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THE METHOD OF UPPER AND LOWER SOLUTIONS
FOR SECOND ORDER DIFFERENTIAL INCLUSIONS
WITH INTEGRAL BOUNDARY CONDITIONS

MOUFFAK BENCHOHRA, SAMIRA HAMANI AND JUAN J. NIETO

ABSTRACT. In this paper, we prove the existence of so-
lutions of second order differential inclusion with integral
boundary conditions. We rely on the nonlinear alternative of
Leray-Schauder combined with the lower and upper solutions
method.

1. Introduction. This paper is concerned with the existence of
solutions of second order differential inclusion with integral boundary
conditions. We consider the following second order differential inclusion
with integral boundary conditions:

(1)  2"(t) + A\’ (t) € F(t,z(t)), almost everywhere ¢t € [0, 1],

(2) 2(0) = a,

(3) 2(1) = / 9(x(s)) ds,

where F : [0,1] x R — P(R) is a compact valued multi-valued map,
P(R) is the family of all subsets of R, A >0, a € Randg: R - R
is continuous. Boundary value problems with integral boundary con-
ditions constitute a very interesting and important class of problems.
They include two, three, multi-point and nonlocal boundary value prob-
lems as special cases. Integral boundary conditions appear in popula-
tion dynamic [11] and cellular systems [1]. For boundary value prob-
lems with integral boundary conditions and comments on their impor-
tance, we refer the reader to the papers by Gallardo [21, 22], and the
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references therein. Moreover, boundary value problems with integral
boundary conditions have been studied by a number of authors, for
instance, [5, 12-14, 18, 19, 26-28, 30, 33, 37|, and the references
therein. The method of upper and lower solutions has been success-
fully applied to study the existence of multiple solutions for initial and
boundary value problems for differential equations with nonlinear con-
ditions. This method has been used only in the context of single-valued
differential equations. In this regard, we refer the reader to the mono-
graph by Heikkila and Lakshmikantham [24] and Ladde et al. [31], and
to the recent papers by De Coster and Habets [15, 16], Jiang et al. [29]
and Nieto [34, 35]. Recently this method has been used for initial and
nonlinear boundary conditions for differential inclusions in the papers
[6, 8-10, 23, 36] ; see also the papers [2, 7]. In this paper, we shall
present an existence result of solutions for the problem (1)—(3). Our
proof relies on the nonlinear alternative of Leray-Schauder combined
with the lower and upper solutions method. These results extend to
the multi-valued case those considered in the literature.

2. Preliminaries. In this section, we introduce notations, defi-
nitions, and preliminary facts that will be used in the remainder of
this paper. Let AC'([0,1],R) be the space of differential functions
z : [0,1] — R, whose first derivative, z’, is absolutely continuous. The

property
x<E <= z(t) <z(t), foralltel0,1]

defines a partial ordering in AC([0,1],R). If o, B € AC*([0,1],R)
and a < 3, we let

[, B] = {z € ACY([0,1],R) : a < z < B}.

C(]0,1],R) is the Banach space of all continuous functions from [0, 1]
into R with the norm

|z|oo = sup{|z(t)] : 0 < ¢ < 1},

and we let L!([0,1],R) denote the Banach space of measurable func-
tions z : [0,1] — R which are Lebesgue integrable norm

1
||| 1 :/ |z(t)| dt for all z € L*([0,1],R).
0
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Let (X,]|-|) be a normed space, Py(X) = {Y € P(X) : Y closed},
P(X) = {Y € P(X) : Y bounded}, P,,(X) = {V € P(X) :
Y compact} and P (X) = {Y € P(X) : Y compact and convex}.
A multi-valued map G : X — P(X) is convex (closed) valued if
G(z) is convex (closed) for all z € X. @G is bounded on bounded
sets if G(B) = UzepG(z) is bounded in X for all B € P,(X), i.e.,
sup,ep{sup{ly| : y € G(z)}} < co. G is called upper semi-continuous
(usc) on X if for each 9 € X the set G(xp) is a nonempty closed
subset of X and if for each open set NV of X containing G(x¢), there
exists an open neighborhood Ny of z¢ such that G(Ny) C N. G is said
to be completely continuous if G(B) is relatively compact for every
B € Py(X). If the multi-valued map G is completely continuous with
nonempty compact values, then G is usc if and only if G has a closed
graph, i.e., , = Zu, Yn — Ys, Yn € G(x,) imply y. € G(z,). G has a
fixed point if there is an z € X such that z € G(x). The fixed point
set of the multi-valued operator G will be denoted by Fix G. A multi-
valued map G : [0,1] — P,(R) is said to be measurable if for every
z € R, the function

t— d(z,G(t)) =inf{|z — 2| : z € G(t)}

is measurable. For more details on multi-valued maps, see the books of
Aubin and Cellina [3], Aubin and Frankowska [4], Deimling [17] and
Hu and Papageorgiou [25].

Definition 2.1. A multi-valued map F : [0,1] x R — P(R) is said
to be L!-Carathéodory if

(i) t = F(t, ) is measurable for each z € R;
(ii)  — F(t,x) is upper semi-continuous for almost all ¢ € [0, 1];
(iii) for each g > 0, there exists a ¢, € L1([0,1], R ) such that

|1F(t, 2)|| = sup{|v] : v € F(t,2)} < ¢g(t)
for all |z| < ¢ and for a.e. t € [0,1].

Definition 2.2. A function z € AC*((0,1),R) is said to be a
solution of (1)—(3) if =" (¢) + Az'(t) € F(¢,z(t)) almost everywhere on
[0,1] and the function x satisfies conditions (2) and (3).
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For each = € C([0,1],R), define the set of selections of F' by
Sre={ve L' ([0,1],R) : v(t) € F(t,z(t)) a.e. t €[0,1]}.

Definition 2.3. A function a € AC*((0,1),R) is said to be a lower
solution of (1)—(3) if there exists a function v; € L([0,1],R) with
v1(t) € F(t,a(t)) for almost every ¢ € [0, 1] such that o’ (t) + A/ (t) >
v1(t) almost everywhere on [0,1], @(0) < a and «(1) < fol g(a(s)) ds.
Similarly, a function 8 € AC((0,1),R) is said to be an upper solution
of (1)—(3) if there exists a function vo € L([0,1],R) with va(t) €
F(t,B(t)) for almost every t € [0,1] such that 8”(¢) + A8’ (t) < va(¢)
almost everywhere on [0,1], 8(0) > a and S(1) > fol g(B(s)) ds.

The following lemma is crucial in the proof of our main theorem.

Lemma 2.1 [32]. Let X be a Banach space. Let F :[0,1] x X —
P., .(X) be an L'-Carathéodory multi-valued map, and let ' be a
linear continuous mapping from L'([0,1],X) to C([0,1], X). Then the
operator

I'o SF : C([O, 1],X) — Pcp,c(c([oa ]-]7X))a
z+— (T oSk)(z) :=T(Sky)

is a closed graph operator in C([0,1], X) x C([0,1], X).

We need the following auxiliary result. Its proof uses a standard
argument.

Lemma 2.2. For any o(t), p(t) € C([0,1],R), the nonhomogeneous
linear problem

2" (t) + Xz’ (t) = o(t), a.e t
z(0) = a, z(1) = b,

has a unique solution x € AC*((0,1),R) given by

1
z(t) = P(t) +/() G(t,s)o(s)ds,
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where

P(t) = —— la(e™ —e7™) + b(e™ — 1)]

1s the unique solution of the problem
2 (t)+Az'(t) =0, a.e. t €10,1],
z(0) = a, z(1)=1»>
and fol G(t, s)o(s) ds is the unique solution of the problem
" (t) + Xz’ (t) = o(t), a.e. t €[0,1],
z(0) =0, z(1) =0.

Here G is the Green’s function associated to the corresponding homo-
geneous problem, given by

W Gl - — [T 0st<s <
yS) = T — s —At__—
(I-e) | e2obeMoe ) goscp<t,

3. Main result. In this section, we are concerned with the existence
of solutions for problem (1)—(3). We first list the following hypotheses:

(H1) The function F :[0,1] x R — P, .(R) is L'-Carathéodory;

(H2) There exist o and 8 € AC*(]0, 1], R), lower and upper solutions
for problem (1)—(3) such that «(t) < §(t) for each t € [0, 1];

(H3) g is a continuous and nondecreasing function.

Theorem 3.1. Suppose that hypotheses (H1)—(H3) are satisfied.
Then problem (1)—(3) has at least one solution such that

a(t) < z(t) < B(t), foralltel0,1].

Proof. Consider the modified problem

(5) 2" (t) + \z'(t) € Fy(t,z(t)), almost every t € [0, 1],
(6) z(0) = a,

1
(7) £(1) = / a1(x(s)) ds,
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where
F(t,a(t) + 1 f(i)(go‘(g(t” 2(t) < a(t)
Fi(t,z(t) =  F(t,z(t)) a(t) < z(t) < B(t)
F80) + g =0 > 50
and

gr(x(t)) = ¢ 9(x(t)) a(t) < z(t) < B(t)

9(B(1)  =(t) > B(D).

A solution to (5)—(7) is a fixed point of the operator N : C(]0,1],R) —
P(C([0,1],R)) defined by

{g(a(t)) z(t) < a(t)

1 ~
N(z) ={h € C([0,1],R) : h(t) = Pz(t)—i—/o G(t,s)v(s)ds, v € Sllpl(m),

where
gllfl(z) ={ve S};,l(w) su(t) > vi(t) on Ay and v(t) < va(t) on A},

Sk = {v € L'([0,1],R) : v(t) € Fi(¢,z(t)) for t € [0,1]},

Ay ={te€0,1]:z(t) < a(t) < B(¢)},
Ay ={t €10,1] : a(t) < B(t) <=(t)},

and

Rt = g e~ 4 @) [ ntate) ]

e -1

is the unique solution of the problem

z'"(t) + A\’ (t) = 0, almost everywhere ¢ € [0, 1],

2(0) = a, w(l):/o 01 (2(s)) ds

and G(t, s) is the Green’s function given by (4).
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Remark 3.1. (i) For each z € C([0,1], R)), the set Sy, ) is nonempty,
see [32].

(ii) For each z € C([0,1],R)), the set 5},1(95) is nonempty.
In fact, (i) implies that there exists a v € Sllﬂl(w), so we set

w = v1XA, +V2X4, + VX4,

where

Ay ={te[0,1]: at) < z(t) < B(t)}.

Then, by decomposability, w € 5},1(95).

Remark 3.2. Clearly, from Lemma 2.2, the fixed points of N are
solutions to (1)—(3).

Remark 3.3. Notice that F} is an L!-Carathéodory multi-valued map

with compact convex values and that there exists a ¢ € L'([0,1],R)
such that

|Fi(t,z)|| < #(t) +1, for each z € R and t € [0,1].

In order to apply the nonlinear alternative of Leray-Schauder type,
we first show that IV is completely continuous with convex values. The
proof will be given in several steps.

Step 1. N(z) is convex for each z € C([0,1],R).

Indeed, if hy and hs belong to N(z), then there exist wy,wy € §p1 (z)
such that for each ¢ € [0, 1] we have

1
hi(t) = Pu(t) + / G(t, sywi(s)ds, i=1,2.
0
Let 0 < d < 1. Then, for each ¢ € [0,1] we have

1
(dhy + (1 — d)h2)(t) = P.(t) + /0 G(t, s)[dwi(s) + (1 — d)wa(s)] ds.
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Since Sp, () is convex (because F; has convex values), then

dhy + (1 — d)hg S N(:E)

Step 2. N maps bounded sets into bounded sets in C([0, 1], R).

It suffices to show that, for each ¢ > 0, there exists a positive constant
¢ such that, for each x € By = {z € C([0,1],R) : ||z||sc < ¢}, we have

[N ()|l := sup{[|hlleo : b € N(z)} <£.
Let € By and h € N(z); then there exists a v € Sk, (z) such that

1
h(t) = Py(t) + /0 G(t,s)v(s) ds.

By (H1), for each ¢ € [0, 1] we have

[h(8)] < [Po(t)] +/0 G, 5)[[v(s)| ds

1
SI_?+G0/ ©q(s) ds,
0
where
Gy = sup |G(¢,s)],
(t,s)€l0,1]x[0,1]
and
p=lal + ——— (ma in_|a(t) ax [B(0)
L T el T W Al R Py '

Step 3. N maps bounded sets into equicontinuous sets of C'([0, 1], R).
Let r1,72 € [0, 1], 71 < 72 and B, be a bounded set of C([0,1],R) as
in Step 2 and = € By. For each h € N(z) there exists v € S1(x) such
that for each t € [0, 1], we have
1
[h(rz2) = h(r1)| < |Pe(rz) — Po(ry)] +/ |G(ra, 5) = G(ry, 8)|[v(s)| ds
0

1
< |Pa(r2) *Pz(r1)|+/0 |G(r2,8) — G(r1,5)|pq(s) ds.
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Since t — P(t) and t — G(t,s) for each s € [0,1] are continuous on
[0,1], thus uniformly continuous on [0,1], the righthand side of the
above inequality tends to zero as ro — r; — 0. As a consequence of
Steps 1 to 3 together with the Arzela-Ascoli theorem, we can conclude
that N : C([0,1],R) — P(C([0,1],R)) is completely continuous.

Step 4. N has a closed graph.

Let z, — x4, h, € N(x,) and h,, — h,. We need to show that
h« € N(z,). hy, € N(z,) means that there exists a v, € Sp,(s,,) such
that for each t € [0,1]

hn(t) = Py (t) +/0 G(t, s)vn(s) ds,

We must show that there exists an h, € S Fi(z.) Such that for each
te€[0,1]

ho(t) = Po(t) + / G(t, s)u. (s) ds,

Clearly we have

||(hn - Pwn) - (h* - Pz*)

|oo —> 0 as n — oo.
Consider the continuous linear operator
r:LY([0,1,R) — C([0,1],R)
defined by
v— (T)(t) = /01 G(t,s)v(s) ds.
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From Lemma 2.1, it follows that ' o S Fy(z) 18 a closed graph operator.
Moreover, we have

(ha(t) = Pen(®)) € T(Sy o).
Since x, — X, it follows from Lemma 2.1 that
1
ha(t) = Po(t) + / G(t, 5)v.(s) ds
0
for some v, € gpl(m*).
Step 5. A priori bounds on solutions.

Let z € AN(z) for some A € (0,1). Then there exists a v € gp’lyz
such that, for each ¢ € [0, 1],

2(t) = )\[Pz(t) + /0 Gt s)o(s) ds].

By Remark 3.3, for each ¢ € [0, 1], we have

|z(t)| < |Po(t)] +/0 |Gt 5)l|v(s)| ds

<p i [odst Ly
SPT T e 0 VT X

Thus,

1 ! 1
<P ds + ——— = {,.
lell <7+ 1= | 00)ds+ =

Set
U={ze€C(0,1,R) : [|z|loo <+ 1}.

The operator N : U — P(C([0,1],R)) is upper semi-continuous and
completely continuous. From the choice of U, there is no x € 9U such
that z € AN () for some X € (0,1). As a consequence of the nonlinear
alternative of Leray-Schauder type [20], we deduce that N has a fixed
point x in U which is a solution of problem (5)—(7).
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Step 6. The solution z of (5)—(7) satisfies
a(t) <z(t) <B(t) forallte[0,1].
Let = be a solution to (5)—(7). We prove that
a(t) < z(t) forall t € [0,1].

Suppose this is not the case. Let r(t) = a(t) — z(t); then the function
r has positive maximum some ¢y, € [0,1], such that r(¢y) = maxr(¢).
Thus,

r(to) > 0, ' (to) = 0, ' (tg) < 0.

If ¢y € (0,1), then there exists a ¢; € [0, 1] such that
r(t) >0, forallt € [cg,to].

In view of the definition of F, we have

z(t) — a(t)

() + A2 (t) € Bt o) + T iy = o ar

a.e. t € [Cl,to].

Thus, there exists a v(t) € F(¢,a(t)) almost everywhere t € [c1, o]
with v(t) > vy (t) almost everywhere t € [c1, to] such that

z(t) — a(t)

————————, almost everywhere t € |c1, to]-
T+ (0 - all)] ’ et

2" (t)+ Az’ (t) = v(t)+

Using the fact that « is a lower solution to (5)—(7), we have

z(t) — a(t)

o (t) — 2 () = o (t) + Ao/ (t) — v(t) — ———L 5,
(1)~ /(1) = () + X/ (0) = () = 15
almost everywhere ¢ € [c1, to].
Hence,
0> a"(to) — 2" (to) > 0,
which is a contradiction. If ty = 0 and by definition of the lower

solution, we have

0 < 7(0) = a(0) — z(0) = a(0) —a <0,
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which is a contradiction. If t; =1,

0<r(1) = a(1) —/0 g1(2(s)) ds.

By definition of the lower solution, we have

0< [ sta)ds— [ aa(s) ds
_ / l9(a(s)) — g1 (x(s))] ds

Let ¢, € [0, 1] be such that

max (g(a(t)) - g1(2(t))) = g(a(ts)) — g1 (2(t.))-

t€[0,1]

If a(te) > x(ts), we have gi(z(t«)) = g(a(ts))), which implies 0 <
r(1) < 0; this is a contradiction.

If z(t.) > B(t.), we have gi(z(t.)) = g(B(t+))), which implies
0 < r(1) < 0; another contradiction. Thus, «(t) < z(¢),t € [0,1].
Similarly, we can show that z(t) < 3(¢) for all ¢t € [0,1]. This shows
that the problem (5)—(7) has a solution in the interval [, 3], which is
a solution of the problem (1)—(3).
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