LEGENDRE SURFACES WITH HARMONIC MEAN CURVATURE VECTOR FIELD IN THE UNIT 5-SPHERE

TORU SASAHARA

ABSTRACT. We obtain the explicit representation of Legendre surfaces in the unit 5-sphere with harmonic mean curvature vector field, under the condition that the mean curvature function is constant along a certain special direction.

1. Introduction. It is well known that an odd-dimensional unit sphere S^{2n+1} is equipped with the standard Sasakian structure (g, ϕ, η, ξ) , see Section 2. The study of minimal Legendre submanifolds in S^{2n+1} is a very active field and closely related to one of minimal Lagrangian submanifolds in complex projective space.

A natural generalization of a minimal submanifold is a submanifold with parallel mean curvature vector field. However, Legendre submanifolds in S^{2n+1} with parallel mean curvature vector field are in fact minimal, see [9]. So, in case the ambient space is S^{2n+1} , as a generalization of minimal Legendre submanifolds, it is natural to consider Legendre submanifolds whose mean curvature vector field H is harmonic with respect to the normal Laplacian Δ^D , that is,

$$\Delta^D H = 0.$$

The purpose of this paper is to study the class of nonminimal Legendre surfaces satisfying (1.1) in the unit 5-sphere. On nonminimal Legendre submanifolds, there exists a special vector field: ϕH . Moreover, in case the dimension is 2, up to signs, there is a unique unit vector field normal to ϕH . We denote it by $(\phi H)^{\perp}$. In this paper, under the condition that the square of the mean curvature function is constant along one of ϕH and $(\phi H)^{\perp}$, we completely determine nonminimal Legendre surfaces satisfying (1.1) in the unit 5-sphere.

²⁰¹⁰ AMS Mathematics subject classification. Primary 53C42, Secondary 53B25.

Received by the editors on December 20, 2005, and in revised form on Septem-

ber 12, 2007.

DOI:10.1216/RMJ-2010-40-1-313 Copyright © 2010 Rocky Mountain Mathematics Consortium

Theorem 1. Let $f: M^2 \to S^5 \subset \mathbf{C}^3$ be a nonminimal Legendre surface satisfying $\Delta^D H = 0$ in the unit 5-sphere. Then the mean curvature function of M^2 is not constant.

If H satisfies $\phi H||H||^2 = 0$, then f is locally given by (1.2)

$$f(x,y) = \left(\frac{1}{\sqrt{2}} \exp\left(\frac{1+\sqrt{5}}{2}iy\right) \cos x, \frac{1}{\sqrt{2}} \exp\left(\frac{1-\sqrt{5}}{2}iy\right) \cos x, \sin x\right).$$

If H satisfies $(\phi H)^{\perp}||H||^2=0$, then f is locally given by

$$(1.3) \quad f(x,y)$$

$$= \frac{1}{\sqrt{2}} \left(i + \sin x, (\sec x + \tan x)^i \cos x \cos y, (\sec x + \tan x)^i \cos x \sin y \right).$$

2. Legendre submanifolds in the unit sphere. Let \mathbf{C}^{n+1} be the complex Euclidean (n+1)-space together with the canonical complex structure J. Denote by S^{2n+1} the unit sphere with the standard induced metric g in \mathbf{C}^{n+1} . The position vector field \mathbf{x} of S^{2n+1} is a unit normal vector field of S^{2n+1} in \mathbf{C}^{n+1} and the vector field $\boldsymbol{\xi} := -J\mathbf{x}$ is tangent to S^{2n+1} . Define a 1-form η and an endomorphism field φ on M by the formula:

$$JX = \phi X + \eta(X)\mathbf{x}, X \in TM.$$

It is easy to see that (g, φ, η, ξ) satisfies

$$\varphi^2 = -I + \eta \otimes \xi, \qquad d\eta(X, Y) = g(X, \varphi Y).$$

Thus (g, φ, η, ξ) is a contact metric structure of S^{2n+1} .

Denote by $\overline{\nabla}$ the Levi-Civita connection of S^{2n+1} . Then

$$\overline{\nabla}_X \xi = -\varphi X, \qquad (\overline{\nabla}_X \varphi) Y = g(X, Y) \xi - \eta(Y) X.$$

These formulas imply that S^{2n+1} is a Sasakian manifold.

An immersed n-submanifold $x: M^n \to S^{2n+1}$ is said to be a Legendre submanifold if $x^*\eta = 0$. The formulas of Gauss and Weingarten of x are given respectively by

(2.1)
$$\overline{\nabla}_X Y = \nabla_X Y + h(X, Y),$$
$$\overline{\nabla}_X V = -A_V X + D_X V,$$

where $X,Y \in TM^n$, $V \in T^{\perp}M^n$, ∇ , h,A and D are the Levi-Civita connection of M^n , the second fundamental form, the shape operator and the normal connection. The mean curvature vector H is given by $H = (1/n)\operatorname{trace} h$. Its length ||H|| is called the mean curvature function of M^n . The normal Laplacian is defined by $\Delta^D = -\sum_{i=1}^n (D_{e_i} D_{e_i} - D_{\nabla_{e_i} e_i})$, where $\{e_i\}$ is a local orthonormal frame of M^n .

For Legendre submanifolds we have [1]

(2.2)
$$A_{\phi Y}X = -\phi h(X, Y) = A_{\phi X}Y, \quad A_{\xi} = 0.$$

Moreover, a straightforward computation shows that the equations of Gauss, Codazzi, Ricci of Legendre submanifolds in the unit sphere are equivalent to

(2.3)
$$\langle R(X,Y)Z,W\rangle = \langle [A_{\phi Z}, A_{\phi W}]X,Y\rangle + \langle X,W\rangle\langle Y,Z\rangle - \langle X,Z\rangle\langle Y,W\rangle,$$
(2.4)
$$(\overline{\nabla}_X h)(Y,Z) = (\overline{\nabla}_Y h)(X,Z),$$

where $\overline{\nabla}h$ is defined by $(\overline{\nabla}_X h)(Y,Z) = D_X h(Y,Z) - h(\nabla_X Y,Z) - h(Y,\nabla_X Z)$.

3. The proof of Theorem 1. We assume that the mean curvature function is nowhere zero. Let $\{e_i\}$, $i=1,\ldots,5$, be an orthonormal frame along M^2 such that e_1 and e_2 are tangent to M^2 , $\phi e_1=e_3$, $\phi e_2=e_4$, $\xi=e_5$ and $H=(\alpha/2)\phi e_1$, with $\alpha>0$. Then, it follows from (2.2) that the second fundamental form takes the form:

(3.1)
$$h(e_1, e_1) = (\alpha - c)\phi e_1 + b\phi e_2,$$
$$h(e_1, e_2) = b\phi e_1 + c\phi e_2,$$
$$h(e_2, e_2) = c\phi e_1 - b\phi e_2,$$

for some functions b and c.

We put $\omega_i^j(e_k) = \langle \nabla_{e_k} e_i, e_j \rangle$. From (2.4) we get

(3.2)
$$e_1c + 3b\omega_1^2(e_1) = e_2b + (\alpha - 3c)\omega_1^2(e_2),$$

(3.3)
$$-e_1b + 3c\omega_1^2(e_1) = e_2c + 3b\omega_1^2(e_2),$$

(3.4)
$$e_2(\alpha - c) - 3b\omega_1^2(e_2) = e_1b + (\alpha - 3c)\omega_1^2(e_1).$$

Suppose that M^2 satisfies $\Delta^D H = 0$. Then we have the following three lemmas, see [8, pages 290, 291].

Lemma 2.

(3.5)
$$\Delta_M \alpha + \alpha \{1 + (\omega_1^2(e_1))^2 + (\omega_1^2(e_2))^2\} = 0,$$

$$(3.6) \ \ 2(e_1\alpha)\omega_1^2(e_1) + 2(e_2\alpha)\omega_1^2(e_2) + \alpha\{e_1(\omega_1^2(e_1)) + e_2(\omega_1^2(e_2))\} = 0,$$

$$(3.7) e_1\alpha + \alpha\omega_1^2(e_2) = 0,$$

where Δ_M is the Laplace operator acting on $C^{\infty}(M)$.

Note that α is not constant by (3.5), since α is nowhere zero.

Lemma 3. There exist local coordinates x and y such that

$$e_1 = \alpha \partial_x,$$

$$e_2 = \alpha \partial_y,$$

$$\omega_1^2(e_1) = \alpha_y,$$

$$\omega_1^2(e_2) = -\alpha_x.$$

Lemma 4. The following relation holds:

$$(3.8) b^2 = \frac{\alpha c}{2} - c^2.$$

The allied mean curvature vector a(H) is defined by

$$\sum_{r=4}^{5} (\operatorname{trace} A_{H} A_{e_{r}}) e_{r},$$

see [2, page 197]. If a(H) vanishes identically on M^2 , it is called a *Chen* surface.

Suppose that M^2 is not Chen surface, i.e., $b \neq 0$. Then we have $c \neq 0$ and $\alpha \neq 2c$ from (3.8). We may assume that b > 0, if necessary by changing the sign of e_2 . By differentiating (3.8) we get

$$(3.9) b_i = \frac{(\alpha - 4c)c_i + \alpha_i c}{4b},$$

where i = x, y.

Using (3.9) we replace (3.2) and (3.3) by the derivatives with respect to x and y as follows:

$$(3.10) \quad \begin{pmatrix} \alpha & -(\alpha(\alpha-4c))/(4b) \\ (\alpha(\alpha-4c))/(4b) & \alpha \end{pmatrix} \begin{pmatrix} c_x \\ c_y \end{pmatrix} \\ = \begin{pmatrix} -(\alpha-3c)\alpha_x - ((12b^2 - \alpha c)/(4b))\alpha_y \\ ((12b^2 - \alpha c)/(4b))\alpha_x + 3c\alpha_y \end{pmatrix}.$$

First we investigate the case of $\phi H \|H\|^2 = 0$, i.e., $\alpha_x = 0$. Then using (3.8) and (3.10) we get

$$(3.11) c_x = -\frac{8bc}{\alpha^2} \alpha_y,$$

$$(3.12) c_y = \frac{5\alpha c - 8c^2}{\alpha^2} \alpha_y.$$

By a long but straightforward computation, we obtain

(3.13)
$$bc_{xy} = (-24\alpha_y^2 - 4\alpha\alpha_{yy}) \left(\frac{c}{\alpha}\right)^2 + (112\alpha_y^2 + 8\alpha\alpha_{yy}) \left(\frac{c}{\alpha}\right)^3 - 128\alpha_y^2 \left(\frac{c}{\alpha}\right)^4,$$

$$(3.14) bc_{yx} = -20\alpha_y^2 \left(\frac{c}{\alpha}\right)^2 + 104\alpha_y^2 \left(\frac{c}{\alpha}\right)^3 - 128\alpha_y^2 \left(\frac{c}{\alpha}\right)^4.$$

Since $bc_{xy} = bc_{yx}$, we find that $\alpha_y^2 + \alpha \alpha_{yy} = 0$ from (3.13) and (3.14). But it contradicts (3.5).

Next, we investigate the case of $(\phi H)^{\perp} ||H||^2 = 0$, i.e., $\alpha_y = 0$. Similarly, as in the case of $\alpha_x = 0$, we have

$$(3.15) c_x = \frac{-3\alpha c + 8c^2}{\alpha^2} \alpha_x,$$

$$(3.16) c_y = \frac{4\alpha b - 8bc}{\alpha^2} \alpha_x,$$

$$(3.17) \ bc_{xy} = -6\alpha_x^2 \left(\frac{c}{\alpha}\right) + 56\alpha_x^2 \left(\frac{c}{\alpha}\right)^2 - 152\alpha_x^2 \left(\frac{c}{\alpha}\right)^3 + 128\alpha_x^2 \left(\frac{c}{\alpha}\right)^4,$$

(3.18)
$$bc_{yx} = (-4\alpha_x^2 + 2\alpha\alpha_{xx})\left(\frac{c}{\alpha}\right) + (48\alpha_x^2 - 8\alpha\alpha_{xx})\left(\frac{c}{\alpha}\right)^2 - (144\alpha_x^2 - 8\alpha\alpha_{xx})\left(\frac{c}{\alpha}\right)^3 + 128\alpha_x^2\left(\frac{c}{\alpha}\right)^4.$$

Using $bc_{xy} = bc_{yx}$ we get $\alpha_x^2 + \alpha\alpha_{xx} = 0$ from (3.17) and (3.18); however, it contradicts (3.5).

Therefore, we conclude that b must be 0, i.e., M^2 must be a Chen surface if $\phi H \|H\|^2 = 0$ or $(\phi H)^{\perp} \|H\|^2 = 0$. Applying the classification of Legendre Chen surfaces satisfying $\Delta^D H = 0$, see [7, Theorem 8 and Corollary 9], we can prove the statement.

4. Other examples of Legendre surfaces satisfying $\Delta^D H = 0$. In this section, we show a way to construct Legendre surfaces satisfying $\Delta^D H = 0$, $(\phi H)^{\perp} ||H||^2 \neq 0$ and $\phi H ||H||^2 \neq 0$.

One can obtain the following existence and uniqueness theorem by the similar way to those given in [4, 5], cf. [3].

Theorem 5. Let $(M^n, \langle \cdot, \cdot \rangle)$ be an n-dimensional simply connected Riemannian manifold. Let σ be a symmetric bilinear TM^n -valued form on M^n satisfying

- (1) $\langle \sigma(X,Y), Z \rangle$ is totally symmetric,
- (2) $(\nabla \sigma)(X,Y,Z) = \nabla_X \sigma(Y,Z) \sigma(\nabla_X Y,Z) \sigma(Y,\nabla_X Z)$ is totally symmetric,

(3) $R(X,Y)Z = \langle Y,Z\rangle X - \langle X,Z\rangle Y + \sigma(\sigma(Y,Z),X) - \sigma(\sigma(X,Z),Y).$

Then there exists a Legendre isometric immersion $x:(M^n,\langle\cdot,\cdot\rangle)\to S^{2n+1}$ such that the second fundamental form h satisfies $h(X,Y)=\phi\sigma(X,Y)$.

Theorem 6. Let $x^1, x^2: M^n \to S^{2n+1}$ be two Legendre isometric immersions of a connected Riemannian n-manifold into the unit sphere S^{2n+1} with second fundamental forms h^1 and h^2 . If

$$\langle h^1(X,Y), \phi x_*^1 Z \rangle = \langle h^2(X,Y), \phi x_*^2 Z \rangle$$

for all vector fields X, Y and Z tangent to M^n , there exists an isometry A of S^{2n+1} such that $x^1 = A \circ x^2$.

Let f(t) be a solution of the following ODE:

(4.1)
$$\frac{d^2f}{dt^2} = \frac{1}{2}e^{-2f}.$$

We put $\alpha(x,y):=e^{f(x-y)}$. Let $(M^2,g=(1/\alpha^2)(dx^2+dy^2))$ be a Riemannian 2-manifold. We define a symmetric bilinear form σ on M^2 by

(4.2)
$$\sigma(e_1, e_1) = \frac{3}{4}\alpha e_1 + \frac{\alpha}{4}e_2,$$

$$\sigma(e_1, e_2) = \frac{\alpha}{4}e_1 + \frac{\alpha}{4}e_2,$$

$$\sigma(e_2, e_2) = \frac{\alpha}{4}e_1 - \frac{\alpha}{4}e_2,$$

where $e_1 = \alpha \partial_x$ and $e_2 = \alpha \partial_y$. By a straightforward computation, we find that $((M^2, g), \sigma)$ satisfies (1), (2) and (3) of Theorem 5. Therefore, there exists a unique Legendre surfaces in S^5 whose second fundamental form h is given by $h = \phi \sigma$. Moreover, such a surface satisfies $\Delta^D H = 0$, $(\phi H)^{\perp} ||H||^2 \neq 0$ and $\phi H ||H||^2 \neq 0$.

REFERENCES

1. D.E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress Math. 203, Birkhauser Boston, Inc., Boston, 2002.

- 2. B.Y. Chen, A report on submanifolds of finite type, Soochow J. Math. 22 (1996), 117-337.
- **3.** B.Y. Chen, F. Dillen, L. Verstraelen and L. Vrancken, An exotic totally real minimal immersion of S^3 in $\mathbb{C}P^3$ and its characterization, Proc. Royal Soc. Edinburgh **126** (1995), 153–165.
- 4. B.Y. Chen and L. Vrancken, Addendum to: Existence and uniqueness theorem for slant immersions and its applications, Result. Math. 39 (2001), 18–22.
- 5. ——, Existence and uniqueness theorem for slant immersions and its applications, Result. Math. 31 (1997), 28–39.
- 6. J. Inoguchi, Submanifolds with harmonic mean curvature vector field in contact 3-manifolds, Colloq. Math. 100 (2004), 163–179.
- 7. T. Sasahara, Legendre surfaces whose mean curvature vectors are eigenvectors of the Laplace operator, Note. Mat. 22 (2003/04), 49–58.
- 8. ———, Legendre surfaces in Sasakian space forms whose mean curvature vectors are eigenvectors, Publ. Math. Debrecen. 67 (2005), 285–303.
- $\bf 9.~{\rm K.~Yano}$ and M. Kon, Structures~on~manifolds, Series Pure Math. $\bf 3,~{\rm World}$ Scientific, Singapore, 1984.

DEPARTMENT OF SYSTEMS AND INFORMATION ENGINEERING, HACHINOHE INSTITUTE OF TECHNOLOGY, 88-1 OHBIRAKI MYO HACHINOHE AOMORI, 031-8501

Email address: sasahara@hi-tech.ac.jp