r,—1.

Therefore, the preimages of the monomials in ¢ U X are the only
monomials in (inP : (x1,...,2,))\InP in the ring Kzy,...,2,].
By Theorem 1.3 we prove that in P is Ratliff-Rush closed by show-
ing that none of these monomials belongs to the Ratliff-Rush closure
in P of in P. We show this separately for the monomials in ¢ and the
monomials in X. First, assume zﬁg*%*sflzgfl € p is in in P for
ep+1r—r, <i<p-—1 Then, by the definition of the Ratliff-Rush
closure, we must have T;z1~%"°"'z5 " (2?)™ € (in P)™*! for some

m > 1. By degree count for z,, and x,, we must have

7571§v71

may i e e @)

a contradiction by the x; degree count.
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Now assume that z;2%z? is a monomial in X (¢ < g and b < v)

p n
such that z;z%z? € in P. Then z;z%z’ (z2)™ € (inP)™*! for some

pon pon
m > 1. By =z, and xz;-degree count for 1 < ¢ < p — 1, we must

have w2m+1w“a:b € (i>ri®l, Oi>eptr— szlxq_qz_ex“_w)mﬂ. Note if

= ¢ then we must have ¢ < r; thus, aczmﬂmgmb E ((5,>Ep+r r.Ti

a:q : =gt~ w)mHtl - Assume a < q. Then z}""'2%b ¢ (6;>,zi2l);

hence x2m+1 020 € (Sisepyrr, Tl 9= Ty “’)mH. In either case it
implies that 3 2 ep+1r—r, and b > v — w. But there are no such

monomials in X.

Case 2: € = g, = 0. In this case in P is minimally generated by the
following set of monomials

T Ty, for r<i<p;
rjzie,” ", for r—r,<j<r-1
22,

Z;Tj, for 1<i<j<p-1

Therefore, (in P : (x,,))/in P is minimally generated by

{Z, 2y mE o {z )
By Proposition 1.11 it follows that inP : ((z1,...,2,))/inP =
(NP, (inP: (x;))/inP = (NE_;(inP: (z;))/in PN (inP : (z,))/in P is
generated by the monomlals in the set ¢ UX, where ¢ = {Z;7}~ lgo—1|
r—7r, <i<p-—1} and X consists of the following monomlals

Fqv—1 ; .
TiTpTy, s for 1<i<r—r,—1;
—q=v—w—1 - .
TiTLT, , for r—r,<i<r—1;

Therefore, the preimages of the monomials in ¢ U X are the only
monomials in (inP : (x1,...,2,))\in P in the ring K[zy,...,2,]. By
Theorem 1.3 we prove that in P is Ratliff-Rush closure by showing
that none of these monomials belongs to the Ratliff-Rush closure
inP of inP. We show this separately for the monomials in ¢ and
the monomials in X. First, assume z;7}~ lzv=1 € pis in in P for
r—r, <i<p-—1. Then, by the definition of the Ratliff-Rush closure,
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we must have z,;zg~ %'z, (z7)™ € (in P)™*! for some m > 1. By
degree count for x), and ,, we must have Z,z¢ 'z ! (z7)™ € («7)™*,
which is a contradiction by the z; degree count.

b is a monomial in X (b < v) such that

xiachfb € inP. Then xixgxlfl (z2)™ € (inP)™*! for some m >

1. By =z, and z;-degree count for 1 < i < p — 1, we must have
x?mﬂmgmg (Oi>r@ixl, Oi>r—r, T mgm};_w)m“. Note we must have
; . 2m+1 b - 1 .. .

1 < r; thus, :cim"' zlzy, € (Or—r,<i<r—1%; zizy wym+l " This implies
r—r,<i<r—1and b>v— w. But there are no such monomials in

X.

Now assume that z;ziz
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