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ABSTRACT. Let 2 be a complex f-algebra with a unit
element e. It is shown that a linear functional f on 2l is a
lattice homomorphism with f(e) = 1 if and only if f(a) € o(a)
for all a € 2. More generally, let 2 be a complex Riesz
algebra with a positive unit element e. It turns out that
the principal band B, in 2 generated by e is a projection
band in . Moreover, a linear functional f on 2( is a lattice
homomorphism with f(e) = 1 if and only if f(a) € o(Pe(a))
for all a € 2, where P, denotes the band projection of
2A onto Be. It follows that if F is a Dedekind complete
complex Riesz space then a linear functional f on L"(E) is
an identity preserving lattice homomorphism if and only if for
each T € L"(E) the scalar f(T) is a spectral value in L(E) of
the diagonal component D(T') of T'.

1. Introduction. At the end of the 1960s, Zelasko [20] proved
one of the most famous characterizations of a complex-valued algebra
homomorphism on a complex Banach algebra 2l with a unit element.
Namely, a nonzero linear functional f on 2l is an algebra homomorphism
on 2 if and only if f(a) € o(a) for all a € A, where o(a) denotes the
spectrum of a in 2. The commutative version of this remarkable result
was obtained earlier by Gleason [6] and, independently, by Kahane
and Zelasko [14]. Henceforth, this result is known as the Gleason-
Kahane-Zelasko theorem in the vast literature on the subject. In this
regard, Jarosz [13] gave an interesting historical account which can be
consulted for more bibliographic information concerning the Gleason-
Kahane-Zelasko theorem. It is well known that, to a quite large extent,
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algebra homomorphisms play the same role in the theory of Banach
algebras that lattice homomorphisms do in the theory of f-algebras.
Thus, it is to be expected that complex-valued lattice homomorphisms
on unital complex f-algebras will have a similar characterization. This
indeed turns out to be the case. Our first result asserts that if 2 is a
complex f-algebra with a unit element e and f is a linear functional
on 2, then f is a lattice homomorphism with f(e) = 1 if and only if
f(a) € o(a) for all a € 2A. Here also o(a) indicates the spectrum of a.

Quite recently, Huijsmans [8] observed that if 2 is a complex Banach
lattice algebra with a positive unit element e, then the principal band
B, in A generated by e is a projection band. He then bet on the
Gleason-Kahane-Zelasko theorem to prove that if f is a linear functional
on 2 then f is a lattice homomorphism with f(e) = 1 if and only if
f(a) € o(P.(a)) for all a € A, where P, denotes the band projection
of 2 onto B.. In this note, we use our aforementioned main theorem
to generalize Huijsmans’s theorem to arbitrary complex Riesz algebras
with positive unit elements. Explicitly, we consider a complex Riesz
algebra 2 with a positive unit element e as introduced by Huijsmans
[9, 11] himself, and we show that the principal band 9B, in 2 generated
by e is again a projection band. Then we prove that a linear functional
f on A is a lattice homomorphism with f(e) = 1 if and only if for
every a € 2 the scalar f(a) is a spectral value of the projection of a
onto B.. As a consequence, we show that if E is a Dedekind complete
complex Riesz space and L"(FE) is the complex Riesz algebra of all
regular linear operators on E, then a linear functional f on L"(FE) is
an identity preserving lattice homomorphism on L"(E) if and only if
for each T' € L"(E) the scalar f(T) is a spectral value in L(E) of the
diagonal component D(T") of T introduced by Schep [18]. Here, L(E)
is the algebra of all linear operators on E. This extends another earlier
result by Huijsmans [8], who discussed the case where E is in addition
a Banach lattice.

Finally, we point out that in each section we summarize enough nec-
essary background material to keep this note reasonably self contained.
In this connection, the classical book [16] by Meyer-Nieberg is adopted
as the unique source of unexplained terminology and notation.

2. Complex lattice homomorphisms on f-algebras. A real
Riesz space A is called a Riesz algebra (or a lattice-ordered algebra) if A



GLEASON-KAHANE-ZELASKO TYPE THEOREMS 3

is simultaneously an associative algebra over the real field R such that
|ab] < |a||b] for all a,b € A.

Clearly, the positive cone AT of the Riesz algebra A is closed under
multiplication. The Riesz algebra A is called an f-algebra if

lac| A |b] = |ca| A o] =0 for all a,b,c € A with |a| A |b] = 0.

It is readily verified that the Riesz algebra A is an f-algebra if and
only if a,b,c € AT and a Ab = 0 imply (ac) Ab = (ca) Ab=0. An
Archimedean f-algebra is commutative and has positive squares. In
particular, if A has a unit element e then e is positive. The reader can
consult [11, 19] for more information about real Riesz algebras and
real f-algebras.

Now, let 2 be a complex Riesz space, that is, 2 is the complexification
A + iA of a uniformly complete real Riesz space A [16]. Thus, each
element a € 2 has a unique decomposition a = Re (a) + iIm (a) with
Re (a),Im (a) € A. Recall that the modulus of an element a of 2 is the
positive element |a| of A given by the formula

|a| = sup {Re (exp (iz)a) : 0 <z < 27}.
Obviously, if a € 2 then
Re (a)| < |a| and |Im (a)| < |af.

As for the real case, 2 is called a Riesz algebra (or a lattice-ordered
algebra) if 2 is in addition an associative algebra over the complex field
C such that

|ab| < |a||b] for all a,b € 2.

It is easily seen that if 2 is a complex Riesz algebra then A is a real Riesz
algebra with respect to the multiplication inherited from 2. Conversely,
if A is a real Riesz algebra, then its multiplication extends uniquely to
a multiplication in 2 so that 2 becomes a complex Riesz algebra. The
proof of this converse is far from being trivial and can be found in [9].
If the complex Riesz algebra 2l has a unit element e, then e must be a
member of A but need not be positive [8]. The spectrum of an element
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a of the complex Riesz algebra 2 is denoted by o(a), as usual. We refer
to [9, 11] for more background on complex Riesz algebras.

The above definition of real f-algebras can be extended in an obvious
way to the complex case. Precisely, the complex Riesz algebra 2 =
A+ 1A is called an f-algebra if

lac| A |6 = |ca| A|b] =0 for all a,b,c € A with |a] A 6] = 0.

Actually, the complex Riesz algebra 2 is an f-algebra if and only if the
underlying real Riesz algebra A is an f-algebra [3]. Hence, any complex
f-algebra 2 is commutative since the real f-algebra A is assumed to be
uniformly complete and then Archimedean. Moreover, the unit element
e of a complex f-algebra is always positive. On the other hand, the
equality

|ab| = |al|b] for all a,b e

holds as soon as 2l is a complex f-algebra. Also, if a is an invertible
element in the complex f-algebra 2 with a unit element e, then so is
its modulus |a|. The converse also holds, that is, if |a| has an inverse
in 2, then so has a. In particular, if a € 2 and |a| > e then a has an
inverse in 2 [4]. Complex f-algebras are studied extensively in [3, 11].

At this point, let 2 be a complex Riesz space and A the uniformly
complete real Riesz space such that A = A+ iA. A linear functional
on 2 is a linear map of A to C. The linear functional f on 2 is said
be real if f maps A into R. Hence, the linear functional f on 2 is real
if and only the restriction of f to A is a linear map of A to R. The
linear functional f on 2 is said to be positive if f is increasing, that is,
f(a) < f(b) in R whenever a < b in A. Clearly, the linear functional
f on 2 is positive if and only if f sends AT to positive real numbers.
Hence, any positive linear functional on 2 is real. The linear functional
f on 2 is called a lattice homomorphism if

f(la)) =|f(a)] forallac A

Obviously, any lattice homomorphism on 2 is positive and then real. In
fact, the linear functional f on 2 is a lattice homomorphism if and only
if f is real and the restriction of f to A is a real lattice homomorphism
on A. So, the linear functional f on 2 is a lattice homomorphism on
A if and only if f is positive and

f(a)f () =0 forallabe AwithaAb=0.
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Finally, if 2 is a complex Riesz algebra then a linear functional on 2 is
called an algebra homomorphism if

f(ab) = f(a)f(b) forallabe

More about lattice homomorphisms on complex Riesz spaces can be
found in [16, 17].

We have gathered now all the ingredients for the main result of this
note.

Theorem 2.1. Let A be a complex f-algebra with a unit element e,
and let f be a linear functional on A. Then the following are equivalent.

(i) f is a lattice homomorphism with f(e) = 1.
(ii) f is a nonzero algebra homomorphism.
(iii) f(a) € o(a) for all a € 2.

Proof. (i) = (ii). The proof of this implication follows straightfor-
wardly from its correspondent real version, which can be found in [12].

(i) = (iii). Routine.
(iii) = (i). The equality f(e) = 1 is straightforward. We first prove

that f is positive (and then real). Let z be a complex number and
a € AT, Hence,

|a — ze| = |(a — Re (2) €) + iIm (2) e] > (max {—Rez,|Im z|})e.

Thus, if Im(z) # 0) or (Im(z) = 0 and Rez < 0), then a — ze is
invertible in . It follows quickly that all spectral values of a are
positive real numbers. In view of (iii), we derive that f(a) is again
a positive real number. This means that the linear functional f is
positive, as required.

Finally, we establish that f is a lattice homomorphism. Since f is
positive, it suffices to prove that f(a)f(b) = 0 for all a,b € A with
a Ab = 0. Arguing by contradiction, assume that there exist a,b € A
such that a Ab =0 and f(a)f(b) # 0. Define

=——a and wv=——0>.

f(a) 1 (0)
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Obviously, f(u) = f(v) = 1. On the other hand, from a A b = 0 it
follows that uw A v = 0. Therefore,

e=e—(unv)=(e—u)V(e—v)<l|le—u+i(e—v).

We derive that e — u + i(e — v) is invertible in 2. Consequently, we get
0¢o(e—u+i(e—v)) and, by (iii), f(e — u+i(e — v)) # 0. But this
contradicts the calculation

fle—u+ile—v))=f(e)—f(u)+i(f(e)—f(v)=0.

The proof of the theorem is complete. O
We end this section with the following remarks.

Remark 2.1. Let C(X) indicate the set of all complex-valued contin-
uous functions on a topological space X. Clearly, C(X) is a complex
f-algebra with respect to the pointwise operations and ordering. Be-
sides, the constant one function on X is a unit element in C(X). If
X is pseudocompact, i.e., each function in C(X) is bounded [5], then
C(X) is a complex Banach algebra under the uniform-norm. From
the Gleason-Kahane-Zelasko theorem, it follows directly that a linear
functional f on C'(X) is a nonzero algebra homomorphism if and only
if

f@eaX)={a(z):z € X}.

However, Theorem 2.1 shows that this characterization of nonzero
complex-valued algebras homomorphisms on C'(X) holds actually for
any topological space X.

3. A generalization of a theorem by Huijsmans. Let A
be a complex Riesz space, and let A denote the underlying uniformly
complete real Riesz space. Recall that a vector subspace B of 2 is
called an ideal if a € B whenever a € 2 and |a| < |b] for some b € B.
An ideal B of 2 is called a band in A if BN A is a band in A. Also, the
band 5 in 2l is said to be a projection band if BN A is a projection band
in A. The band B in 2 is a projection band if and only if A = B B+,
where B is the disjoint complement of B in A given by

B ={acA:|a|Alb|=0forallbecB.}
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Clearly, the set of all bands in 2 is closed under arbitrary intersection,
so that the principal band B, in 2 generated by an element e € 2 in A
can be defined as the smallest band in 2 that contains e. We refer the
reader to [16, 17, 19] for further information about bands in complex
Riesz spaces.

Now assume 2 to be a complex Riesz algebra with a positive unit
element e. A subset B of 2 is called an f-subalgebra of 2 if B is a
Riesz subspace of 2 and an f-algebra with respect to the operations
and ordering inherited from 2. Furthermore, the f-subalgebra B of 2
is said to be full if 98 is inversion closed, that is, if a € B has an inverse
a1 in A then a=! € B. It turns out that the principal band B, in A
generated by e is a full f-subalgebra of 2. The details follow next.

Theorem 3.1. Let 2 be a complex Riesz algebra with a positive unit
element e. Then the following hold.

(i) B is a projection band in A.
(ii) B, is a full f-subalgebra of A.

Proof. First, recall that the underlying real Riesz algebra A is
uniformly complete and has e as a positive unit element. Let B, be
the principal band in A generated by e. It is readily verified that 9B,
coincides with B, + iB,.

(i) By definition, B, is a projection band in 2 if B, is a projection
band in A, which has been proved by Basly, Huijsmans, de Pagter, and
Triki [1, Theorem 4] (see also [10]).

(ii) Lavric [15, Theorems 1 and 2] proved that B, is a full f-
subalgebra of A. This means that B, is an f-algebra with respect
to the ordering inherited from A and contains the inverse of every
element of B, which is invertible in A. It follows directly that 9B, is an
f-subalgebra of . It remains to show that B, is full. Hence, let a € B,
and assume that a has an inverse a~! in 2A. We claim that a~! € B..
To this end, put @ = Re(a) — iIm (a) and remark that @ € B,. A
simple calculation yields that @ has @' = Re(a™!) — iIm(a™') as
an inverse in 2. Since B. is an f-subalgebra of 2, the equalities
|a|? = a@ = Re(a)? + Im (a)? hold in B., where we use a result by
Beukers, Huijsmans, and de Pagter [3, Section 5]. We derive that |a|?



8 YOUSSEF AZOUZI AND KARIM BOULABIAR

has an inverse |a| 2 in 2. Observe that

e=laf*la] * = |a*Re (la) ) +ila m (Ja| )

Im <|a|_2> — |a|™? (\a|21m <|a\_2>> —0.

Hence, |a| 2 € A. On the other hand, a € B, and thus |a|? € B,. But
then |a|=2 € B, because B, is a full f-subalgebra of A. As B, is an
f-subalgebra of 2, we obtain

and so

al=ataf’la]*=ala * B,

and we are done. O

Let 2 be a complex Riesz algebra with a positive unit element e. By
Theorem 3.1 (i), one may define the projection operator P, of 2 onto
B., which is usually called a band (or order) projection because B, is
a projection band in 2. In particular,

|P. (a)] Ala— P.(a)] =0 for all a €2,
and hence,
la| = |a — P. (a)| + |P. (a)] forallae

(see [19, Section 91] for these properties).

We are in a position at this point to characterize identity preserving
complex-valued lattice homomorphisms on 2.

Theorem 3.2. Let A be a complex Riesz algebra with a positive
unit element e and f a linear functional on A. Then the following are
equivalent.

(i) f is a lattice homomorphism with f(e) = 1.
(ii) f(a) € o(Pe(a)) for all a € 2A.
Proof. (i) = (ii). Let a € B2 and observe that |a| A e = 0 leads to

|f (@) AL=f(la))Af(e) =0.
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Therefore, f(a) = 0. It follows that
f(a)=f(P.(a)) forallac.

By Theorem 2.1, if a € 2, then f(a) = f(P.(a)) € 0c(Pe(a)), where
0e(Pe(a)) denotes the spectrum of P.(a) in the f-subalgebra 9B, of 2,
see Theorem 3.1 (i). But the f-subalgebra 9B, is full in 2, where we
use Theorem 3.1 (ii). We derive that o.(P.(a)) = o(P.(a)) and then
f(a) € o(P.(a)), which is the desired result.

(ii) = (i). First of all, notice that

fle) eo(Pe(e)) =0 (e) ={1},

so f(e) = 1. Furthermore, if a € B, then f(a) € o(a). Hence,
Theorem 2.1 yields that f is a lattice homomorphism as a linear
functional on %B.. On the other hand, if a € BY then

f(a) € o (Pe(a)) ={0}.
Consequently, if a € 2, then

f(lal) = f(IPe (@) + o = Pe (a)])
= f(IPe (a)]) = [f (P (a))]
=|f (Pe(a)) + f(a = Pe ()| = [f (a)].

Hence, f is a lattice homomorphism and the proof is finished. O

Now, let E be a Dedekind complete complex Riesz space, and let
L"(E) denote the Dedekind complete complex Riesz space of all regular
linear operators on E. Clearly, L"(E) is a complex Riesz algebra with
respect to linear operators composition. The principal band in L"(E)
generated by the identity operator I on E coincides with the set of all
orthomorphisms Orth (E) on E. Recall, by the way, that = € L"(FE) is
called an orthomorphism on E if

|7 (a)] A 6] =0 for all a,b € A with |a| A |b] =0.
Hence, any orthomorphism 7 on F preserves disjointness, meaning that

|7 (a)] Al (b)] =0 for all a,b € A with |a| A |b] = 0.



10 YOUSSEF AZOUZI AND KARIM BOULABIAR

Therefore, if 7 € Orth (E), then
m (a)] = x| (Ja]) = |7 (fa])| = ||| (a)]  for all a € 2A,

where we use a result by Grobler and Huijsmans [7] (see also [2]). In
view of Theorem 3.1, Orth (E) is a projection band in L"(E) and a
full f-subalgebra of L"(E). But these properties of Orth (E) can be
obtained alternatively and quite easily from their corresponding real
versions [16]. The band projection of L"(E) onto Orth (E) is called
the diagonal operator and denoted by D rather than by P;. The
terminology and notation were chosen by Schep [18] because if E is
of finite dimension then Orth (E) can be identified with the collection
of all diagonal matrices. The reader is encouraged to consult [4] for
further information on orthomorphisms on complex Riesz spaces.

The complex algebra of all linear operators is denoted by L(E), as
usual. Clearly, L"(E) is a subalgebra of L(E). The spectrum of an
operator T' € L(E) is denoted by o(T), that is,

o(T)={z€ C:T — zI is not invertible in L (E)}.

The order-spectrum of T' € L"(E) is denoted by o,(T) and it is given
by
0o(T)={z€ C:T — zI is not invertible in L" (E)}
(see [16]).
We arrive to the last result of this note.

Corollary 3.1. Let E be a Dedekind complete complex Riesz space
and f a linear functional on L"(E). Then the following are equivalent.

(i) f is lattice homomorphism with f(I) = 1.
(ii) f(T) € o(D(T)) for all T € L"(E).
Proof. According to Theorem 3.2, we have only to show that

oo (m) =0 (w) forall # € Orth (E).

Obviously, if # € Orth(E) then o(r) C o,(m). For the converse
inclusion, it suffices to prove that the f-subalgebra Orth (E) of L"(E)
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is full as a subalgebra of L(E). To do this, let 7 € Orth (F) and assume
that 7 has an inverse 7! in L(E). If a € E such that |r|(a) = 0, then

0= [[x](a)] = |r (a)] -

Therefore, m(a) = 0, so a = 0 because 7 is injective. Hence || is
injective. Moreover, if a is a positive element of E, then

|| (|7r_1 (a)‘) = |7r (7r_1 (a))‘ =a.

It follows quickly that || is surjective, so |7| has an inverse |7|~! in
L(E). Furthermore, if a is a positive element of F, then

7|7 (@) =[x (|m (v (@) ]) =[xl (Il (J7* (@)])) = |7 ()]

This yields that |r|~! is a positive operator on E. In summary, |r| is a
positive orthomorphism on F and its inverse is a positive operator on E.
Using [16, Theorem 3.1.10], we derive that |r|~! is an orthomorphism
on E and so is |m| 2. On the other hand, it is clear that

7T =1Re (m) —ilm (7) € Orth (E£) and |7

Hence,
7~ =7 o|r| ? € Orth (E),

and we are done.
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