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GENERALIZED EIGENFUNCTION EXPANSIONS
FOR SPECTRAL MULTIPLICITY ONE AND
APPLICATION IN ANALYTIC NUMBER THEORY

ROBERT M. KAUFFMAN AND MAYUMI SAKATA

ABSTRACT. We study generalized eigenfunction expan-
sions of multiplicity one, obtaining precise convergence esti-
mates. We apply the theory to the expansion for the Laplacian
and Hecke operators on the fundamental domain for the mod-
ular group, where the convergence estimates are shown to be
optimal.

1. Introduction. In this paper, abstract convergence results are ob-
tained for generalized eigenfunction expansions for a commuting family
of operators which is of multiplicity one, in the sense (defined below)
that there exists at most a one-dimensional space of generalized eigen-
functions for every value of the spectral parameter. The spectral pa-
rameter we use is the joint spectrum for the generators of the commut-
ing family. The expansion is then applied to an eigenfunction expansion
of fundamental significance in analytic number theory, obtaining new
convergence results which are in a sense optimal.

In a previous paper [11] by one of the authors, a simple abstract
formalism for the theory of generalized eigenfunction expansions for a
C* algebra of commuting operators was developed. The theory con-
structs “generalized eigenprojections” which are elements of the space
C(W,W') of continuous conjugate linear operators from a locally con-
vex topological vector space W into its dual W', which contains W.
Operators are then expanded in terms of these, with an integral expan-
sion which converges in C(W,W’), and hence, in a sense, uniformly.
The eigenprojection, acting upon some element ¢ € W, produces the
appropriate eigenfunction needed to expand A¢, for any member A of
the algebra.
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In this paper, we first note that in the multiplicity one case, where the
range of any generalized eigenprojection has dimension at most one, one
can obtain better estimates than in the infinite multiplicity case. As an
application, (and, as the primary motivation for the paper) we study
the generalized eigenfunction expansion for the algebra generated by
the Laplacian on the usual fundamental domain for the modular group
and the Hecke operators, which is known to have multiplicity one in
our sense. We recover from the abstract theory the known behavior
of the generalized eigenfunctions. In the convergence estimates, the
target space is the space where the eigenfunctions lie. In this sense, the
convergence estimates are optimal, though the domain space Z below,
such that the convergence is uniform from the unit ball of Z to the
target space, can probably be improved with more work.

For the general theory, we assume that the algebra is a countably
generated algebra of operators on a separable Hilbert space; that is, it
is the smallest von Neumann algebra containing the spectral projections
of a countable family of commuting normal operators. Since some of
the operators A; are unbounded normal operators, some care must
be taken to define what it means for them to commute: for us, this
means that the entire family {A;} is affiliated with a commutative von
Neumann algebra A; the minimal such A is the algebra we use in the
paper. To say that A is affiliated with A means that for any unitary
operator U in the commutant of A,

UA=AU

in the strong sense that they have the same domain and the above
relation holds on it. Note that, by the double commutant theorem,
bounded operators affiliated with a von Neumann algebra are actually
in the algebra.

The joint spectrum of {A;} is a natural closed subset of the set of
all sequences of complex numbers {);} such that ); is in the spectrum
of A;; it is natural in the sense that if all operators were discrete and
the family {A;} has multiplicity one, this subset would be the set of
eigenvalues corresponding to the same eigenfunction. A more precise
definition is given below. In the situation of this paper, all but a finite
number of {A;} are bounded: picking the bounded operators to be of
norm one, we see that the joint spectrum is a metric space It turns out
to be a closed subset of the product space above.
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Using the uniform convergence result contained in [11], applied to the
multiplicity one situation, with some additional estimates, we obtain
the following general result for the multiplicity one case: here Z and B
are Banach spaces with certain properties below, where the generalized
eigenfunctions turn out to lie in B;

Corollary 1. For every € > 0, there exists a compact subset K of
the joint spectrum, and a positive &, such that for every §-net {\;} of
K there exists a set of generalized simultaneous eigenfunctions F; such
that

ALFy, = (N, P,

n i

and a set of complex constants c; such that, for every ¢ in the unit ball

of Z,

<e.
B

(e)
H¢7 - Z ciFx; (¢) Fi,
iz1

Here, F; and c¢; are independent of ¢. ¢; and n(e) in general depend
upon the choice of {F;}, though once {\;} is chosen, {F;} is of course
unique up to a constant.

This is the basic abstract result of this paper. It will be a consequence
of Theorem 31 below, which can be considered the main abstract result
of the paper. Corollary 1 is then restated as Corollary 33. Note that
the above result suggests that the continuous, point continuous and
discrete spectrum may be treated, in the sense of approximation, by
exactly the same formalism. Since in the discrete spectrum case, we
cannot obtain a ¢ net in general without picking the exact points of the
spectrum, it seems that as a general approximation procedure the above
result cannot be improved. In addition, if the space B is (within the
category of spaces studied) the smallest space where the eigenfunctions
lie, then B is the smallest target space where the convergence estimates
can hold. In the application to number theory below, B may be chosen
to be

y Dep

for any € > 0. In terms of a weighted L., norm, with weight a power
of y, this is optimal (Section 5).
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In the example from analytic number theory, with D denoting the
usual fundamental domain for the modular group in the upper half
plane with the hyperbolic metric, the algebra is generated by the
Hecke operators (defined below) and the self-adjoint Laplacian H on
the complete Riemannian manifold D. H is the closure of its restriction
to the smooth compact support functions by Cordes’s theorem, which
states that on any complete Riemannian manifold, the restriction of
any power of the Laplacian to C§° has the property that the closure of
this restriction is self-adjoint. The expansion converges uniformly on
the unit ball of the space Z below, in the space

B= {F Ly~ (/2 p ¢ poo (D)}

with the obvious norm. ¢ may be chosen to be any positive real number.
Hence, as an application of the above corollary we obtain, letting {77, }
be the family of Hecke operators, normalized to have norm one,

Corollary 2. Let B be as above. Let 8 >0, Ay = 1,

Ai=H
A, =T,

Z:{¢=y*ﬂezeeD((H+1)3)}

with norm
ol = || +1)°9) .

Then, for every € > 0, there exists a compact subset K of the joint
spectrum, and a positive §, such that for every d-net {\;} of K there
exists a set of generalized simultaneous eigenfunctions F; € C*° (D)
such that

Af’LFAi = (Al)n Fy,

and a set of complex constants c; such that, for every ¢ in the unit ball

of Z,

<¢g;
B

(e)
CED SLLNOENY
i=1

here, F; and c; are independent of ¢. c¢; and n(e) in general depend
upon the choice of {F;}.
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This corollary will be restated in Section 5 as Corollary 64 to Theo-
rem 62.

The idea of using finitely many generalized eigenfunctions for a single
self-adjoint operator to get finite approximation inequalities of the type
developed above was introduced by Kauffman in [7]; it was applied to
some nontrivial situations in ordinary differential equations by Hinton
and Kauffman in [4]. A formal theory of generalized eigenfunction
expansions for families of commuting normal operators, concentrating
on the convergence of the integrals involved, was given by Kauffman
in [8]. A much simpler version of this theory, which uses minimal
assumptions, was given by Sakata in her dissertation and [11]. That
general theory is the basis for this paper.

Other authors concentrate on a single self-adjoint operator and use
a different notion of convergence. The first modern paper on the
foundations of generalized eigenfunction expansions was a portion
of the article Schrddinger semigroups, by Simon [12], where a self-
contained and readable account of the theory was given. A clear recent
approach, with a systematic apparatus for calculating asymptotics
of the eigenfunctions, was given (in the case of a single self-adjoint
operator) by Poerschke, Stolz and Weidmann in [10]. The classical
literature on the subject is anchored by Gelfand and Vilenkin in [3], and
Berezhanskii in [1]; the paper of Poerschke, Stolz and Weidmann was
designed to give a very applicable, streamlined and simple version of the
theory. This paper was then applied by Poerschke and Stolz [9] to three
different types of expansions: Titchmarsh-Weyl-Kodaira expansions for
ordinary differential operators, BGK expansions for elliptic differential
operators with smooth coefficients and Ikebe-Povsner expansions from
scattering theory. Poerschke and Stolz obtain all these expansions from
a single abstract result. In both these papers, a result analogous to
the Lo Fourier transform is proved: that is, the spectral theorem is
implemented by using generalized eigenfunctions to give the Fourier
coefficients of the given function. The integrals converge in the usual
sense of the Ly transform; they do not converge pointwise.

More recently, Boutet de Monvel and Stollmann [2] applied the
approach of Poerschke, Stolz and Weidmann to operators generated
by Dirichlet forms. This allows a treatment of most operators which
appear in mathematical physics, including those where the coefficients
are not smooth. A very interesting feature of this work is a bound on
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the eigenfunctions using an intrinsic metric (defined there) generated
by the Dirichlet form.

The easiest way to compare the approach of the authors to conver-
gence with the work of the authors just cited is to think of Fourier
series. The Fourier series of any function converges in Lo, which is the
type of convergence studied by other authors. However, if the function
being expanded lies, for example, in the Sobolev space W, the series
converges uniformly and error estimates may be given, which apply
on the entire unit ball of W}. The convergence results of this paper
are completely analogous and are obtained at the price of additional
hypotheses exactly in the same way as differentiability hypotheses are
needed to guarantee uniform convergence of usual Fourier series.

In terms of obtaining the correct asymptotic behavior of the eigen-
functions, as a general method it appears that the techniques of Boutet
de Monvel and Stollmann may well yield optimal results for the case of
a single operator, provided it is generated by a Dirichlet form. Prob-
ably that method could be extended to the present situation, since
the eigenfunctions we consider are eigenfunctions of every member of
a given family, so if the single operator is a member of the family, the
estimates will hold. It should be noted, however, that the example of
Fourier series on a finite interval shows that uniform convergence esti-
mates of the type studied here depend not only upon the asymptotics of
the eigenfunctions, but also upon other considerations. The problem of
convergence and of the asymptotics of the eigenfunctions are therefore
related, but in general different, even for the case of a single self-adjoint
operator.

2. Background. Throughout this paper we assume the following:

e {A;} is a possibly infinite family of closed operators in a Hilbert
space bh;

e A is the smallest von Neumann algebra with which {4;};cs is
affiliated, where S is either the positive integers or the subset of positive
integers less than or equal to some V;

o A is commutative (hence each A; is normal);

e there exists an N such that A; is bounded for 7 > N.
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Definition 3. Throughout the paper, let W be a locally convex
topological vector space and W a Banach space and fh a separable
Hilbert space, such that

WcWchecW cw’

where the embeddings are assumed to be continuous, each space is
dense in the next, and where embedding from h into W' is conjugate
linear. Assume that W is separable and that each A; takes W
continuously into itself. Give W’ the topology of uniform convergence
on bounded subsets of W. Let C(W,W’) denote the continuous
conjugate linear mappings from W into W', topologized by letting a
sub-base of open sets about a fixed operator Ay be given as follows:
specify bounded convex subset B of V' and a given open set © C V',

and define a sub-basic open set containing zero to be ® gg where

Ppeg ={A:A(z) €O forall z € B}.

e We review some background material on commutative von Neu-
mann algebras A. Each A; affiliated with A corresponds under the
Gelfand transform G to a continuous function f; on the maximal ideal
space X of A which is defined on the complement of a meagre set; that
is, a set whose closure has empty interior. (See [6].) Furthermore, each
meager set has spectral measure zero with respect to any cyclic vector
e for A’; (this is probably well known to operator algebraists; a proof
is given in Kauffman [8]). Each bounded A; corresponds to a contin-
uous function on the entire maximal ideal space, which is a compact
Hausdorft space.

Definition 4. The joint spectrum J is defined to be the closure in
the product space of the spectra of the A; of

A @) : (A (2); = G (A) ()} pex\m

where X is the maximal ideal space of A and M is the meagre set on
the complement of which the Gelfand transform G(A4;) of each A; is
continuous.
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e We introduce the notation
|z B

to denote the norm of x in the Banach space B.

e Let J be the joint spectrum of {4;}. Let Ky be a clopen subset of
the complement of the meagre set above (the set where the functions
G(A;) are not defined), such that for each i,

|G (A4;)| (z) < N for all z € K.

Note that the characteristic function of Ky corresponds to a projection
operator P(Ky) in A. Each G(A;), restricted to K, is continuous and
has range contained in the compact subset K of J, where

Ky ={z€J: |z <N for all i}.

Let (A); denote the ith component of A € J. It is clear that the infinity
norm of any polynomial P in ()); on Ky is the norm of P(Kn)P(A).
Hence, the C* algebra of functions on Ky formed by taking the closure
in supremum norm on Ky of all such polynomials is isometric to the
C* algebra Cn on the range of P(Ky), where Cy is the smallest C*
algebra containing the restriction of each A; to the range of P(Ky).
Noting that the polynomials in {);} separate points in K N, we see by
the Stone-Weierstrass theorem that the polynomials in {);} are dense
in C(I/(\'N). Hence, Cy is isometric to C(I?N) under a mapping we call
G , the extended Gelfand transform. Now, if e is a cyclic vector for A’
and

te N (A) = [Ae, €],

we see that p. n is a Radon measure on C’(IA(N). Since the IA(N are a
tower, this induces a positive finite regular Borel measure on J; we call
this measure p.. Now, on Lo(J, i), consider the map 7" such that, for
any A € Cy,

T (Ae) = X (I?N) G (A).

Note that the linear extension of this map takes the smallest C* algebra
C containing each C into Lo (J, te) C Lo(J, pte)- It is not difficult to
see that

ITAe: Ly (J, ) | = [l e b
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It follows that T" extends to a mapping from A(e) onto La(J, fte). Ele-
ments of the range of L, act as multiplication operators on Lo (J, te),
and the operator norm is the Lo norm. It now follows from standard
arguments that the commutant of the range of G on the union of the
algebras Cy is contained in the algebra of operators of multiplication
by elements of Lo (J, e); since T' is an isometry, we see that, finally,
G extends to an isometry taking A onto Loo(J, pe).

Definition 5. If A is a bounded Borel subset of the joint spectrum J,
and £(A) is the characteristic function of A, considered as an element
of Loo(J, 1), then we define

P(8) =G (£(a).

The map A — P(A) is called a spectral measure for {A;} on J.

Definition 6. A generalized eigenprojection Py for {A;}, correspond-
ing to A in the joint spectrum, and corresponding to the space W above,
is an operator in C(W, W) such that there exists a family {A;} of Borel
subsets of the joint spectrum such that

1
A; C {mEJ:d(m,)\) < ;}
and a sequence of complex numbers {b,} such that
b P (A,) — Py
in

(W, W').

Remark 7. In the case where A € J is not an element of the point
spectrum of all A;, then, as a sequence of operators from § into b,
P(A,,) converges strongly to zero; in this case the sequence b,, converges
to infinity in absolute value. It usually turns out that

where p is a positive measure on J.
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Remark 8. It was shown in [11] that if F' € range (Py), then for all i
ALF = \F,

where we have here identified F with an element of W', and where A!
is the operator A; considered as a continuous mapping from W into W.

Definition 9. Let W be as above. A generalized eigenfamily on J,
with respect to W, {K,}, u, where p is a positive scalar measure on J,
and K, is a tower of compact subsets of .J, such that the complement
of UK,, has measure zero, is a map

E: A — Py,

where the map ¢ takes UK, into C(W,W'), such that the following
hold:

1. each P, is a generalized eigenprojection for each A;, with eigen-
value \; where
A=A{A};

2. the restriction of £ to each K, is continuous from K, into
C(W, W)

P(Kn):/ Py dy;
Kn

here the integral converges in the sense of an operator valued integral,
continuous with respect to the spectral parameter.

Definition 10. The multiplicity at X\ of a generalized eigenprojection
P, is the dimension of its range.

Definition 11. Let A be the smallest von Neumann algebra with
which each A; is affiliated. Let W,V be Banach spaces such that
W C W C V C b, where each space is dense and continuously
embedded in the next. Suppose that the embedding from W into V is
two nuclear, and the embedding of V' into h is nuclear. We then call
the scheme W, W, V., a regular embedding scheme.
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Remark 12. If W = C§°(M), and the operators A; take W contin-

uously into itself, then spaces W and V may be easily constructed so
that a regular embedding scheme holds. The argument is given in [11].

Definition 13. If W admits spaces /V[7,V such that a regular
embedding scheme holds and each A; takes W continuously into itself,
we call W an {A;} -admissable space. The associated generalized
eigenfamily

A — P)‘
with L
pyec(W,W)

is called the generalized eigenfamily associated with W.
e The following is the main theorem in [11].

Theorem 14. Suppose that a regular embedding scheme holds. Then
a generalized eigenfamily associated with W exists, corresponding to
each scalar measure p which is absolutely continuous with respect to
the measure u, induced by a cyclic vector e for A', defined by

ne () = [P (A)eyel.

This generalized eigenfamily is essentially unique. This means that if
{K,} and u are specified, Py is uniquely defined. Furthermore, each Py

extends to an element of C(W, W’), and the map A — Py is continuous
from each K,, into C(W,W'). Finally, for every ¢ > 0, there exists a

K, such that if
Pr, = [ Padu
Ky

then
HPK" -E:C (/VV,/W?')

‘<€,

where E denotes the embedding from W into /VV', and where we use the
notation ||z : B|| to denote the norm of x in the Banach space B.

e The following theorem follows immediately from the previous the-
orem.
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Corollary 15. Assume that a regular embedding scheme holds. For
any € > 0, there exists a § > 0 and positive integer N such that for any
d-net {\;} of K, : n> N, and for any i, there exist constants c; such
that

HZCJ-PAJHG:W\' <e€

for all i and all
W : HGWH <1

In other words, the expansion converges uniformly to the operator on
bounded sets, in the topology of C(W,W").

Remark 16. The following theorem follows from the construction in
the paper [11]. To define the eigenprojections for almost every A in
the joint spectrum, some observations are in order: picking a tower of
disjoint compact sets, we see that it is possible to define the generalized
eigenprojections almost everywhere, and the K,, may be chosen to be
a tower.

Theorem 17. If a regular embedding scheme holds, with e a cyclic
vector for A', and in addition p.(A) is the finite positive measure

pe (A) =[P (A)e,e],

with p any measure on the joint spectrum which is mutually absolutely
continuous with respect to ., then there exists a sequence K, with
the above properties and uniquely defined generalized eigenfamily for
{A;}, W, u, {K,}; the generalized eigenprojections may be defined al-
most everywhere and the sets K,, may be taken to be a tower. Further-
more, if

h= @;\;1[33'

where
N eNUo

is a direct sum decomposition of by in terms of reducing subspaces b; of
each A;, such that by; is the range of the orthogonal projection Q;, if

W; = Q;W,
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then each W; has a regular embedding scheme in b; and a corresponding
generalized eigenfamily

ﬂ—)PBj:ﬂEMJ’,

each one with multiplicity one, where M is the joint spectrum of the
restriction of {A;} to b, there exists a unitary operator U taking b
onto

H=@®L; (Mja :U’)

Ps = Py
with convergence in C’(W, W’) and such that, for any ¢ € W, 8 € K,,,
(U®); (B) = Ps;¢ ().

Under this isometry, each A; goes into multiplication by X\;, and A goes
t0 Loo (J, phe).

such that

Remark 18. 1In case the set {A;} consists of a single self-adjoint
operator H, and W is a core of H, this is an eigenfunction expansion
of the same type as the Poerschke-Stolz-Weidmann expansion. The
uniform convergence obtained above, together with the existence of
the eigenprojection Pg, follows from the stronger hypotheses assumed
here.

Theorem 19. The expansion above is unique, in the following sense:
given two different towers of compact sets, and two different mutually
absolutely continuous measures 1 and psa, such that

f () dpy = dps,
then, for almost every X,
Py=f(\)Qx

where Py is the expansion using p1 and Q) is the expansion using .

Proof. The continuity of the maps A — P, and A\ — @, on their
respective towers of compact sets imply directly that the generalized
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eigenfamilies are uniquely defined on them. The conclusion is immedi-
ate. O

Remark 20. Note that two different orthogonal decompositions in
terms of reducing subspaces nevertheless produce the same eigenfamily,
for a given tower of compact sets.

e We have defined the multiplicity of a single eigenprojection; we now
define the multiplicity of a family of operators.

Definition 21. If a regular embedding scheme holds, the multiplicity
of {A;} is the least upper bound over n of the maximum multiplicity
of

{P)\ A E Kn} .

Theorem 22. {A;} has multiplicity one if and only there exists a
cyclic vector for A.

Proof. If there exists a cyclic vector for A, then the multiplicity is
automatically one: this follows from the construction used in [11]. If
the multiplicity is one, the original Hilbert space is isometric to Lo (u),
where p is the measure on the joint spectrum induced by the measure
on any cyclic vector e for A’, under a map U which takes each A; to
multiplication by A;. The conclusion follows. ]

Theorem 23. All generalized eigenfamilies have the same multiplic-
ity, independent of the choice of compact sets K, ; this multiplicity is
the smallest cardinality n of any family of orthogonal cyclic reducing
subspaces {h;} for A such that

b = EB[’JJ'.
This multiplicity is the Lo, norm of the multiplicity function
ny = dim (range (Py)).

Proof. For any K,, the characteristic function of K, corresponds
to a projection operator Ls(J,u), where J is the joint spectrum.
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This clearly strongly commutes with multiplication by any A;, so it
corresponds to an element P, of A’, since the original Hilbert space
is isometric to Lo(J, ). Hence, the restriction of A to the range of
P, is another von Neumann algebra, which clearly has a generalized
eigenfamily for P,W = W,, P,V = V,; these spaces have the same
properties relative to the range of P, as the spaces W,V do relative to b.
However, for this space, the generalized eigenprojections are continuous
functions of A, as A moves through the joint spectrum. Since each P, is
a limit of spectral projections, it follows from the construction of [11]
plus the uniqueness theorem, that our multiplicity is less than or equal
to the usual multiplicity, which is the number n above. a

Theorem 24. With p given, we may find another positive measure
w1 which also admits a generalized eigenfamily, with the same sets
{K,}, and with for each A

HP,\ .C (WW') H — 1
We call the unique eigenfamily
A— Py

with this property W normalized.

Proof. Let
dpy = || PAll dp (A) -

The generalized eigenprojections for the measure p, are of the form

P,
Pl

Theorem 25. If a generalized eigenprojection has multiplicity one,
and each Py is W normalized, and F € range (Py) with

IF: V=1,

then
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Proof. 1t is clear that Py must be a multiple of F\(0)F. Since P, is a
limit of positive multiples of spectral projections, it must be a positive
real multiple of F(6)F)\. Since P, is W normalized, the only possible
multiple is 1. O

3. General expansions of spectral multiplicity one. In
case the multiplicity of the expansion is one, better estimates on
convergence may be obtained. The reason is that part of the problem
of convergence is to sum over the cyclic subspaces to obtain the
generalized eigenprojections; in the multiplicity one case, that problem
no longer exists. A technical point is that, to apply the result in
concrete situations, it is usually necessary to use our definition of
multiplicity in terms of the dimension of the range of the generalized
eigenprojections. For this to make sense, we need a base space W where
the expansion exists; in the general situation we assume this, but in
practice it is often possible to take

W = G5 (M)

where M is a Riemannian manifold.

To get multiplicity one in the number theory example below, we use
an expansion for the Laplacian and the Hecke operators on the fun-
damental domain, not just the Laplacian. Hence, for this application,
it is essential to use an algebra of commuting operators, rather than
just a single operator. Note that, in this case, we are able to reduce
our hypotheses to the Hilbert-Schmidt level, analogous to the theory
of Poerschke-Stolz-Weidmann in the case of a single operator. In what
follows, then, the original generalized eigenprojections lie in C(W, W').

Remark 26. In what follows, we are attempting to set up an abstract
scheme which can deal with actual uniform convergence; in other words,
convergence with respect to a weighted L., norm. In order to do this
in the dual space formalism we have been using, it turns out that the
space we want as a target space for convergence is not the dual space
of our space of test functions, but that an embedding exists from a
subspace of this dual space into the target space. This explains the
need for the hypotheses below.
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Definition 27. In what follows, W is a space which admits a regular
embedding scheme, Z is a Hilbert space containing W, such that

WczZch=HycZ cw:

the embedding of each space into the next is continuous, and each space
is dense in the next one. Let B be a Banach space containing Z. We
say that a Z, B spectral embedding exists if following properties hold:

1.
ZCcBcZ,

2. the embedding of Z into h is two-nuclear;
3. the embedding of Z into B is nuclear;

4. each P, in the generalized eigenfamily associated with W extends
to a bounded linear transformation

PieC(2,2');

5. for some i, there exists a positive constant C' and a positive integer
n such that if F € Z' ¢ W', and

(AY' Fez,
then F' € B;
6. for the i in the previous hypothesis, Z C D(A?).

Remark 28. If the eigenfamily P, has multiplicity one, there is
always a Z, B spectral embedding when B = Z'. For properties 5
and 6, we may take i = 0 and A; to be the identity. The existence
of the generalized eigenfamily follows from Theorem 3.11 together
with Theorem 3.15 of Sakata [11], which is stated below. That the
embedding of Z into Z' is nuclear follows from the fact that if E is
the two nuclear embedding from Z into b, then A* is a two nuclear
embedding from b into Z’, so that A*A is a product of two nuclear (or,
in other language, Hilbert-Schmidt) operators between Hilbert spaces,
and is therefore nuclear (or, in other language, trace class).

o In order to deal with the multiplicity one case, we need the following
theorem, which combines Theorems 3.11 and 3.15 of Sakata [11].
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Theorem 29. Suppose that W is either a Hilbert space with a two
nuclear embedding into h or a Banach space with a nuclear embedding
into h. Let S, be a cyclic subspace, generated by a single vector e.
Then a generalized eigenfamily exists on S., corresponding to P(S.)W,

P(Se)w, where the algebra A, is the smallest von Neumann algebra in
S generated by the restrictions of A to S..

Remark 30. In the situation of this paper, S = 0, since the
generalized eigenfamily has multiplicity one.

Theorem 31. Suppose that W admits a reqular embedding scheme
and that the associated expansion has multiplicity one. Therefore, by
Theoremn 17, there exists a unitary operator from f onto Lo(J, u), where
L 1S any positive measure which is mutually absolutely continuous with
respect to the spectral measure generated by the cyclic vector, such that
forp e W,

U¢(z) = F. (9)

for every
peW;

here

F,ew
and the projections P, obey
Pz(¢) :Fz(¢)Fw'

Suppose that a Z, B spectral embedding holds. Then

1. for almost every z € J,

P, € C(Z,B);

2. let {K,} be any tower of compact sets satisfying the definition of
a generalized eigenfamily: then for every K, the mapping

r— P,
is continuous from K, into

C(Z,B);



GENERALIZED EIGENFUNCTION EXPANSIONS 261

3. for every € > 0 there exists set K,, such that for any ¢ € Z such

that ||| = 1,
0 — Pydp(M) ) : B .
|0 [ psmwen) 5] <

Proof. That each Py extends to an element of C(Z, Z'), and that the
mapping
A— Py € C(Z,Z’)

is continuous on each K, follows from [11, Theorem 3.15]. That each
P, € C(Z, B) follows from the definition of a spectral embedding and
the closed graph theorem. Continuity from each K, of the mapping

A—)P,\EC(Z,B)

follows from the continuity on K, into C(Z,Z") plus the fact that for
some C,

|45 :C (2", 2")| < Cn

on each K,,; this fact follows directly from the fact that A — P, is a
generalized eigenfamily.

We need only prove the second property. However, this follows from
the fact that the element P(K,) is in C(Z, B), and that if E is the
identity embedding from Z into h, the norm of E — P(K,) in C(Z,)
goes to zero as n — 00, as may be seen from [8, Lemma 230, page
72], together with Theorem 17. Therefore, it follows that the same
projection goes to zero in norm in C(Z, D(A;)), since Z is in the domain
of A?. Finally, property 5 in the definition of a spectral embedding
shows that if £z p is the embedding from Z into B,

[(Ezp (E - P(Ky))): C(Z,B)| —0. O

Remark 32. Corollary 1 follows immediately. We restate it here.

Corollary 33. Under the hypotheses of the previous theorem, for
every € > 0, there exists a compact subset K of the joint spectrum, and
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a positive §, such that for every d-net {\;} of K there exists a set of
generalized simultaneous eigenfunctions F; such that

ALFy, = ()), P,

and a set of complex constants c; such that, for every ¢ in the unit ball
of Z,

< €.

(e)
‘ 6— 3 ¢y, (6) P,
=1

Here, F; and c; are independent of ¢. c¢; and n(e) in general depend
upon the choice of { Fy,}, though once {\;} is chosen, {F},} is of course
unique up to a constant.

4. Estimates on nonpositively curved two dimensional Rie-
mannian manifolds. In order to apply the above theory to situations
which are of interest in geometry and number theory, we need estimates
which guarantee that a space Z has an embedding into L.

Definition 34. Let M be a complete simply connected two-
dimensional Riemannian manifold of nonpositive curvature. Let {E;}
be a local frame field constructed by parallel translating an orthonormal
basis at p. Let a be multi-index, or in other words a finite sequence

{a (D)},
where each (i) is one or two. Define

D® = Dg --Dg

a1) a(n)

where Dpg, denotes covariant differentiation. We say that M has
bounded geometry if, for every multi-index «, and every i,

sup sup |[DOEi| <M,
peEM d(z,p)<1

where M, is a constant depending on a.

Remark 35. An inequality of the above type does not depend upon
which orthonormal basis is used at p.
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Remark 36. The upper half-plane, with the Poincare metric, which
we call hyperbolic space, has bounded geometry. For any space with
bounded geometry in the above sense, its Riemannian curvature tensor,
together with all covariant derivatives, is a bounded multilinear form.

Definition 37. On a complete Riemannian manifold M, let L™
denote the nth power of the Laplacian, considered as a differential
expression. Let (L£™)o denote the closure of the restriction of £™ to
Ce(M).

e The following theorem is fundamental in the study of spectral
geometry.

Theorem 38 (Cordes). Let M be a complete Riemannian manifold.
Then (L™)q is self-adjoint for any n. Furthermore, if

H =L,

then
H" = (L"), .

Corollary 39. If f € Lo(M) and (L™)of € L2(M), where the
derivatives are taken in the distribution sense, then

feDH.

Corollary 40. H is identical to the Friedrichs extension of the
restriction of (L)o to C§°(M).

Lemma 41. Let H be the self-adjoint Laplacian on the universal
cover of M, where M is a complete simply connected two-dimensional
bounded geometry Riemannian manifold of nonpositive curvature. Let
6 > 0. Let U be any ball of radius 1 about p in M. Then exp;1 Uisa
ball of radius 2 about 0 in T,(M), where exp,, is the exponential map
taking (in this situation, where M is Hadamard manifold) the tangent
space T,(M) onto M. Let

felg(U).
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Let N be a positive integer. Then there exist constants C,e such that

e (IFI+ [ ) <1f o expy | + 1Y (1 0 expp) [ <€ (IF1+ ][ 27 1)),

where Hy is the self-adjoint Euclidean Laplacian on T, M.

Remark 42. The hypothesis that M is simply connected is needed
only to assure that such balls exist.

Proof. About any point p, coordinate the open unit ball by using
the exponential map in the following way: select an orthonormal basis
{X1,X,} for T,(M). If | X| =1, and

y = exp,, (X1)
with {c1,c2} a set of real numbers such that
X =1 X1 + 2 X0,

then
@ (y) = (t,c1,¢2).

This map is smooth. Now

where {E;} is the local frame field formed by parallel translating the
basis {X;} on the unique geodesic from p.

Note that the differential of the exponential map is given by solving
the Jacobi equation, which is an ordinary differential equation which
depends only upon the Riemannian curvature tensor. It follows that
the exponential map and its inverse are uniformly Lipschitz; the same
is true for its differentials of any order.

The conclusion of the lemma now follows from elliptic regularity in
T,(M). o

Lemma 43. Let W be a ball of radius one about some point p € M.
Suppose that
f € Ly (W)
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and ‘

Hif € Ly(W).
Then, if U is a ball of the same center and radius 1/2, f agrees on U
with an element g of C§°(W); furthermore, there is a universal constant
C such that we may find such a function g with

lgll + [[#7g|| < C (LI + [|E7 £]]) -

Proof. This is a standard cutoff function argument. O
Theorem 44. Let f € D(H). Then f € Loo(M).

Proof. Restrict f to a ball of radius 1, and use the previous two

lemmas and the Fourier transform on the Euclidean Laplacian on
T,(M). o

5. An example from number theory. In this section, we apply
the above theory to the algebra generated by the Hecke operators
and any fundamental domain for the modular group. A fundamental
domain, defined for a subgroup G of the modular group I, is an open
subset of the upper half plane with the following properties: (a) no two
distinct points of the subset are equivalent under G; (b) if z is in the
upper half plane, there is a point 2’ in the closure of the subset such
that 2’ is equivalent under G. Recall that two points z and z’ are said to
be equivalent under G if 2’ = Az for some A in G. Here we may assume
that it is the usual fundamental domain which is given by |z| > 1 and
|z + Z| < 1, since all such are isometric. Any fundamental domain is a
complete Riemannian manifold, because it is the quotient of hyperbolic
space by a discrete group of isometries. We include some fundamental
material on the injectivity radius, for the convenience of the reader.
Two nuclear mappings are sometimes called Hilbert-Schmidt; the terms
mean the same thing, in a Hilbert space.

We summarize known facts about this expansion [5]:
e It is an integral expansion of type

: /tw e (0) E (2,5)dt + 310, 151 £,

0(z)=—
4m =—00,5=(1/2)+it

j=1
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where

0 € C§° (D)
and

cs (0) = /D 0 (2) E(z,s) dz,

and where E(z,s) is a C* function which is a simultaneous eigen-
function of the Laplacian £ on the fundamental domain and all Hecke
operators, meaning that as a distribution, and therefore as a C*° func-
tion,

L(E(zz)=5(s—1)E(z,s),

T, (E(z,8)) = \E(Z,s)

for each Hecke operator, where A = {\,}. It is well known that there
exists at most a one-dimensional simultaneous eigensolution for these
operators. The equality in the above expansion is in the sense of the
Plancherel theorem: the map from 6 to

Cs (0) ’ {[07 fz]}

is unitary, from C§° to La(R) x 2. (This is analogous to the Ly Fourier
transform). The F(z,s) are functions given by the Eisenstein series,
and they are known to have the property that for any € > 0

y~YDE (2,5) € Lo (D).

We ask several questions here:

e What is the relationship of this expansion to one derived from our
theory?

e Is the convergence of this expansion uniform in the sense discussed
above (analogous to the theory of the Fourier transform where the
transformed function lies in L;), or to Fourier series for a function in,

say, W40,1]?

e If the expansion is uniformly convergent, is the convergence ob-
tained by our theory optimal? (This means that, for nice functions at
least, it should converge uniformly after being multiplied by y—(1/2)~¢))

The answer to the first question is that a simple transformation turns
this expansion into one of the type above, and the answers to all of the
other questions are “yes.”
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Definition 45. Let I' be the modular group, considered as a group
of transformations taking the upper half plane H, with the hyperbolic
metric, into itself. Hence, if v € T,

(2) = az+b
v T cz+d
where a,b,c,d € Z, and

ad —bc=1.

Note that, if we regard v as a matrix

~ f[a b

7 - c d )
the map from 7 to « is a homomorphism with kernel 1. Let D denote
the fundamental domain of T'; select the usual one above the unit circle

and symmetric with respect to the y axis. Note that D is a complete
Riemannian manifold under the hyperbolic metric, with finite volume.

Definition 46. Let n be a positive integer. For f € Ly(D), let

T.f (2) = %Z(Sf(“;bd)

d|n b=1

Note that f extends to an element of L¥°(H) which is invariant under
the modular group, and then T, f has the same property, so that
T, f corresponds also to an element of Ly(D). T, is called the Hecke
operator corresponding to n.

Lemma 47. The Hecke operators have the following properties, for
any n,m € Z:

1.

2. if m and n are relatively prime,

Tan = dm+n,
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3. each T, is bounded and self-adjoint;

4. Let H denote the self-adjoint Laplacian on Dj; that is, H is the
restriction of the Laplacian L to the set of all f € Lo(D) such that
L(f) € La(D); then for each T,,, T,takes D(H) into D(H), and for
f € D(H),

T, (Hf) = H(T.f).

Remark 48. The Hecke operators are of fundamental significance in
number theory. They are associated with subgroups of the modular
group, and correspond to “hidden symmetries” of the fundamental do-
mains of these subgroups, that is, rotational symmetries which are not
members of the modular group. In a sense, the Hecke operator averages
over these symmetries in order to produce a function which is invariant
under the modular group. For mathematical physicists, though, the
Hecke operators may be considered as an extra family of observables
which is needed to produce a complete (maximal) commuting family,
that is, a family with multiplicity one. (This is well known and may
be shown by Fourier series techniques.) A further comment is in order:
the Hecke operators are often considered in number theory as acting on
Hilbert spaces of modular forms. However, here, they are acting only
on functions of weight zero (that is, functions which are invariant under
the modular group), and these are not assumed to have any smoothness.
Nonetheless, the expansion we develop here is well known to be impor-
tant in number theory, and is useful for expanding number theoretic
functions such as the Selberg trace function. Thus, the expansion we
develop is well known, although looking at it from a functional analytic
point of view is nonetheless helpful; our hope is that the convergence
properties given in this paper, which appear to be new, might prove to
be useful in number theory in some of the same ways that, for exam-
ple, uniform convergence of Fourier series for differentiable functions is
useful in mathematical physics.

Theorem 49. Let A be the von Neumann algebra in Ly (D) generated
by the spectral projections for the self-adjoint Laplacian on Ly(D) and
the Hecke operators. Then A is commutative.
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Proof. 1t is easy to see that the Hecke operators are a commuting
family of bounded self-adjoint operators, and is known (and not difficult
to see) that for any Hecke operator T', and any

¢ € C5° (D),

if £ is the Laplacian on this domain

L(T(¢)) =T (L(4))-

The self-adjoint operator H on Ly(D), formed by taking the Friedrichs
extension of the restriction of £ to C§°(D), is known by Cordes’s
theorem to be the closure of its restriction to C§°, since by that theorem
this is true for any complete Riemannian manifold. It is obvious that
any Hecke operator T takes C§°(D) to itself. Hence, given a sequence
{6,.} of continuous functions converging in Ly(D) to f € D(H), such
that
L(0n) — Hf,
it follows that
TL(0,) — THf

and therefore
TfeD(H),

H(Tf) =T (Hf).

By the spectral theorem, T" commutes with the spectral projections for
H. The conclusion follows immediately. O

e In the next lemma, we assume that y > 3 because that is where
problems occur. The rest of D is compact and offers no analytic
challenges.

Theorem 50. Let H be the self-adjoint Laplacian on M. Let
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If B > 1/2 and f € C§°(D), there exists a universal constant C' such
that

If : Loo (Ua)l| < Caf (I(H +1) f: Lo (Ua) || + || : Lz (U)])) -

Proof. We may assume without loss of generality that f is supported
on U, using a standard partition of unity argument. Note that f
extends to a smooth function on hyperbolic space which is invariant
under the modular group; this extension is periodic in & with period 1.
The set of all (z,y) in hyperbolic space such that

(z,y) eUNV

where

V=A{(z,y) :y € Uy, |2| <[3a+1]},

where
[Ba + 1]

denotes the greatest integer function, contains a ball about (0,a) of
hyperbolic radius greater than one independent of a. To see this, recall
that geodesics are semicircles perpendicular to the x axis and perform
an elementary calculation. However, in hyperbolic space, the norm of
the extension E(f) satisfies

1E () < v3a+1]f].

Since the Laplacian £ on hyperbolic space commutes with the modular
group
L(Ef)=E(L(f)),

the result follows from Theorem 44. O

Corollary 51. In the fundamental domain, the map y—<S~! is two

nuclear, where
S=H+1.

Proof. For any positive §, y1/2=% ¢ L,. A Hilbert space mapping
which factors into a mapping from Lo into L., composed with multi-
plication by an Ly function is well known to be Hilbert-Schmidt, which
is the Hilbert space case of a two-nuclear mapping. a
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Lemma 52. Let ¢ > 0. If W is the domain of y—£S~3, with norm
lg : Wil =llh: L (D)]|,

where
g=y°S7°h,
then
W= {(C+ D*(y°9): g€ Lz},

equipped with norm

|+ we):w| =g Lal;

the derivatives are taken in the distribution sense.
Proof. This is an elementary calculation. O

Lemma 53. If L(F) = AF in the distribution sense, and
F=L°(y9);
g € Ly(D), then F € C*(D), and
L (L% (y°9)) =A% (v%9),
so that for every e > 0,

y75£4 (yeg) _ )\yfeESysg_

Proof. The only thing to check is that F' € C'°°, which is just elliptic
regularity. |

Definition 54. Let (g, h) be a closable sesquilinear form with domain
C§°(M). Let Q be the m-sectorial operator which generates the form
(if the form is, for example, positive semi-definite, and (g, h) = [Ag, h],
where [, ] is the usual inner product in La (M), then @Q is the Friedrichs
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extension of A). We say that @ is essentially m-sectorial if ) is the
smallest closed operator containing its restriction to C§°(M).

Lemma 55. Let ¢ > 0. The m-sectorial operator Q associated with
the form
[y L (y°g), h]

on C§° (D) has the property that Q is essentially m-sectorial. Further-
more, Q has domain D(H*), where H is the self-adjoint Laplacian.

Proof. Tts restriction to C§° has the property that, for ||g|| = 1,

7
ly ==L (y°g) — Li|| = Wag,

n=0

where
|Wag < ¢||H%|| + Ka lg]l-

To see this, use the extension technique of Theorem 50, noting that
fractional powers of H and multiplication by powers of y commute
with the extension operator F. In fact, recall that

H\/ﬁfHZ - /M V12 da.

Note that, using cutoff functions as before, we may assume that the
extension of g is supported in a ball of radius 1 in hyperbolic space.
Hence, using elliptic regularity in this ball, we obtain the corresponding
inequality, for the extended functions, where we have used the Leibniz
rule to express the inverse image of

Yy~ L (y°g) — L

on the tangent space 1), (H) in terms of multiples of lower order partial
derivatives. To complete the argument, we pull the extension back into
D, taking the inverse image. Hence, it is not difficult to see that the
range of the closure (with i denoting v/—1)

(y75£4y€ + N)O
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of the restriction of the expression
y—s£4ys 4+ Nj

to
Cy” (D)

is closed, for |N| large enough; this is because the norm of the inverse
of H* + Ni is less than or equal to 1/N. It is also clear that the
nullity of this operator is zero. It follows by Atkinson’s theorem on the
perturbation of the index of a Fredholm operator that the deficiency
indices of

(y <L + N'L')0

are 0, because by Cordes’s theorem the restriction of £* to C§°(D) is
essentially self-adjoint, and hence the deficiency indices of the unper-
turbed operators are zero. The result now follows. a

Remark 56. The same proof, but somewhat simpler, yields the
following

Lemma 57. The m-sectorial operator Q, associated with the form
[y~ L™yg,h] on C§°(D) is essentially m-sectorial and has domain
D(H™) forn=1,2,3.

Corollary 58. Suppose that F € range(Py). Then y °F €

domain (Q;) = domain (H). In particular, y~°y~'/?F € Lo,. Fur-
thermore,

Hy’sy’mFHoo < CAIF| 4.

e We are now ready to state the main theorem of the paper and to
apply it to prove the corollary stated in the introduction.

Definition 59. Let {A,} be the family such that

A =H
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where H is the self-adjoint Laplacian in Ls(D); and
A,:n>1=T,

where T;, is the corresponding Hecke operator, normalized to have norm
one.

Definition 60. Let

W =Cg® (D);
Z={¢p=y09:0cD(H?}
with norm
l¢:Z|| =I[[(H+1)8: Lo
Let

B = {F : yf(l/z)f‘sF € L (D)}Q

IF:B| = Hy*(l/”*&F : LOOH.

Theorem 61. There exists a generalized eigenfamily of multiplicity
one, for {A,}, associated with the space W = C§*(M).

Proof. Existence of the generalized eigenfamily is shown by Theo-
rem 17. Multiplicity one follows from the fact that there exists at most
a one-dimensional simultaneous eigenspace for {4;} in C*°(D). This
is known and is shown by using Fourier series techniques, see Huxley
[5]. O

Theorem 62. Let
A — Py,

be the generalized eigenfamily of Theorem 61, for the family of oper-
ators in Definition 59, corresponding to the Laplacian and the Hecke
operators. Let Z,B be as in Definition 60. For every € > 0 there ex-
ists a compact subset K of the joint spectrum of {A,} such that the
mapping

A —> Py
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is continuous from K into C(Z, B), and such that for any ¢ € Z, such

that
l¢: 2] <1,

|(o- [omoamcn) 5] <=

Proof. We use Theorem 31. We must show that a spectral embedding
exists. Note that
Z CD(H?),

because for
¢€Z,

L% ¢ € Ly
and therefore
Yy~ L% € Ly.
We know that the embedding from Zj into Lo is two nuclear, where
Zo={¢p=y S '0:0€ Ly},
¢ = Zoll =110 : Lo

This follows from Corollary 51. Iterating this, it is not difficult to show
that the embedding from Z into the domain of H is nuclear. In fact, if

A9 =y==S510,

then
AA =y (H+1)7?

Clearly, AA* is nuclear, since it is a product of two-nuclear operators.
However, the range of AA* is the set of all functions f such that

yEf e D(H+1).
In fact, as we saw above, the set of all
0=y (H+1) " (y°f): f €Ls

is the same as the domain of (H +1)?, which is the same as the domain
of H?. Hence, the set of all y=2¢(H + 1)~2f is the same as the range
of AA*.
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It is also easy to see that
ZcD(H?).

Finally, since H2Z C D(H) C B, the conclusion follows. o

Remark 63. Corollary 2 stated in the introduction now follows
immediately. Note that if ; is in the joint spectrum, (A;), is the
associated generalized eigenvalue of A,,.

Corollary 64. For every € > 0, there exists a compact subset K of
the joint spectrum of {A,}, and a positive §, such that for every §-net
{\i} of K there exists a set of generalized simultaneous eigenfunctions
F; such that

LEx; = (A\j); Fi,

T, Fy, = (\), Fy,

and a set of complex constants c; such that, for every ¢ in the unit ball
of Z,

n(e)
<¢ =Y ciFx, (0) F,\j> Bl <e.
i=1

Here, Fy; and c; are independent of ¢. c; and n(g) in general depend
upon the choice of {\;}, though clearly n(e) may be chosen to be
manimal.

Afterword. Professor Robert M. Kauffman passed away on Febru-
ary 8, 2004. He was a great friend and mentor for many of us. He was
also a fine mathematician and generous co-author and contributed half
of the paper, which is one of his final ones.
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