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CYCLIC COVERS OF RATIONAL ELLIPTIC SURFACES

LISA A. FASTENBERG

ABSTRACT. We compute the maximal rank of a cyclic
cover for a class of rational elliptic surfaces.

1. Introduction. Let 7; : E; — P! be a smooth complex relatively
minimal nonisotrivial elliptic surface with section, and consider the map
P! — P! defined by t — t". Define 7, : E,, — P! to be the minimal
compactification of the Neron model of the generic fiber of E xp1 P!,

For t € P!, let E! be the fiber of E; over t with conductor f; and
Euler characteristic e;. If the fiber is of type I,, or I}, let n; = n and
set n; = 0 otherwise. In [2] we give a bound for the rank of E,. if

v = Z (ft—et/G)__nOEnoo <l

t#£0,00
However, this bound is far from sharp.

Persson lists all 287 possible configurations of singular fibers on a
rational elliptic surface [3]. Thirty-eight of these have v < 1. When
v = 0, either E; is semi-stable or all fibers are of type I,, or I;. We have
already shown [2] that in the nine cases where v = 0, E, is extremal
for all » and thus E, has rank 0 for all r.

In this paper, we consider the remaining 29 cases where E; is a
rational elliptic surface with 0 < v < 1 and compute the rank of E, in
most of these and significantly improve the bound given in [2] in the
rest.

We will see that our bounds depend only on the fibers at t = 0
and ¢t = co. Because of this, our bounds hold for all (not necessarily
rational) elliptic surfaces with v < 1 and the given fiber types at 0 and
00.

2. Preliminary results. Unless otherwise noted, proofs of the
results in this section can be found in [2, Section 1]. For any elliptic
surface 7 : E — P!,
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Rank F = dim H' (P!, R'7,.Q) N HYY(E,C)  (see [1]).
Define HY' = H' (P!, R'x,.C) N HY'(E,,C).

Let o, be the automorphism of E,. lifted from the automorphism of P!
defined by t — (,t where (, = €>*/7. Then o, acts on H'(P!, R'r,..C),
all eigenvalues of o, on HY! are of the form ¢ and when v < 1, no
value (;' appears more than twice. Consider the set S, of eigenvalues
on H}1, ¢, such that if ¢ is a primitive dth root of unity, all primitive
dth roots of unity are also eigenvalues on H}'!, counting multiplicity.
We have shown that the dimension of H'(P!, R'7,..Q) N H'(E, C)
and hence the rank of F,. is bounded by #S,. and if v < 1, #S,. depends
only on F; and is independent of r. Further, we get equality if there is
only one singular fiber on E; away from ¢t = 0,00 and that fiber is of
multiplicative type.

For t = 0, c0 we have tr (o, N,.;) = (** for some integer a; where N,
is the pushforward to the normal bundle to a section of 7, and IV,
is its stalk at t. We show that if we remove the eigenvalues of o, on
HY(E?,C) and H'(E®, C) from the set

ag (a0, (e Caee
NN yoeoy G

we are left with S,.. Note that some values may appear more than once
in the list above.

Now tr (oy, N,.¢) is just the conjugate of the action of o, on E! for
t = 0,00. So to compute ap and ay, we need only understand how o,
acts on the fibers of a smooth point at ¢ = 0 and t = co.

3. Local computations. In this section we compute a; and the
eigenvalues of o, on H!(E!,C) for t = 0,00. These depend only on
the local minimal Weierstrass equation for E; and, in particular, on
the fiber types of EY, E?°. Because none of our examples have smooth
fibers or fibers of type I§ at t = 0, 00, in what follows we assume that
n > 0 for fibers of type I,,, I;. We begin by computing aq for each of

the eight possible fiber types.

Assume that a local minimal Weierstrass equation for E7 at t = 0 is

y? =23 + A(t)t'e + B(t)t™
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where A(t), B(t) are polynomials with A(0), B(0) # 0 and the values of
[ and m are given in Table 1. The discriminant A(t) = 4A(t)®+27B(t)?
at t = 0 vanishes to order n for I,, fibers and n + 6 for fibers of type
I¥. We rewrite r as in Table 1. An equation for E, is then

y2 — 373 +A(tr)tTl$+B(tT)tTm,

and a local minimal equation at t =0 is

Y2 = X3+ A"t X 4+ B(t")t™,

where (X,Y) = (z/tPr,y/t?) and the values of p,,q, are in Table 1.
We will not need to know the values of [,., m,..

We now determine how o, acts at a smooth point of E?, the fiber of
E,. at t = 0. The origin (0,1,0) is smooth for all r with local affine
coordinates (X/Y, Z/Y) and local parameter X/Y. Then,

0. (X,Y,Z) = o, (z/tPr,y/t?, z) = ((P X, (1Y, Z)
= (G X, Y, (" Z)

so that o, acts on E° as multiplication by (¢ P~ and ag = r— (¢, —p;)-
These results are summarized in Table 1. Note that a,, = 7 — ag.

Finally, we need to compute the eigenvalues of o, on H'(E!, C) for
t = 0,00. Since H'(E!, C) is zero-dimensional when E! is an additive
fiber, we need only consider the case where the fiber is smooth or of
multiplicative type.

For fibers of type II, III, IV, IV* III* and II* the fiber is of
additive type when s’ # 0 and smooth when s’ = 0, so we assume that
s’ = 0. As in [2], the Lefschetz fixed point formula implies that

tr (o, H'(EL, C)) = 2 — #{points fixed by o"}.
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TABLE 1. The values of ag.

Fiber r I,m Dr, qr ag
Type
II r=6s+s | I>1 pr = 28, gr = 38 55+ s’
0<s <5 |m=1
IIT |r=4s+5 | 1=1 pr = 28, gr = 38 35+ s
0<s <3 |m>2
IV |r=3s+s | 1>2 pr =28, ¢r = 38 25+ s
0<s <2 |m=
IV* |r=3s+s | 1>3 | =0 pr=4s,q =6s s
0<s <2 |m=4|s>0 pr=4s+2(s—-1) | s+1
qr = 6s+3(s' — 1)
IIT* |r=4s+s | 1=3 | s =0: pr=6s,q =9s s
0<s<3|m>5|8>0 pr=6s+2(s-1) | s+1
g =9s+3(s" = 1)
IT* |r=6s+s | 1>4 |s =0 p=10s, gr = 15s s
0<s <5 |m=5|s>0 p=10s+2(s 1) | s+1
gr = 155+ 3(s' — 1)
I r=s [=0 pr=0,q-=0 0
m=0
Iy |r=2s+s| 1= pr =25, ¢r = 3s s+s
0<s <1 |m=

When E! is of type IT or IT* and r = 6s, o, has order 6, and o’ has
1, 3, 4, 3, 1 fixed points respectively for : = 1,... ,5. It follows that
the eigenvalues of o, on H'(E®, C) are (*,{~*. Similarly, when F} is
of type III or III* and r = 4s, 0, has order 4 and the eigenvalues of
o, on HY(EL, C) are ¢*,(*. For fibers of type IV or IV* and r = 3s,
o, has order 3 and the eigenvalues of o,. are again (*,(®.

For fibers of type I,,, n > 0, H'(E!, C) is one-dimensional and o, fixes
the curve for all r so that 1 is the only eigenvalue of o, on H*(E!, C).
Finally, for fibers of type I,;, the fiber is of type I,, when r = 2s and o,
acts as multiplication by —1, so that the eigenvalue of o, on H!(E%, C)

is —1.
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TABLE 2. Eigenvalues of o on H!(E%, C).

Fiber Type | r | Order of o, | Eigenvalues of o
on HY(EL, C)
II,IT* | 6s 6 ¢5,¢*
IIT,IIT* | 4s 4 s, ¢®
IIT,IIT* | 3s 3 ¢%,¢°
I;,n>0 |2s 2 -1
In,n>0 s 1 1

4. The set S,. From Persson’s list, there are 14 possible combina-
tions of fiber types for EY and E$°. We will compute the set S = US,
for each choice. Write r = 12s + s’ with 0 < s’ < 11 and define U
to be the smallest open interval or union of two open intervals such
that, for all 7, if €’ is an eigenvalue of o, on H>!, § € U, counting
multiplicities.

Once we have found U, we can find S as follows: For each positive
integer d, the set of primitive dth roots of unity is in S if and only if the
argument of each primitive dth root of unity is in U. The maximum
rank of F, is now easily computed:

(1) Rank B, < ) ¢(d).
ngs

If two sets of primitive dth roots of unity are in S, each contributes to
the bound on the rank and is counted separately. Let

P— Multiplicative fibers P Additive fibers
B over P!\ {0, 00} over P1\ {0,00} [~

It follows from the proof given in [2] that when k£ = 1, (1) is an
equality. For rational elliptic surfaces, 7 can only be less than 1 when
k < 2. We will see in the next section that we get equality in many
of those cases where k = 2 and will also give an example of a rational
elliptic surface where the rank of FE, is less than the bound given by

(1)
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Using the local computations in Section 3, for each possible choice
of EY and E§°, we find U, the values of d for which (; € S and the
maximum rank of E,. The results are given in Table 3. We also list
the value for k. Note that for configuration N, each eigenvalue appears
twice, so the maximum rank is 2, not 1. For configuration L, the two
intervals overlap, so that the eigenvalue (° = 1 may appear twice and
the maximum rank of E, is 4.

TABLE 3. The rank of E,..

Configuration | EY Ef° | k U d Maximum
Rank of E,
A I I, | 1] (x/3,57/3) | 2,345
B IIr* I, |1 (n/2,37/2) 2,3 3
(r/2,37/2) | 1,2,3,7.8,
C Ire II |1 U 10,12,15, 56
(5m/3,7/3) | 18,20,42
D IV* I, | 1] (2n/3,4n/3) 2 1
(2m/3,47/3) | 1,2,5,6,8,
E w* IIT|1 U 9,12,14, 56

(37/2,7/2) | 20,21,30
(27/3,47/3)

F wv* 11 |1 U 1,2,8,12,20 18
(57/3,7/3)

G I; IV | 1| (4n/3,27/3) | 1,4,6,10 9

H Ip I | 1] (31/2,7/2) 1,6 3

I I II | 1] (57/3,7/3) 1 1

J IV I, | 2| (4n/3,20/3) | 1,4,6,10 9

K I I, | 2] (31/2,7/2) 1,6 3
(3m/2,7/2)

L 7 II |2 U 1,6 4
(57/3,7/3)

M II I, | 2] (51/3,7/3) 1 1

N II  II |2 (5%/3,7/3) 1 2
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5. The rational elliptic surfaces. We now consider the 29 rational
elliptic surfaces for which 0 < 4 < 1, or equivalently, for which [2,
Theorem 1] applies. Each falls into one of the 14 categories A-N listed
in Section 4. In Table 4, we list the singular fibers, with EY first,
E° second and the remaining singular fibers afterwards. A number of
the surfaces have more than one configuration for which our theorem
applies. We will only include those which have different values of
a9, 0so- In particular, we may always interchange the placement of the
I, fibers for different values of n without changing the rank calculations.
The surfaces are ordered as in Persson’s paper. Finally, recall that for
configurations A-I, the maximum rank of F, is achieved. We will look
more closely at the ranks for configurations J-N in the next section.

6. The surfaces with k£ = 2. Recall that k¥ = m + 2a where m
is the number of multiplicative fibers and a is the number of additive
fibers, not including the fibers at 0 and co. While the bounds given in
Table 3 are not sharp when £ > 1, we can often get more information
about the rank of F,.

Configuration J. Consider the surface F; with configuration J and
fibers I, IV, Iy, I; (number 18 in Table 4). E; has rank 1 and is the
double cover ramified over 0 and oo of a surface Ej with singular fibers
I, IV*, I; which has configuration D. Now Rank (E,) = Rank (Ej,.) =
1 for all r, which is smaller than the bound of 9 given in (1). The two
other rational elliptic surfaces with configuration J also have rank 1, so
for these 1 < Rank (F,) < 9.

Configurations K and L. The six surfaces F7 with configuration K
all have rank 1 so that Rank (F,) = 1if 6 { r and (Ess) has rank 1 or 3.
Similarly, the four rational elliptic surfaces with configuration L have
rank 2 so that Rank (E,) = 2 if 6 { r and Rank (Egs) = Rank (Fg) = 2
or 4.

Configurations M and N. The eight surfaces, £, with configura-
tion M all have rank 1, the maximum rank of F,. Similarly, the four
surfaces with configuration N have maximal rank 2 so (1) is an equality
in these 12 cases.

The values of k given for configurations A-N in Table 3 apply only
when E; is rational. For nonrational £y with v < 1, k > 2, regardless
of the configuration so that, without any additional information, (1) is
always an inequality.



1902

LISA A. FASTENBERG

TABLE 4. The rational elliptic surfaces with 0 < v < 1.

No No. in Other Rank | Max

Persson’s E? E1°° Singular ¥ Configuration Eq Rank

List Fibers of E,
1 2 I I I 2/3 A 0 9
2 6 IIr* I I 1/2 B 0 3
3 7 Iir 11 I, 5/6 C 1 56
I1I I; IIT* 1/3 M 1 1
4 9 I3 11 I 1/3 1 1 1
II I I3 1/3 M 1 1
5 12 Ig II Iy, I; | 1/3 M 1 1
6 16 Iv* I3 I 1/3 D 0 1
7 17 v III Iy 5/6 E 1 56
111 I w* 1/2 K 1 3
8 18 wv* II I 2/3 F 1 18
II Ip ™ 1/3 M 1 1
9 21 Iy 111 I 1/2 H 1 3
III I, I3 1/2 K 1 3
10 24 11 II 13 2/3 N 2 2
11 27 I; III I, I; |1/2 K 1 3
12 28 I7 II Ip,I; |1/3 M 1 1
13 30 1 II I;, I | 2/3 N 2 2
14 34 Iy v I 2/3 G 1 9
v I 15 2/3 J 1 9
15 35 I I3 1/3 1 1 1
I3 II 17 1/3 M 1 1
16 37 Iy 111 Ip 1/2 H 1 3
III Iy I 1/2 K 1 3
17 38 II1 II Iy 5/6 L 2 4
18 46 Ig¢ IV I, I; |2/3 J 1 9
19 49 I¢ III Iy, I; |1/2 K 1 3
20 50 II1 II Ig,I; |5/6 L 2 4
21 54 1 II Ig, Iz | 2/3 N 2 2
22 82 I5 II Iy, I | 1/3 M 1 1
23 84 I5 v I, I; | 2/3 J 1 9
24 87 Is III I3, I; |1/2 K 1 3
25 88 I5 II I3, Iy | 1/3 M 1 1
26 93 II1  II I5, I | 5/6 L 2 4
27 109 1 II I4, Iy | 2/3 N 2 2
28 119 I, III I3, I |1/2 K 1 3
29 120 II1 II Iy, I3 | 5/6 L 2 4
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