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ON THE PRIME NUMBER THEOREM FOR
A COMPACT RIEMANN SURFACE

M. AVDISPAHIC AND L. SMAJLOVIC

ABSTRACT. We improve the estimate of the error term in
Selberg’s and Huber’s formula for distribution of the eigenval-
ues of the Laplace-Beltrami operator on a compact Riemann
surface.

1. Introduction. When Riemann [6] introduced complex analysis
into the field of number theory, his main goal apparently was to outline
the eventual proof of the prime number theorem. His hypothesis
about the zeros of his zeta function remains the most famous unsolved
problem of mathematics today. In the case of the Selberg zeta function,
the situation is different. The analogue of Riemann’s hypothesis is
known to be true in this setting. However, the number of nontrivial
zeros is significantly higher than in the classical case. The purpose of
this note is to improve the estimate of the error term in the analogue
of the prime number theorem.

2. Preliminaries. Let H = {z =z + 4y : y > 0} denote the upper
half-plane equipped with the hyperbolic metric ds? = (dz? + dy?)/y>.
Mobius transformations z — (az + b)/(cz + d), where a,b,c,d € R
and ad — bc = 1 form the group PSL(2,R) that acts on H by
homeomorphisms which preserve the hyperbolic distance.

Discrete subgroups of PSL(2,R) are called Fuchsian groups. We
shall consider a strictly hyperbolic Fuchsian group I', in which case the
quotient space I'\ H can be identified with a compact Riemann surface
F of a genus g > 2. An element v € I" has the trace |a + d| > 2 and
possesses two fixed points z; # z; lying in R. We shall denote by P
the conjugacy class in I" generated by 7. All transformations having
the same fixed points as v form an infinite cyclic subgroup. By [2,
Proposition 6.1, page 24] there exists the generator o of this cyclic
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group such that vy = y* for some m € N. By P, we shall denote the
conjugacy class of 7y and call it a primitive hyperbolic conjugacy class.
Obviously, P = PjJ".

Now, 7 € P has exactly two real eigenvalues. The square of the
larger eigenvalue is denoted by N(P) and called the norm of class P.
If P = P}*, for Py and m € N as above, then N(P) = N(F,)™. For
this reason, N(Fy) is also known as a pseudo-prime. The norm N (F)
is determined by the length of the geodesic joining the fixed points z;
and zy. For more details, see, e.g., [5, Chapters 15.7 and 15.9].

For any x > 0, we are interested in the number of classes {Fp} such

3. Distribution of eigenvalues of the Laplace-Beltrami oper-
ator. The main tool in the proof of the analogue of the prime number
theorem is the Selberg zeta function on I' \ H, defined by the Euler
product as

H H %) * %), Re(s)>1,

where the product is taken over all primitive conjugacy classes {Fp}.

The Selberg zeta function can be continued to the whole complex
plane as a meromorphic function of a finite order. Furthermore, it
fulfills the functional equation

Z[*(S) = \IIF(S)Z[‘(l — S),

where the factor of the functional equation is

s—(1/2)
Ur(s) = exp ( — |F / t - tan(7t) dt),
0

|F'| denoting the area of the Riemann surface F.

Nontrivial zeros s, = 1/2 4 ir,, and §, = 1/2 — ir,, of the function
Zr are closely related to the eigenvalues A, of the Laplace-Beltrami
operator on F by the equation 7, = /A, —1/4 for A\, > 1/4 and

—iy/=An +1/4 for A, < 1/4. Numbers )\, are nonnegative and
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tend to infinity; hence, there are finitely many of them less than 1/4.
Let us assume there are exactly M values of \,, less than 1/4. Nontrivial
zeros of Zr can be split into two parts: zeros s, = 1/2 + ir,, and
8, = 1/2 —iry, for r,, > 0 lying on the critical line Re (s) = 1/2 and
zeros s, = 1/2 +ir,, and §, = 1/2 — ir, lying on the segment [0, 1].

The logarithmic derivative of the Selberg zeta function is given by

Z! B log N (Pp) s
Z—E(s) = %T(P)OHV(P) ,

where the sum is over all hyperbolic conjugacy classes P and P, is the
primitive such class associated to P.

An important ingredient in the proof of our main result is the
following estimate for the rate of growth of this logarithmic derivative,
see [2, Proposition 10.9, page 155 and Theorem 8.1, page 119].

A 1 T 2max(0,14+e—0)
% =o(*
Zp e \logT

fors=0+iT,0>1/2+¢, T > 1000, T # all r,.

The main result of the paper is the following theorem.

Theorem 3.1. Let mo(z) denote the number of distinct primitive
classes {Py} such that N(Py) < . Then,

M
mo(z) = li(z) + Z li(z®*) + O(z*/*log ' ),
k=1

where the implied constant depends solely on T'.

Here sj, denotes the real zeros of Zr larger than 1/2.

This theorem is an improvement of the result obtained by Selberg
and Huber [2, Theorem 6.19.], see also [2, Discussion 15.16, page 253;
319-320] and [3, 4].



1840 M. AVDISPAHIC AND L. SMAJLOVIC

4. Proof of the main result. Let us consider the following
analogues of the well-known arithmetic functions

log N (P,
b= Y AP = Y %
{P} {rP}
N(P)<z N(P)<a

and

P1(x) = /f P(t) dt.

For z > 1 and o > 1, one has (see [2, Proposition 6.9, page 103])

1 2ot 7L,
- — | E_L9)d
0@ =5 | am

1 i oo+iL strl Zf‘
= —— 11m

———(8)ds.
2mi L~oo [, i s(s+1) Z[‘(S) N

The main idea of our proof is to try to improve the error term
O(x?logz/T) in the explicit formula for v; () [2, Theorem 6.16, page
110] to the extent that it loses the role of the leading term in final
estimations. This is done by moving the line of integration in the above
integral expression for ¢ () to the left. Taking such a step at this point
of argumentation constitutes a refinement of Hejhal’s approach.

So, let € > 0 be a number such that real zeros sy = 1, s1,..., sy of
Zr belong to the segment ((1/2) 4+ 2¢,1]. For a fixed z > 1 application
of the residue theorem on the rectangle with vertices oy — iL, g + iL,
1/2+2e+iL, 1/2 + 2 — iL yields

1 oo+iL s+l o
(1) / T 7 gy s
oo—tL S(3+1) ZF
i St 1 |:/(1/2)+25+iL /(1/2)+2siL /aoJriL }
= —— "t + + .
sn(sn+1)  2mi [ J(1/2)42-—iL oo—iL (1/2)+2e+iL

n=0

2mi
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Applying the bound for Z[./Zr from the previous section, we obtain

oo+iL s+l 71
/ L—F(s) ds
(1/2)+2¢+iz (8 +1) Zp

pltoo ) L 2max(0,14+e—0)
= O( / ( > da>
eL? (1/2)+2¢ \log L

0 w1+0'0 L 1—-2¢ .
eL? \logL
Similarly,

(1/2)4+2e—iL s+1 A 1400 L 1—2¢
[ g fomo2 65) )
co—il, s(s+1) Zp eLl? \logL

One should notice that there exists a better estimate of the logarithmic
derivative Z[./Zr, given in [1, page 187]. However, due to the other
terms appearing in the explicit formula for 41, our bound on ZI./Zp
would yield the same error term in the prime geodesic theorem, as the
one we shall obtain using Hejhal’s estimate given above.

Passing to the limit L — oo in (1), we get (for a fixed z > 1)

M Sntl s+l gt

rsn 1 X T
P L () ds.
¥ (2) Sn(sn+1)  2mi /((1/2)+2a) s(s+1) Zr (o)

n=0

This new form of representing ; (z) is essential for our purpose.
Namely, for 7" > 1000,

(1/2)+2€+iT S+1 Z,
(/ - ) < AL ds>
((1/2)42e)  J(1/2)+2e T s(s+1) Zr
00 L (1/2)+2e+1 /4 2(1+e—(1/2)—2¢)
=0 dt
</T et? (logt> >

$(3/2)+25
=0l ———— .
elogT




1842 M. AVDISPAHIC AND L. SMAJLOVIC

Hence,
1 () i a1 / (R et Zr (5) ds
1(z) = — 4+ — 4r
(2) o snlsn+1) 210 Jayo)ioeir s(s+1) Zp
o £(3/2)+2¢
< elogT >

The error term O(z(*/2%2¢/(clogT)) is the improvement we were
looking for.

Now, the integral on the righthand side is treated in the same way as
in [2], taking A = N +(1/2), N € N and applying the residue theorem
on the rectangle with vertices 1/2 4+ 2¢ — T, 1/2 4 2¢ + T, —A +iT,
—A —iT. That gives us

1 (1/2)+2e+:T s+l g1
/ i L'(s)ds
(

2mi 1/2)+2¢—iT s(s+1) Zp

1 (1/2)—2e—iT —1—iT —A—iT — AT
T
2mi (1/2)+2e—iT (1/2)—2e—iT —1—4T —A—iT
—1+4iT (1/2)—2e+iT (1/2)+2e+iT
W ET Y B
—A+4iT —1+4iT (1/2)—2e+iT

+ apxr + Boxlogr + a1 + B1logex

N M =
2k+1 ;4 zontl
2 _2 T 71 AN —_— = .\
+ (29 )Hk(k_l)m +;Sn(sn+1)
rSn+1 1-5A;L+1
+ Z <sn(sn+1) +’s7(’s?+ 1)>‘

0<r, <T

Here, ag, By, a1, B1 are constants that depend solely on I'. Seven
integrals on the righthand side can be estimated as in [2, pages
105-107]. We obtain

1| and |I| are O(z3/+2/T),

I| and |Ig| are O((z®/2~2¢/T)(1 + 1/(elog T))),
|I3] and |I5| are O(1/(T"log z)). Finally,

\I] is O(z*=4).
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Passing to the limit A — oo in the last sum, we have

1 (1/2)+2e+:T s+1 ZI
/( CHM AP

2mi 1/2)+2e—iT s(s+1) Zr

= agx + Bozlogx + a1 + B1 logx

— 2k+1 ,_
+ (29— 2) Wh D) l)xl k
k=2
Z CL";L + 1 + Z < CL’S"+1 CES"+1 >
— Sn(sn +1) oy Sn(sn+1)  sp(sn+1)

£ (3/2)+2¢ _1
1 .
o=+ 7))

Equation (2) implies that
P1(z) = apz + Bozlogx + a1 + 1 logz
snt+l pontl
p> <sn (80 +1) * sn(sn + 1))

0<r,<T

oo

M
2%k + 1 Snt1
+ (29 — 2) z

ZREL kg o

k(k -1 sn(sn +1)
ot £(3/2)42¢

+an Sn+1) O< elogT >

Now, we proceed as in the proof of [2, Theorem 6.18, pages 111-114]
and obtain, for z > 1000 and 1 < h < z/2,

z+h
/ b(t)dt
xz+h tS"
O(hlog z) +2/ —dt
(3/2)+2¢
3/2 re

+O(z )+O< g7 >

Loy (Gt oat et ety
Sn(sn + 1) Sn(sn+1)

0<r, <T
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Hence,

Sn

Ye)=> xsn + O(logz) + O(h)

£3/2 £(3/2)+2¢
+O( h >+O<hslogT>
1 Z (z + h)sntl — gontl . (z + h)sl+1 _ peatl
su(sn+ 1) Gt )

l Z (I + h)anrl _ manrl
Sn(sn+1)

1 T
o (e (7))
x

taking T ~ z'/4 h ~ 23/4, ¢ ~ 1/log x, we obtain

0<r,<T

Ya)=Y" T 0GR,

Sn

n=0

The theorem follows from this formula for ¥ (z), see [2].

Remark. Using the same method and applying results proved in [2,
pages 240-252], it is possible to obtain better conditional estimates for
¥(z). Under the hypothesis that |S(¢)| = O(t), we get

€T a (o3
o) = 3 T 4 a1/ (520 /(e

This estimate agrees with the one obtained in the case a@ = 1.
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