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GRAPH DOUGLAS ALGEBRAS

BENTON L. DUNCAN

ABSTRACT. We develop a notion of Douglas algebras for
the free semi-groupoid algebras arising from directed graphs.
We analyze two extreme examples of the structure of such
algebras, the first coming from the graphs with a single vertex,
the second coming from cycle graphs. In the first example we
demonstrate a lack of algebraic structure while in the second
example we completely describe the Douglas algebras.

1. Introduction. The non self-adjoint operator algebras associated
to directed graphs are often viewed as noncommutative generalizations
of the algebra H*°. In particular, there are many results which
extend the classical results about H* to the directed graph framework,
including for example: a Beurling type theorem [11], a functional
calculus [10] and interpolation results [8].

This paper is a general discussion of the notion of Douglas algebras
for directed graph operator algebras. It takes its shape, primarily, as a
presentation of two classes of examples at opposite extremes of results
we might hope for from the commutative context. The first class of
examples consists of the algebras £,, arising from the graph with a
single vertex and n directed edges. For the second class of examples we
discuss the cycle graphs.

The starting points for this article are a pair of results on the spaces
of the form H* + C(T) in the context of directed graphs. The first
comes from [4] where in a discussion after Lemma 1.11 an analogue
of the space H* + C(T) in the context of L,, is shown to be closed,
although it is not an algebra. The second is from a paper [1] where a
slightly different analogue (a distinction we will take up in Section 3)
was shown to be a closed algebra in the case that the graph is a cycle
graph of length n.
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In the first section of the paper we discuss background results on
Douglas algebras to emphasize connections with the classical situation
of Douglas algebras. The interested reader is directed to Chapter 6
of [6] for a very readable account of the ideas we pursue as well as
references for more technical details on the theory of Douglas algebras.
In the section following we establish what we feel is the appropriate
context for the remaining discussion for the general directed graph
operator algebras. We will then prove elementary results for the case
of general directed graphs with no sources.

In the first of the two main sections of the paper we present a
class of examples which is somewhat surprising in how badly directed
graph operator algebras can behave in comparison to standard Douglas
algebras. In the second main section we will present a different class of
examples to show how nicely certain examples can behave. In a final
section we will discuss differences between the two examples.

2. Douglas algebras. In the classical setting a Douglas algebra
is any norm closed algebra between H> and L°°(T). The standard
construction of an arbitrary Douglas algebra is to let 3 be some semi-
group of inner functions in H*°. The Douglas Algebra 2y; is the norm
closure of the set

{ov: o€ H®, ¢ € B}

That this set forms an algebra follows since L*° is commutative and
Y is a semi-group. It was established in a pair of papers [2, 13] that
every norm closed algebra between H* and L is of this form.

If one looks at the trivial semi-group containing just the identity, then
the Douglas algebra is H*. On the other hand, L* is given by the
semi-group of all inner functions in H*°. A more interesting example is
provided by the semi-group {z" : n > 0}. In this case the algebra has
the surprising form H* + C(T). That this set is a norm closed algebra
was first seen in [15]. Perhaps more surprising is the fact that there
are no norm closed algebras properly between H> and H* + C(T).

In the rest of this paper we will explore generalizations of these ideas
to the operator algebras associated to directed graphs. The motivation
for this work is provided by identifying the operator algebra of the
graph with a single vertex and a single edge as H*°. We must be
careful however in this identification since the von Neumann algebra
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generated by the left regular representation of this graph is not L°°;
it is not even commutative. Hence, before discussing algebras between
H* and the von Neumann algebra it generates, we must make sure we
are in the right context.

3. Getting the setting right and elementary results. By a
directed graph @ we mean a pair of sets E and V (whose elements
are called edges and vertices, respectively) together with a pair of
functions s : £ — V and r : £ — V, called the source and range
maps, respectively. The set E will be called the edge set of @, and V'
will be called the vertex set of ). We say that a directed graph has
no sources if the map r is onto. We say that a finite sequence of edges
eres e, is a path in Q if r(e;) = s(e;—1) for all 2 < i < n. We say
that such a path is a cycle if r(e;) = s(e,). We let P denote the set of
all paths in Q.

For each path w € P denote the basis element in ¢*(P) which is 1
at w and 0 elsewhere by e,,. Now for each edge f define an operator
Ly : 2(P) — €3(P) by

Ly(ew) = {efw if s(f) =r(w)

0 else.

Also, for each v € V define P, : (2(P) — ¢%(P) by

Pye ):{ew if v=r(w)
T 0 else.

Denote the norm closed algebra generated by {L.,P, : e € E,v € V'}
by A(Q), and its WOT-closure by L. We call the second algebra the
free semi-groupoid algebra of @, see [11] for more information about
these algebras.

We will be analyzing two particular cases in more depth. The first
case arises from the graph B,, given by a single vertex and n directed
edges. To simplify notation in this particular case, we will denote the
algebras by A, and £,,. Also, when referring to the generators of the
algebra which come from the edges, we will put an ordering on the
edge set, and denote the ith generator by L;. The other example will
correspond to the cycle graph C, with n vertices {vy,vs,...,v,} and
n edges {e1,es,...e,}. In this case the range and source maps will be
one-to-one and onto, such that ejes ---e, is a cycle.
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We start by analyzing the graph B; which corresponds to the classical
case of H*°. For the algebra £, we have already mentioned that the left
regular representation, though isomorphic to H*°, does not generate
a commutative von Neumann algebra. However, the von Neumann
algebra generated by the left regular representation of £; contains a
copy of the compact operators on ¢?(P). Further, the image of this
von Neumann algebra under the Calkin map is isomorphic to L.
Another important point here is that the Calkin map is an isometry on
L1 and hence the isometric image of £; under the Calkin map is H*°.

Now notice that A;, the unital norm closed subalgebra of £; gener-
ated by the generator Ly, is isomorphic to A(D). Let us denote by &;
the C*-algebra generated by A; acting as operators on ¢2(P). It is not
hard to see that the image of & under the Calkin map is C(T) which
is the C*-envelope of A(D). These facts are going to help us set the
stage when we deal with arbitrary directed graphs. We begin with a
result of Katsoulis and Kribs. Recall that a graph has no sources if for
every v € V(Q) there exists an edge e € E(Q) such that r(e) = v.

Proposition 1 [10, Proposition 7.3]. A directed graph Q has no
sources if and only if the Calkin map is an isometry on Lg.

In view of this our first simplification will be to deal only with
graphs with no sources. There is a method of desingularization, first
seen in [7] and used in [9], which effectively removes all sources of a
directed graph by adding a “tail” at a source, yet still preserves the
necessary information about the operator algebras thus generated. We
feel however that for the purposes of this paper the extreme generality
achieved through this ingenious technique will distract from the main
purpose of the paper so we forgo the technicalities. Just to emphasize,
we will assume, unless stated otherwise, that from this point on all
graphs have no sources. We will try to remind the reader of this fact
as appropriate.

Thus for a directed graph @ we can identify Lg and A(Q) with their
image under the Calkin map unless the actual context is ambiguous.
However, for the %-algebras, the context is more important so we will
denote by W (Q) the von Neumann algebra generated by Ly as a
subalgebra of B(¢2(P)). We will then let W.(Q) be the image of W (Q)



GRAPH DOUGLAS ALGEBRAS 475

under the Calkin map. In a similar manner, define C*(Q) and C7(Q)
to be the C*-algebras generated by A(Q) in the appropriate contexts.
We are now ready to define our notion of “noncommutative Douglas
algebras” which we plan to analyze below.

Definition 1. We say that an algebra 2 is a graph Douglas algebra
for the graph @ if 2 is a norm closed subalgebra with Lo C A C W, (Q).

One may be tempted to make the obvious conjecture that C}(Q)+Lg
is a graph Douglas algebra and that there are no proper subalgebras
between Lo and CF(Q) + L. This conjecture turns out to be very
wrong, as we will see in Sections 4 and 5. However, we do have more
to say before we look at our examples.

Proposition 2. The set C*(Q) + Lg is a norm closed subspace of
W(Q) for all directed graphs @ with no sources.

Proof. We will use Theorem 1.2 of [4] which gives conditions under
which the sum of two closed subspaces of a Banach space are closed.
Notice by [4, Lemma 1.1] that there exists a family of maps X :
W*(Q) — C*(Q), each contractive such that every element 7' € C*(Q)
is the norm limit lim¥,(T). Also notice that if X € Lg then
Yk(X) € AQ) C Lg. Thus, Theorem 1.2 of [14] applies to yield
the desired conclusion. o

For simplicity our proof follows the technique of [14]. The more
traditional argument used in [15] works equally well in the context of
L,,, see the discussion following Lemma 3.11 in [4]. There it is shown
that C*(B,,) + Lp,, is the inverse image of a closed set under a quotient
map. We suspect a similar technique will work for arbitrary graphs
with no sources. We now present an easy corollary to the previous
result which puts the result into the setting we wish to discuss. The
corollary follows immediately by noting that the Calkin map is an open

mapping.

Corollary 1. The set CX(Q) + L is a norm closed subspace of
W (Q) for all directed graphs @ with no sources.
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By breaking the proof into two parts we have simplified the proof
but the reader might wonder what is gained by passing to the quotient.
To simplify notation we will denote the compact operators in W(Q)
as Kg. For the following we refer the reader to [10] where it was first
stated as Corollary 7.4. We present only the proof due to its simplicity.

Proposition 3 [10, Corollary 7.4]. The set Lo+K¢ is a norm closed
subalgebra of W(Q) for Q a graph with no sources.

Proof. That the set is norm closed follow by noticing that Lo+ g is
the inverse image of the closed algebra Lo C W, (Q) under the Calkin
map. That the set is an algebra follows, since K¢ is an ideal in W(Q). O

If we now focus on the example of £; we notice that the standard
result, see Corollary 6.40 in [6], on Douglas algebras can be stated as
follows:

Proposition 4. Let A be a norm closed subalgebra of W(B)
such that L1 C A C £1 + C*(A) with both inclusions proper. Then
L1 gglg[h-i-’CBl.

Proof. Under the Calkin map any such algebra will have image
H®>. Since there are no closed algebras properly between H*> and
H® + C(T), the result now follows. O

In effect, we only complicate the picture by adding compact operators.
We are then left with the question of which algebras lie between £ and
L1+ Kp,. This, however, is not necessarily an easy task. Let K be
the compact operator 1 — L%(L})?. Notice that the algebra generated
by K inside the compact operators is given by {aK : a € C} since
K is a projection. Now the algebra generated by K and Lo will not
contain all of the compact operators. This can be seen by viewing Lo
as infinite dimensional lower triangular Toeplitz matrices and noting
that the algebra generated by K and Ly will be upper triangular and
hence won’t contain all the compact operators.
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On the other hand, the following proposition shows that when we look
at algebras between £4 + Kp, and W(Bj;) there are no new algebras
that we do not see in the quotient algebra.

Proposition 5. FEvery norm closed subalgebra £1 + Kp, C A C
W (By) is of the form Ax, + Kp, where Ay, is the norm closure of

{ov™ 1 p € Ly,9 € X}

where X is a semi-group of isometries in L.

Proof. This follows from the previous proposition and by noting that
the image of any such algebra under the Calkin map will yield a Douglas
subalgebra of L. |

These questions are only made more technical for arbitrary graphs
with no sources and so we dispense with the technicalities inherent in
adding compact operators. We now present an example of a graph with
a source to see why, in that context, we cannot throw away the compact
operators so easily. The readers presumably can find more complicated
examples to suit their own tastes.

Example. Let @ be the directed graph
o — e,
In this case it is well known that ¢%(P) is isomorphic to C* and

that A(Q) and Lg are isomorphic since the WOT and norm topology
coincide on finite-dimensional spaces. In fact, Lq is the algebra

ta,b,ce C

o o
o O o

0
c
0

Further, notice that every operator on C2 is compact. In this case one
sees easily that Lo + C*(Q) = W(Q) = M>(C) & C and that the only
subalgebra properly between L and W (Q) is of the form 75 @ C where
T, denotes the lower triangular 2 X 2 matrices.
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4. The first example. Here we look at the graphs B,, given by
a single vertex with n edges. Notice that B; is the classical case and
so we will exclude that case in our analysis. Another important fact is
that C*(B,,) is isomorphic to the Cuntz algebra, since it is generated by
isometries L; such that Y L;L¥ = 1, see [3, Corollary V.4.7]. We know
from Corollary 1 that the set £, + C(By,) is norm closed in W,(Q).
We notice first that this subspace is not an algebra.

Proposition 6. Forn > 2, the space L, +C*(By,) is not an algebra.

Proof. Let X € L, be chosen such that X —Y ¢ C¥(B,) for
all Y € C¥(B,) and X is in the norm closed nonunital subalgebra
of L, generated by L;. Notice that the nonunital subalgebra of L,
generated by L; has empty intersection with the ideal in £,, generated
by L, call this ideal I. Now, if £, + C*(B,,) is an algebra, then
XL} € L, + C*(B,). Notice however that if A € C*(B,,) and B € L,
with XL5 = A+ B then X = ALy + BL5, and hence AL, € £,,. Using
elementary calculations for the Cuntz algebra, see [3, Lemma V.4.1],
we get that A =YL} with Y € £,,. But then we get B = (X —Y)L;
which unless X =Y is impossible since B € £,,. Of course our choice
of X contradicts the possibility of X =Y. ]

It is interesting to note that the norm closed algebra generated by
L, + C*(B,,) does have an interesting structure which is reminiscent
of Douglas algebras. Let X, be the semigroup of isometries in L,
generated by {L; : 1 <1i < n}.

Proposition 7. The norm closed algebra generated by L, + C*(B,,)

is the morm closure of the of the set

Ay, :=span{AX*:AeL,, X €3,}.

Proof. Recalling calculations from the Cuntz algebra, again see [3,
Lemma V.4.1], we know that an arbitrary element of C}(B,) can be
written as a norm limit of elements of the form

span {L*(L*)"}
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where g and v are multi-indices signifying a sequence of elements
in the usual generating set for £,. The result now follows since
span {L*(L*)"} is a subset of Ay . o

It may be tempting to ask whether there are any closed subalgebras
between £,, and the norm closed algebra generated by L£,, + C*(B,).
And, if so, is there a nice characterization of them. However, by looking
at the generators from the previous proposition there is an obvious
set of such algebras, each with a nice characterization reminiscent of
Douglas algebras.

Proposition 8. Let ¥ be a sub semi-group of X,,. Then the norm
closure of the set

Ay :=span{AX*: AecL,, X € X}

18 a graph Douglas algebra. Moreover, if ¥ is generated by a proper
nonempty subset of {L;}, then the algebra Ay sits properly between L,
and the algebra generated by L, + C*(By,,).

Proof. As is an algebra for the same reason that Ay, is, it is contained
in an algebra, and contains a dense subspace of the same algebra. Only
the second part of the statement requires proof. But notice, if the
semigroup generated by L; is not in 3, then in particular L] is not in
Ay and hence the inclusion is proper. O

It is however not evident that if ¥ is any semi-group of isometries in
L,, then the norm closure of the set span {AX*: A € L,,X € X} will
be a graph Douglas algebra. We now present an example of a graph
Douglas algebra properly between £,, and £,, + C¥(B,,) which does not
have this form.

Example. Let A be an element of £,,\ CZ(B,,), for n > 2. We claim
that there is a norm closed algebra generated by £,, and elements of the
form AL, L% which is a graph Douglas algebra that can not be written
in the special form described in Proposition 8 above.

We look at the set of elements 2r,r; := {A + BLiL; : A,B €
L.} C L, + C¥B,). We first show that this set forms an algebra.
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To see this, notice that (L;L3)? = 0 because L5L; is zero. Further,
LiL3L; is equal to Ly if j = 2 and is 0 otherwise. It follows that
AL, L is an algebra containing L; L5 and £,. That this algebra is
norm closed follows by its definition. Notice also that since L;L3 is
nilpotent then L; L} ¢ L,, since L,, contains no quasinilpotent elements
[4, Corollary 1.8]. Similarly, if L; L € (L£,)* then LyL} would be a
nonzero nilpotent element of £,,. This too is an impossibility and hence
LiLY ¢ L, U(L,)*.

Lastly if this algebra were of the form in Proposition 8 then since
Ly L3 is in the algebra the semi-group ¥ would have to contain L. But
if ¥ contains Lo then (L3)? would be in the algebra which it clearly is
not.

Question. Is it true that if we let 3 be the set of isometries in L,
then the associated Douglas algebra is W, (B,,)?

5. The second example. We now investigate an example where
the graph Douglas algebras can be well understood. For this we let the
graph, C,,, be the cycle graph of length n. We begin by noticing that
the algebra L¢,, once we quotient by the compact operators, can be
written in the form:

f1,1(2™) 2 0(2") 2" 2f1s(z") oo zf1n(2M)

zfa2,1(2™) f2,2(2") Z"_lfz,g(z") .. fog,n(z")

2% f31(2") z! f3,2(2"™) f3.3(2") e 28 f3n(2")
P 1 (M) 2 () s (5 e fan(2)

where f; ; € H* for all 1 <4,j < n.
Here W, (C,,) is given by

fra(z") 2 a(z") 2" fis(z) - 2 fia(2™)
2 fa1(2") f2,2(2") 2" fa3(2”) - 2 fan(2™)
(

z
22 f3.1(2™) 2 f32(2™) f3,3(2") s 235 0 (2)

S (1) 22 g(2h) R a(h) < fan(e)
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where f; j € L™ for all 1 <i,j <n, and C(C,) can be written as

fr1(z") 2" fia(z") 2P fis(2™) oo 2 fin(2?)
21 f21(2") fa,2(z") 2" fas(z™) - 22 fan(2™)
22 f31(2") z! f3,2(2"™) f3,3(2") s 28 f3n(2")
Pt () () sz e (™)

where f; ; € C(T) for all 1 <4,j < n.

It was established in [1] that L¢, +C%(C,,) is a norm closed subalgebra
of W.(C,,). We now take this result and extend it to describe all norm
closed subalgebras between L¢, and W,(C,). We take advantage of
known results about Douglas algebras in our description.

Theorem 1. Let Lo, C A C W,(Cy,). If there exists an i such that
the i—i entry of A contains an element f(2™) such that f € L=\ H™,
then A can be written as

f11(2") 2" Ha(2") 2P fia(2) o 2 fia(2)
2 fa1(2") f2.2(2") 2" fas(2") o 22 fan(2™)
2% f31(2") z f32(2") f3,3(2") e 28 f3(2")
Ut (5) a5 (@) fan()

where f;; € Ax for all 1 < 4,5 < n, and Ax is a Douglas algebra
containing H* + C(T).

Proof. Notice that, since A is an algebra, the restriction of A to the
i—j position is a subspace of A, call it A; ;. Next notice that A;; is a
subalgebra of A for all 1 < i < n. Notice that this subalgebra will be
of the form {f(z") : f in a Douglas subalgebra of L>*}. Now if there
exists some function f(z") in A;;, such that f € L> \ H*, then A4, ;
contains {f(z"): f € H* + C(T)}.

We will show that this implies that A;; = zk_in,i for j > k and
Ajp = 2F70tnA;,; for j > i. We first notice that if j > k then
zkijAjyj C A and if £ > j then zkfjJr"Aj’j C Aj . Similarly, if
] > k then Zkijz4k7]c - Ach and if £ > J then ZkiijnAk’k - Aj7k,.
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To see this in the case of j = 1,k = 2, look at

Aipx 0 -+ 07770 21 0 0
0 o --- 0 0 0 0 0
0 0 0 0 0 0 0
and
0 2" 1 0 01770 0 0 0
0 0 O 0 0 Ap O 0
0o 0 0 - 0llo 0 0 .- 0

and notice that these are subsets of A. The cases for general j and k
follow in the same manner.

Next notice in a similar manner that for all j > k we have
n"*k’jAj,k C A;; and z"’(k’j)Aj’k C Agg, and a similar pair of
inclusions is true when k > j. Now since, z?n € A;; it follows that for
j #1i, 22°n C A; j and hence 2™ € A; ; for all j. Now, for each 7, there
exists an f(z") such that f € L \ H*™ and hence each A; ; contains
H> + C(T).

Without loss of generality, assume that j > k. We now show that
2k=i A;; = Aj. This actually is not difficult, since we can easily
see that z(Ayx) = Ay, for all Douglas algebras Ay, O H*> + C(T).
Hence, A; 1 C zk’jAjJ- and A; i C zk’jAk,,k for all j and &, and hence
zk*jAjyj =A;r= zk’jAkvk for all j > k. The result now follows. ]

Notice that each of these algebras contains C¥(C,,). We now describe
those subalgebras which lie between L¢, and L¢, +CZ(C,,). We denote,
for 1 < ¢ < n —1 by Z; the partial isometry on L¢, with a z in the
i—(i+ 1) position and 0 elsewhere. Let Z,, be the partial isometry with
a z in the 1-n position. Notice that the set S = {Z; : 1 < ¢ < n}
together with the identity generates a semi-group of partial isometries.
We will denote this semi-group by Xg.

Proposition 9. If A is the closure of the set
{XY*: X €L,,Y € Xg},

then A= Le¢, + Cx(C,,).
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Proof. Clearly we have that A C L, + C¥(C,). But notice that
from Theorem 1 we need only show that some diagonal element of A
contains an element in L° \ H*°. But we have z" is in the 1-1 diagonal
since it is equal to (Z1 2273 - - - Z,,)*. The result now follows. o

For A a proper sub semi-group of Xg, notice that if we order S with
the usual ordering then a monomial in A is nonzero if and only if
the monomial is given by consecutive generators in the cyclic ordering
inherited from Sy. For example, if n = 5 and A is generated by
{Zh Z27 Z37 Z5}7 then

AN={Z\,Zy,73, 75,2172, Z273, Z5Z1, 212273, Z5 Z1 Za, Zs Z1 Z2 Z3 }.

On the other hand, if A were generated by the set {Z5Z1 22, Z1, Z3},
then A would equal

{Z1,Z5,Z521Z1,Z5 21 Z> Z3}.

Theorem 2. Let A be a graph Douglas algebra contained properly
in Le, + C*(Cp). Then there exists a unique proper sub semi-group of
Ys, denoted A, such that A is the norm closed subspace

LC" + Z{att* Lo € C}

teA

Proof. We see from the proof of Theorem 1 that, if a diagonal
subalgebra of A contains an element f(z") such that f € L>® \ H™,
then A is not a proper subset of L¢, + C*(C,,). Hence, we need only
look at what is required to prevent that from happening.

We also know that the i—j entry of an arbitrary element of A is of
the form 2*=7 f(2") if j < i and 2'=7T" f(2™) if i < j. Here we assume
that f € L*>. Now if f(2") is in L* \ H*, then 2" f(2") is contained
in a diagonal subalgebra of A. It follows that the only way that this
is not the case is if f(2™) is of the form az™ + g(z) where g(z) € H™.
In other words, there is an element ¢ in the semi-group g such that
ast* € A, with a; € C. Now, if 5,t € Xg with azs* € A and a.t* € A
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*

for some a;, a; € C, then t*s* and s*t* are both in A. The result now

follows. u]

6. Concluding remarks. After having seen the previous examples
an obvious question arises. Are there noncycle graphs @ with no sources
such that Lo + C¥(Q) are norm closed algebras? and if so, can we
classify them?

A first partial result uses the idea of partly free algebras from [12] to
exclude a large collection of graphs. Recall that a free semi-groupoid
algebra is partly free if there is an injection ¢ : W*(Bg) — W*(Q) such
that the restriction of ¢ to L5 is completely isometric. We say that a
cycle w = ejeq - - €, is supported on v if r(e;) = v implies 1 = 1. We
call an infinite sequence of edges in Q a proper infinite path if any finite
segment of the sequence is a path in @ and no two edges are repeated.
Lastly, say that a graph satisfies the aperiodic path property if either
there is a vertex v such that two distinct cycles are supported on v,
or () contains a proper infinite path. It is shown in [12, Theorem 2.5]
that, for a graph @), with no sources, L is partly free if and only if @
has the aperiodic path property.

Proposition 10. If Lg is a partly free graph algebra, then Lo +
Cx(Q) is not an algebra.

Proof. Since L is partly free there is a completely isometric map ¢ :
Lo — L which is the restriction of an injection ¢ : W} (Bs) — W (Q).
Now using the element XL} € W(Bs) \ (L2 + C¥(Q)), we notice that
L(XL3) e WH(Q)\ (Lo + Ck(Q)). By our choice of X these properties
will be preserved by the Calkin map and the result is proved. a

There are, of course, graphs which do not give rise to partly free
algebras which are not cycle graphs. A simple example is the graph

C._>.
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Here the algebra Lg can be written as

FE

such that f,g € H>*,g(0) =0 and X € C.
The algebra C(Q) can then be written as

g )]

such that f; ; € C(T) for all 4,j and f1,2(0) = f2,1(0) = 0.

This particular representation makes it clear that the set Lo +
C¥(Q) is not an algebra. An alternate approach mimics the proof
of Proposition 6 to yield the following proposition.

Proposition 11. Let Q be a graph with no sources. Assume that
there exists a vertex v and a primitive cycle w = ejes---e, with
s(en) = v. If there exists an edge e not in the cycle with s(e) = v,
then Lg + CX(Q) is not an algebra.

Proof. Let L,, denote the partial isometry given by L., L., --- L.,
and let X in the subalgebra generated by L, be chosen so that
X ¢ C¥(Q). Then XL} will not be in Lo + C¥(Q). O

Recalling some examples from [12], we see that there are partly free
graphs with no cycles and no sources, so Propositions 10 and 11 speak to
different classes of graphs. However, using the description of partly free
algebras from [12, Theorem 2.5] we can see that these two propositions,
when put together, completely describe when Lo+ C¥(Q) is an algebra
using simple graph theory.

Theorem 3. Let Q) be a graph with no sources. Then Lo + C}(Q)
is an algebra if and only if Q is a cycle graph.

Proof. Based on the preceding two propositions, we need only show
that either a graph is a cycle graph (it gives rise to a partly free algebra)
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or there exists a cycle supported on a vertex v and an edge e not in the
cycle such that r(e) = v.

Assume that the graph is not a cycle graph. Choose a vertex v in
Q. Let B, denote the set of all finite, or infinite paths which end at
v. Notice P, is nonempty since () contains no sources. If there is any
cycle which is a proper subpath of a path in 3,, then we are in the case
of Proposition 11, so assume that every path in 3, does not contain a
loop as a proper subpath. In this case, since @ has no sources, every
path in ‘3, is aperiodic and hence Lg is partly free. |

This raises the more interesting question:

Question. What property of the cycle graph algebras allows us to
describe the graph Douglas algebras so succinctly?
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