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A NEW FAMILY OF CURVATURE HOMOGENEOUS
PSEUDO-RIEMANNIAN MANIFOLDS

COREY DUNN

ABSTRACT. We construct a new family of curvature ho-
mogeneous pseudo-Riemannian manifolds modeled on R3%12
for integers k > 1. In contrast to previously known examples,
the signature may be chosen to be (k+ 1+ a,k + 1+ b) where
a,b € NU {0} and a + b = k. The structure group of the
0-model of this family is studied, and is shown to be inde-
composable. Several invariants that are not of Weyl type are
found which will show that, in general, the members of this
family are not locally homogeneous.

1. Introduction. Let (M,g) be a smooth pseudo-Riemannian
manifold of signature (p,q), and let P € M. Using the Levi-Civita
connection V, one can compute the Riemann curvature tensor R €
®*T5M as follows:

R(X,Y;Z, W) = Q(VXVYZ - VyVxZ— V[X,Y]Za W)a
for X,Y,Z,W € TpM.

One similarly defines the tensors V'R, for i = 0,1,2,.... For conve-
nience, we write V'R = R. Let gp, Rp and V'Rp denote the evalua-
tion of these tensors at the point P.

The manifold (M, g) is r-curvature homogeneous if, for all points
P,Q € M and i = 0,1,...,r, there exists a linear isomorphism
QPQ : TPM — TQM so that (I:'};QgQ =4gp and Q)’};Qvl‘RQ = VZRP.

There is an equivalent characterization of r-curvature homogeneous
manifolds that will be of use. Let V' be a finite-dimensional real vector
space, let the dual vector space V* := Homg (V,R), and let (-,-) be a
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symmetric nondegenerate inner product on V. An element A° € @*V*
is called an algebraic curvature tensor on V if it satisfies the following
three properties for all vy,... ,v4 € V:

A°(v1,v2, v3,v4) = —A%(v2, v1, V3, 04),
AO(Ul,Ug,U3,U4) = Ao(vg,v4,v1,v2), and
0= AO(UI)v27U37U4) + AO(U2av3avla U4)

+ AO(U3,U1,’U2,’U4).

An element A' € ®°V* is called an algebraic covariant derivative
curvature tensor on V if it satisfies the following four properties for
all vy,...,v5 € V:

1 . _ 1 .
A* (v, vg,v3,v4;v5) = —A* (vg, 1, U3, V4; V),

)
Al(vl, Vg, U3, Uq;V5) = Al(’Ug, Vg, U1, U2} Us),
0

A (v1,v2,v3,v4;v5) + A’ (v2,vs,v1,v4;v5)
+ A" (vs, v1,v2,v4;05),
0 = Al (v1, v, v3,v45v5) + AL (v1,v2, v4,v5; 1)
+ AY(v1,va, vs, v1; vy).

Let A® € ®*V* for i = 2,3,...,r. The tensors A° and A! are
algebraic analogues of R and VR. The symmetries of the tensors

V2R, V3R, ... are more difficult to express and are not relevant to
our discussion. Thus, we will not impose any restrictions on the
tensors A* for ¢ = 2,3,...,r. We define an r-model to be a tuple

Ve = (V,(-,+),A%... JA"). A weak r-model is an r-model without
the bilinear form. Thus, a pseudo-Riemannian manifold (M, g) is r-
curvature homogeneous if and only if, for each P € M there exists a
linear isometry ®p : TpM — V, with ®3 A" = V'Rp fori =0,1,...,r.
In such an event we say that (M, g) is r-modeled on V., or that V), is an
r-model for (M, g). The structure group Gy, of the r-model V), is the
group of isomorphisms of V,.. For an r-curvature homogeneous space,
this group is independent of P.

It is clear that a locally homogeneous manifold is r-curvature homo-
geneous for all r. The converse, however, is not always true: There exist
pseudo-Riemannian manifolds which are r-curvature homogeneous for
some 7, and not (locally) homogeneous. The study of curvature homo-
geneity in the Riemannian setting began with a paper by Singer [27]
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in 1960. His result was extended by Podesta and Spiro [22] to the
pseudo-Riemannian setting in 1996:

Theorem 1.1. Let (M, g) be a smooth, simply connected, complete
manifold of dimension n.

(1) [27]. If (M, g) is Riemannian, then there exists an integer ko, so
that if (M, g) is ko n-curvature homogeneous, then it is homogeneous.

(2) [22]. If (M,g) is a pseudo-Riemannian manifold of signature
(p, q), then there exists an integer ky 4 so that if (M, g) is kp 4 -curvature
homogeneous then it is homogeneous.

Since then, many authors have studied curvature homogeneous man-
ifolds, both in the Riemannian and higher signature settings; indeed,
the list of references is becoming quite large and we only summarize
the results pertinent to our goal (for more details see [1, 10]). Opozda
[21] has obtained a result similar to Theorem 1.1 in the affine case.

In the Riemannian setting, it is clear that kg 2 = 0, and the efforts of
Gromov [18] and Yamato [30] have established bounds on kg, which
are linear in n. The work of Sekigawa, Suga and Vanhecke [25, 26|
shows ko 3 = ko4 = 1. There are examples of 0-curvature homogeneous
Riemannian manifolds which are not locally homogeneous, see [8,
19, 28]. There are no known examples of 1-curvature homogeneous
Riemannian manifolds which are not locally homogeneous.

In the pseudo-Riemannian setting, the situation is somewhat similar.
There are many known examples of 0-curvature homogeneous pseudo-
Riemannian manifolds which are not locally homogeneous, see for ex-
ample [2, 12] in the Lorentzian setting and [6, 13, 15, 17] in the higher
signature setting. It is clear that k;; = 0. The work of Bueken and
Djori¢ [3] and the work of Bueken and Vanhecke [4] show that k; o > 2,
while the work in [7] shows ks > 2. Derdzinski [5] has also studied
isometry invariants in signature (2,2). In contrast to the Riemannian
setting, however, examples exist of higher curvature homogeneity in the
higher signature setting. For instance, examples constructed by Gilkey
and Nikcevi¢ [15] show that balanced signature pseudo-Riemannian
manifolds exist which are r-curvature homogeneous and not locally ho-
mogeneous for any r (although the dimension of these manifolds is
roughly twice r). With exception to the remarkable four-dimensional
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Lorentzian manifolds recently found in [20], if m := min{p, ¢}, then
there are no known examples of (m + 1)-curvature homogeneous man-
ifolds of signature (p,q) which are not locally homogeneous. These
considerations have led Gilkey to conjecture [16] that k,, = m + L.
The authors in [20] produce an exceptional family of four-dimensional
Lorentzian manifolds and show that k; 3 = 3.

With exception to [20], the examples in the higher signature setting
above were not originally constructed for the study of curvature ho-
mogeneity, and this leads us to a motivation for this study. In fact,
the manifolds in [6, 7, 15] appeared in [11], and the manifolds in
[13] appeared in [14]; they were used as counterexamples to the Os-
serman conjecture [9, 24] in the higher signature setting. As a result,
the known examples have very rigid signatures. The manifolds in [6,
7] have balanced signature, and the manifolds in [14] have signature
(2s, s) for s > 1. It is the aim of this article to provide examples in the
higher signature setting of a more arbitrary signature.

The following is an example of a 0-model that will be central to our
discussion.

Definition 1.2. Let £k > 1 be an integer, and choose a,b €
N U {0} so that a + b = k. Let ¢ be a choice of signs. Let
{Uo,... .U, Vo, , Vi, S1,... , Sk} be a basis for R3*+2, For i =
1,...,k, we define the nonzero entries of a symmetric nondegenerate
bilinear form (-,-) and algebraic curvature tensor R on the basis above
as:

(U0, Vo) = (U, Vi) =1, (S;,8:) = €4

1.
(1a) and R(Up, Ui, Ui, S;) = 1.

We define the 0-model V := (R3**2 (.,.), R). Let Gy, be the structure
group of this 0-model. We define a normalized basis for V to be a basis
that preserves the normalizations given in equation (l.a). Thus the
structure group Gy can be viewed as the set of normalized bases for V.

Using the same k, a, b, and ¢; in Definition 1.2, we now define a family
of pseudo-Riemannian manifolds.
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Definition 1.3. Put coordinates (ug,. .. ,Uk,V0,--- ;VkyS1,--- »Sk)
on the Euclidean space M := R3**2 Let F := (fi(uy),---, fu(ux))
where f;(u;) are a collection of smooth functions with f;(u;) +1 # 0
for all u;. Define the nonzero entries of a symmetric metric gz on the
coordinate frames as follows:

gF(auoa au,) = 2f2(u2)817 gF(au” au,) = *2u05i)
gF(auia av,-) = 51']'7 gF(65i7 asi) =&
Let Mp := (R®*7%2 gp). If we choose a of the ¢; to be —1 and

k —a = b of the ¢; to be +1, then this is a manifold of signature
(k+1+a,k+1+b). O

We shall show that the manifolds Mg are 0-curvature homogeneous:

Theorem 1.4. Adopt the notation of Definition 1.2 and of Defini-
tion 1.3. The manifolds My are 0-modeled on V.

Define the subspaces of the model space V as follows:
(Lb) Ay :={6 € V| R({, *,%,%) =0} =ker(R),  Agy := As.

These spaces are necessarily preserved by any isomorphism of the
structure group because they are defined in a basis-free fashion. We will
prove the following result involving the group of permutations Symy, of
k objects that reflects the rigid nature of this group:

Theorem 1.5. Adopt the notation of Definition 1.2. If A is an
isomorphism of V, then there exists a permutation o € Symy and
constants ag, b; with |ag|b? = 1 so that

AUy = agUy + = for some Zy € Ay,
AU; = biUo-(i) + = fOT some Z; € A37v,
AS; = sign (ag)Ss (i) + Z; for some Z; € Ay.

A natural question to ask is whether or not the manifolds Mg
are really built from smaller dimensional manifolds with the same
properties. We recall some basic definitions relevant to this question.
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Definition 1.6. We say that a k-model Vi = (V, (-,-), A%, ..., A¥)
is decomposable if there exists a nontrivial orthogonal decomposition
V = V1 @&V, which induces an orthogonal decomposition A* = A} @ A
for 0 < i < k; in this setting, we shall write ¥V = V! @ V? where
the k-model VP := (Vj, (-, -)|v,,AD,... ,AF) for p = 1 and 2. One
says that Vi is indecomposable if Vj is not decomposable. One says
that a smooth pseudo-Riemannian manifold M is locally decomposable
at a point P € M if there exists a neighborhood O of P so that
(O,gnm) = (01 x Oz, 91 ® g2) decomposes as a Cartesian product. We
say M is locally indecomposable at P if this does not happen. |

It is easy to see that if Vi (M, P) is indecomposable for some & then
M is locally indecomposable at P. We shall show that the manifolds
M are locally indecomposable at every point in Theorem 1.7:

Theorem 1.7. Adopt the notation of Definitions 1.2 and 1.3.
(1) The model space V is indecomposable.

(2) The manifolds Mg are locally indecomposable at every point.

Using Theorem 1.5, we can produce new isometry invariants which
are not of Weyl type. For example, in Section 5 we prove the following:

Theorem 1.8. Adopt the notation of Definition 1.3.

(1) The following quantity is an £-model invariant:

AV et

(2) If the manifold Mg is (-curvature homogeneous, then [3, is
constant for allp=1,2,... L.

(3) If Mp is locally homogeneous, then By is constant for all £.

Using this theorem and a similarly defined ¢-model invariant (see
Theorem 5.5), it is possible to prove:
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Theorem 1.9. Suppose f](u;) +1#0 for1 <i<k. If fI'(u;) #0,
then Mg is not 2-curvature homogeneous.

The following is a brief outline of the paper. We will compute the
entries of tensors R and VR, and prove Theorem 1.4 in Section 2. In
Section 3 we study the structure group Gy and establish Theorem 1.5.
We study the notion of indecomposability in Section 4 and prove
Theorem 1.7. In Section 5 we conclude the paper by establishing
Theorems 1.8 and 1.9.

2. Curvature homogeneity. We begin this section with a
calculation of the Christoffel symbols of the Levi-Civita connection of
the manifolds M g.

Lemma 2.1. Let 0,,,0s, and 0,, be coordinate vector fields on Mp.

(1) The nonzero covariant derivatives of the coordinate vector fields
are

Vo,,0u = Va,, 0u, = —5i0s; — fi(ui)€i0s,,
Vo,,0u = (2fi(ui) + 1)8i0u, + uei0s,,
Vo,,0s; = Vo, Oug = fi(ui)0u,,

Vou 05, = Vo, 0y = fi(us)By — gDy,

(2) The only nonzero entries of the Riemannian curvature tensor R
(up to the usual Zo symmetries) are

(a‘) RO(Z) = R(auUaauia a’uia 81143) = fi(ui)zgi; and
(b) Rs(i) := R(Oug» Ous» Ous» 0s,) = fi(ui) + 1.

(3) The only nonzero entries of the covariant derivative tensor VR
(up to the usual symmetries) are:

t
(@) VR(OugsOusy Ouyy Oug; Ous) = 2fi(ui)ei(2f] (u;) + 1)
(b) VR(Ougs Ouys Ouss 05,3 0u;) = fi' (wi)-
(4) The following assertions are equivalent:
(a) For each i with 1 < i < s, either f;(u;) =0 or fl(u;) = —1/2.
(b)

b) Mp is a local symmetric space.
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Proof. We compute the nonzero components of the covariant deriva-
tives of the coordinate vector fields, the curvature tensor R and its

COREY DUNN

covariant derivative VR. Note that g(0y,,0s;,) = g(0u,;,0s;) = 0 and
9(0s,,0s,) = €; is constant. So if X and Y are any coordinate vector

fields, we have

1
g(vasiXa Y) = g(vXasiaY) = 79(VXK 851) = §(as,g(X7 Y))

We let the index i range from 1 to k.

g(VBuO 8ui7 auz) =

g(VBuO 8ui7 asz) =

g(vau1 6ui7 8’LL0) =

g(VBu,L 81”7 83,) =

g(VBuO 65i7 au,) =

g(VBui 8Si7 auo) =

9(Vo,, 8, 0u,) =

1

gawg(aum Ou;)
1 —281' = —8;
2( ) )
1

5(8uog(8uﬂ asz) + 8% (auov 881) - asig(auoa 8u1))

%(in) = fi

1
5(261”9(8%7 6%) - 8uog(auz-v 6“1))

[u—y

S(2-2f{si — (—28;) = si(2f] + 1),

[\

1
_§(asig(8ui78ui) = Uo,
_(8sig(8uoaaui)) - fia
_(8sig(8ui78uo)) - fia

—=(05,9(0u;, Ou;)) = —uo.

=N =N =

N

We may then use this computation to see that:

R(auo ? aul )8u1

= (Vauo Vaui - Vaui vauo )8Ui

= Va,,[(2f; +1)5i0s, + u0i0s,] — Va,, [—5:i0, — ficiOs,]
= Eiasi + U0€iv8ug asi + fi’EiaSi + fiEivB“i asi

= (14 f))ei0s, + f7€i0s,-
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The covariant derivative of R is given by:

V R(Oug» Ouis Ouss Oug; Ous )
= 8u1 (flzf,‘l) — ZR(Vaul 8u0 ) 8ui7 8“1‘7 8uO)
— 2R(6u0 5 Vaui 6uia auz ’ 87Ao)
=2fifiei + 2fies(fi +1) = 2fiei (2] + 1),

VR(Bug, Ou,s O,y Osy; Ou,)
= 0u,(f] +1) — R(Va,,0up; Ou;r Oy 0s,)
— R(uo» Vo, Ouy» Ou,, 0s,)
— R(Bug, Ousr Vo, 0uss 8s;) = R(Bugs Bus, Ouss Vo, 05s,)
= f7.

The lemma now follows. O
We establish Theorem 1.4 after a brief remark.

Remark 2.2. Let index p range from 1 to k, and let index v
range from 0 to k. If we relabel coordinates x, = u,, Tiyy = Su,
and ok+14» = Uy, the above calculations show that Vo, 0;; =
Zk>max{i,j} Li;*(zo,... ,k—1)0z,. Thus by definition, M is a family
of generalized plane wave manifolds. By the results of Gilkey and
Nikéevi¢ [17], we conclude that members of the family Mg are Ricci-
flat, complete, exp : Tp M — M is a diffeomorphism for all P, and all
Weyl scalar invariants vanish. We will see in Section 5 that there are
members of the family M g which are not locally homogeneous. This is
not possible in the Riemannian setting as Priifer, Tricerri and Vanhecke
[23] showed that if all local scalar Weyl invariants up to order n(n—1)/2
are constant on a Riemannian manifold (IV,h) of dimension n, then
(N, h) is locally homogeneous and determined up to local isometry by
these invariants. u]

Proof of Theorem 1.4. To show that Mg are 0-modeled on V, we will
produce a normalized basis for (Tp M, g|p, R|p) for any P € M (see
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Definition 1.2). We have that f;(u;) +1#0 for 1 <4 < k. We set

Up =0y + > 004,y Us 1= bidy, + Biboy + Bido,
J

S; = Hiasi + maw, Vo = (9v0,

V; = bi_lavia

where b;, (;, Ei, ki and ~y; will be specified presently. The potentially
nonzero curvatures are then:

R(Uo, U, Uy, Up) = b7 { fi(ui)?ei + 2a;(f{ (ui) + 1)},
R(Uo, Ui, Uy, Si) = b3 (f!(us) + 1)gki;.
To ensure that R(Uy, U;, U;, Up) = 0 and R(Uy, U;, U;, S;) = +1, we set
_ filui)?e
2(ff(us) + 1)’
ki = g;sign (f] (u;) + 1),
bi i= | fl(wi) + 1|72

a; =

The potentially nonzero inner products are
(UOa ‘/0) = l’ (UOa Sz) = K;a; + Vi,
(U07Ui) = bigF(augaaui)+/8ia (Siasi) = 17
(U3, U;) = b2gp (B, Ou;) + 2bi53:, (Ui, Vi) = 1.

We complete the proof by setting:

Vi = —KiQ;, Bi == —bigF(auoaauz-)v
Bi = _%bigF(auw 8uz')' o

It will be convenient to compute several values of the curvature tensor
and its covariant derivatives on a normalized basis, see Theorems 5.2
and 5.5. We list these quantities below for future reference.

Lemma 2.3. Adopt the notation of Definitions 1.2 and 1.3. Suppose
that {Uy, .., Uk, Vo, .+, V&, S1, ..., Sk} is the normalized basis found in
the previous theorem.
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(1)] VR(Uo, Ui, Ui, Up; Us) = (fiei)/((F] + 1)*/H)22f] + 1)(f] + 1) —
fif!l.

(2) VR(Uo, U, Uy, Si; Us) = (f'ka) /(| f] + 11/2).

(3) ZR(UO, U;,U;, S;; U, .. ,Ui) = Iﬂ?ifi(e+1)|fi’ + 1|7(2+€)/2.

4) V2R(Uo, U, Ui, Uo; U, Ui) = (e) / ((fi + 1)*)(A(f])* +2f{ +6 f: f{ —
((F)2F)/(ff + 1))

\Y
\Y%

Proof. We use the normalized basis found in the proof of Theorem 1.4
and the calculations of Lemma 2.1 to compute these directly—the
calculations are omitted. o

3. The structure group Gy. In this section we study the structure
group Gy. For convenience, we establish notation as follows for the
normalized bases B and B:

B:{Uo,... ,Uk,‘/o,... ,Vk,Sl,...Sk},
B={Tor... T Tosees s Vs Gy S}

We adopt the notation of equation (1.b). For any normalized basis B,

one has
Ay = Span{Vp,...,Vi}, and

Asyv =Span{Si,..., Sk, Vo,... , Vi }.
Let Symy, be the group of permutations of the numbers {1,... ,k}.

Proof of Theorem 1.5. Note that AS; € Agy. We expand:

AUy = agUy + Z(bOjUj + dojSj) + Av,
J

(3.a) AS; = Z fijSj + Av,

J

AU; = a;Ugy + Z bijUj + As7v.
J

For any &1,&; € V, we have that:

(3.b) 0 = R(&1,Uo, Uy, &2) = R(A&y, AUy, AUy, ASs).
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Choose ¢; so that A§; = Up and A& = S;. We then have
0 = R(Uy, AU, AUy, S;) = bg;-

Consequently, bo; = 0. We have A- Ay = Ay. As 1 = (Up, V) =
(AUy, AV}), there exists a v € Ay so (AUp,v) # 0. Since AU, =
aoUy + As,v, we conclude ay # 0. Choosing 4§ = A& = U; in
equation (3.b) we have:

0= R(Ui,AUo, AU(), Uz) = 2a0d0j.
Since ag # 0, do; = 0, display (3.a) becomes

AUy = agUy + Ay, AS; = Zfiij + Ay,
J
AU; = a;Uy + ZbijUj + AS,V-
J

Since AV; € Ay, the matrix [b;;] is invertible. Suppose that the
matrix element b;; # 0. Choose &; so A = S;. Since k > 2, we may
choose positive induces [ # i. Then

0 = R(Uo,Us, Uy, &1) = R(AUy, AU;, AUy, A&y) = agbsjbj.

Thus, if b;; # 0, by; = 0 for ¢ # [. So, in the matrix b;;, each column
has at most one nonzero entry. Since b;; is invertible, each column has
exactly one nonzero entry. So one has:

AUy = aglUo + Ay, AS; = fi;S; + Av,
J
AU; = a;Ug + b;Up(i) + As,v-

The relation 6;; = R(AUy, AU;, AU;, AS;) shows fi; = 0 for j # o(3).
Since AS; is a unit vector, this coefficient is £1. Thus,

AUy = agUy + Av, AS; = :ESU(Z') + Ay,

AU; = a;Uy + b;Uy(i) + As,v.

Since 1 = R(AUy, AU;, AU;, AS;), we have +b?ay = 1. Finally, since
k > 2 and since 0 = R(AU;, AU;, AU;, AS;), we have a;b; = 0 and
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hence a; = 0. The relation |ag|b = 1 and AS; = sign (ao)S,(;) now
follow. This establishes the theorem. O

Remark 3.1. Theorem 1.5 does not apply when k = 1, although a
similar statement is true in that case: If A is an isomorphism of V,
then

AUy = agUy + E for some =y € Ay,
AU1 =a1Up +b0,U; + 24 for some =1 GAsv,

AS; = sign (ag)St +E for some Z; € Ay .

Notice the extra freedom in choosing a;. Since Sym; is the trivial
group, the symmetric group action is not so evident as when k£ > 2. O

The crucial part of the previous result is that any change of basis
will permute the interesting information, single out the vector Uy and
A-Asyv C Agy. This will be important when defining invariants in
the next section. The extra information one has when £ = 1 will not
create any ambiguity in the development of any of our invariants.

4. Indecomposability. Since R?¥*2 is contractible, any real vector
bundle over R3**2 is trivial, in particular, the tangent bundle is trivial.
With the added structure of a metric and a curvature tensor, however,
more information is available.

A natural question to ask is if these manifolds are really products of
manifolds of smaller dimension. More specifically, is R3*12 = M; x M,
and gr = gar, ®gn,? If this were the case, then TR3*+2 = TM; T Mo,
and one has that the curvature tensor Ry = Ry, @ Rpr,- This is
a more algebraic notion of indecomposability which we briefly study.
The motivation comes from the main result in [29]: any family of
Riemannian manifolds 0-modeled on an irreducible symmetric space is
homogeneous (in fact, symmetric). In the pseudo-Riemannian setting,
the notion of irreducibility seems more elusive, and although we do
not show that the 0-model V is irreducible, we prove the weaker
Theorem 1.7. Although the main step of the result in [29] is to use the
hypothesis to establish that the manifolds in question are Einstein. We
recall Remark 2.2: the manifolds Mg are not only Einstein, but Ricci-
flat. Thus, this family of manifolds provides interesting insight into the
distinction between Riemannian and pseudo-Riemannian manifolds.
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Recall the notation established in Definitions 1.2 and 1.3. We show
in this section that the manifolds Mg are locally indecomposable at
every point, and thus locally Mp is not the direct product of smaller
dimensional manifolds, answering the above question in the negative.

We fix a normalized basis B for this section. Using the subspace Ay
defined in the introduction, denote V/Ay = Byg, and 7 : V — Byg
the projection. A basis for By, g is the image of Uy, ..., Uk, S1,...,Sk
under 7. Write U; = #nU; and similarly for the other vectors. Since
Ay C ker(R), we have a well-defined algebraic curvature tensor R
defined on By, s, characterized by the relation 7*R = R. We have the
same relations for R on the image of the normalized basis as we do
for R on the original normalized basis for V, although of course the
projection of such a basis to By s is no longer linearly independent.
We recall that, on V', we have the relations

(Ui, V;) = 035, (Ss,8i) = €4, R(Uy,U;,U;, S;) = 1.

Lemma 4.1. The weak 0-model (By,s,R) is indecomposable for
E>1.

Proof. We assume to the contrary there exists a nontrivial decompo-
sition of the model space (W, R) = (W1 ® Wa, R ® R») and argue for
a contradiction. We begin by expressing Uy = & + &, for & € W;.

Case 1. One of &; is 0 (suppose without loss of generality that
& = 0). This means that we can write Uop € Wi. Let 0 #n € Ws.
Consequently, we may express = voUy + Z§=1 vUj + 'y;gj. Then
for i > 0,

=
=

s1)
iana‘si)

i

(UOa
(U07

<l S

v =0, and
7 =0.

=
I
I

So 7 = YUy, and n # 0 means that n € Wy and Uy € W are not
linearly independent, and so W;NW> # {0}. This contradiction permits
us to eliminate this case from consideration.
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Case IL. Uy = &1 + & and both & # 0. We express these vectors as

& = agUg + Z ajUj + aggj:
J

& = BoUo + Zﬂjﬁj + 858
J

Since &; + & = Uy, we must have ag + 8y = 1, aj + 8 = o + 3 = 0.
Forj=1,2andi=1,...,k, we compute R(Uy,¢;,&;,S;) in two ways.
First, we could have only the U; coefficients of ¢;, so R(Uy, &;,&;,5;) =
a?, j =1, or 32, j = 2. On the other hand (for j = 1),

R(UOaglaglagi) E(£1+§27£17£17§i)
R(&1,61,61,8:) + R(&2,61,61,8;)
0.

Similarly for j = 2. Thus, a; = 8; = 0 for all 4.

Now we go to work on the other coefficients. Since ag + By = 1, at
least one of these must be nonzero. Suppose without loss of generality
that ap # 0. Compute 0 = R(&,U;,Uj, &) = aofj + Poa;. Since
ap # 0, we can solve for 3} = (—SBpa)j)/ap. Imposing the condition
o + B = 0 gives us ajj(ag — Bo) = 0 for all j = 1,2,... k. These
equations could be solved by having either a;- =0 for all 5 or ap = By

Case 1l.a. Suppose we have a9 =0 for all j. Then we again impose
the condition o + 7 = 0 to see that 3} = 0 for all j as well. This
gives us & = ogUp and & = BoUyp, and at this point there are
several contradictions: by assumption, both &; are nonzero, and we have
&1 = Mg, not linearly independent, but living in different subspaces.
This is false.

Case IL.b. Suppose oy = By. Then oy + By = 1 implies oy = By =
1/2. Unfortunately, we must go into further cases and consider where
another vector lives. The analysis of this new vector is similar to the
previous technique. Since k > 1, there exists an U; € By,s, and we
proceed by studying U,. Write Uy = n; + 12, and 1; € W;.

Case ILb.i. One of n; = 0. Without loss of generality, assume 72 = 0.
Then U; € W;. Then R(§2,(i1,U1_,Sl) :_1/2, but since & € Wo

and U; € Wy, we must have R(&,,U;,U;,S1) = 0 which gives us a
contradiction.
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Case ILb.ii. Both 7; # 0. We write n; = a;U; + v; for v; € W;.
Then a; 4+ a2 = 1 and hence both a; cannot be 0 simultaneously. We
compute

|
R(£27U17n1751) = 50;]_ = 07
= o1

R(£17U17n2751) = 5@2 =0.

This yields a contradiction; this final contradiction completes the
proof. O

Proof of Theorem 1.7. We have shown in Lemma 4.1 that the
weak model space By is indecomposable. In addition, ker R =
Span {Vp, ..., Vx} is a totally isotropic subspace. Thus, according to
[10], the model space V is indecomposable.

We now prove assertion (2). We have shown that V is a 0-model for
the tangent space TpM at any point P € M. Such a decomposition
of TpM would induce a decomposition of the 0-model V. But V is
indecomposable by assertion (1), and no such decomposition of the
tangent bundle is possible. o

5. Isometry invariants and local homogeneity. Since all Weyl
scalar invariants vanish (see Remark 2.2) we use the determination of
the structure group Gy given in Theorem 1.5 to define new isometry
invariants. We build invariants involving normalized bases and only the
tensors VR, ..., V!R; these are so-called ¢-model invariants. This will
aid us in studying the question of ¢-curvature homogeneity for ¢ > 2
for the manifolds Mp. We will need a technical lemma describing the
behavior of the higher covariant derivatives on a normalized basis.

Lemma 5.1. For the manifolds defined above, the following asser-
tions hold. Let £ > 1 andt=1,2,... k.

(1) VER(Bug» Ouss s Dssi O -+ 0u) = £ ().
(2) VER(Ouys Ou,s Ousy Oug; Ouss - - - Ou,) 08 a function of u;, expressible
as an algebraic combination of the derivatives of f;.

(3) VZR(*7*’*7 *; *7" - 7*7 831,) = O'
(4) VER(x, %, %, %; %, ... ,%,0y,) = 0.
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(5) The only possible nonzero entries of the covariant derivatives of
R on any normalized basis are

VR(Uy,Us,Us, Si; Us, ..., Ui) and V*R(Uy, Ui, Uy, Ug; Us, . .. Uy).

Proof. Assertions 1 and 2 follow from Lemma 2.1, assertion 3. Note
that, in these terms, both are functions of only the u;. Hence, to
uncover any other nonzero terms of the higher covariant derivatives
other than those ending in only 8,,,, we must look to our calculation of
V on the coordinate frames (see Lemma 2.1, assertion 1). Assertion 3
is now obvious, and since Vp, Ou, = 0, we see assertion 4 follows
as well. As we may only build higher covariant derivatives from 0,,
with those relations in assertion 3 of Lemma 1.1, and any change of
normalized basis will permute the same positive U, and S, induces,
the only nonzero higher covariant derivatives on any normalized basis
are only those listed. ]

Let B = {Uy,...,Ux, Vo,... Vi, S1,...,Sk} be the normalized basis
found in Theorem 2.1. We define below the functions (8¢)s for £ > 2,
which a priori depends on the choice of normalized basis. Assume for
now that all denominators are nonzero. Define

k
VR(Uy,U;,U;:,S;;Us, ... U;
(52)8322 (o, U;, Uj, 85 Uj J)‘

(VR(Us,U;, Uy, Sj3Uj))"

j=0

Lemma 5.2. Adopt the notation of Definitions 1.2 and 1.3. If fI' # 0
and £ > 2, then (B¢)p is independent of the normalized basis chosen.

Remark 5.3. The hypothesis f/ + 1 # 0 is required for a normalized
basis to exist. The condition that f/’ # 0 is required for the invariants
Be to exist at all, as we divide by the quantity f/’ in the definition of S.
These two hypothesis are needed only for these reasons, i.e., we need
everything to “make sense.” Later, we remove the restriction f;' # 0
in the definition of another invariant (see Theorem 5.5). O

Proof of Lemma 5.2. Let B be another normalized basis, and let
o € Symy be the corresponding permutation of the induces found in
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Theorem 1.5. By Lemma 5.1, we know how a normalized change of
basis affects the entries of the higher covariant derivatives. Essentially,
the only change of basis possible is a permutation of the U, and S,
basis vectors with a (nonzero) scaling factor. So,

VZR(ﬁo, ﬁj, ﬁj,gj; ﬁj, Ce ,Uj)
£

+1 '
= < |a0|> \Y R(U07 Ua’(])a Uo’(])7 So’(])a UJ(J), ey Ug(]))’

and
(VR(Uo, U;,U;, Sj3U;))*

+1 \*
= <—> VR(Uo,Us(s), Us(s)s S Us(i)) -

V/lao]

The permutation o is a bijection of a finite set of induces, and so if we
put
I={o"*1),..., 0 Y (k)Y = {l1,... 0},

we get the rearranged (but equal) sum

k ¢ T T 1 o .17 ~
YV R(Uo, Up.,Up., 80Uy, ..., Us,
O I T

j=1 (VR((}O, ﬁzj, ﬁzj ) gej; ﬁej))e

(VR(Us,U;, Uj, 855U5))*

j=
= (Be)B-
Hence, (8¢) = (Be) = Be is independent of the basis chosen and is an
invariant of the manifolds M g. ]

Proof of Theorem 1.8. Evaluating these tensors on a normalized basis
and using Theorem 5.1 and Lemma 2.3 establishes the first assertion
of Theorem 1.8.

If Mg were £-curvature homogeneous, then there exists a p-model for
every p = 0,1,... ,¢, along with a normalized basis for Tp M so that
the metric and curvature entries up to order ¢ are constant. Since 3, is
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built from these entries, 5, must be constant for all p=0,... ,¢. This
establishes assertion 2 of Theorem 1.8.

If M is locally homogeneous, then it is /-curvature homogeneous for
all £. Applying the previous assertion shows that 8, has to be constant
for all £ in this case. ]

The next lemma presents exactly the family of functions for which
B¢ is constant; this technical result will be used in the proof of Theo-
rem 1.9.

Lemma 5.4. Let O C R, and denote OP as the product of O with
itself p times.

(1) Let g; : © — R. Let g; € C*(0O) for 1 < i < p. Suppose that
Zle gi(u;) is constant on OP. Then g; is constant for 1 < i < p.

(2) Suppose f®(0) # 0, and k € R. Then the local solutions to the
differential equation Q(f) = (f® (1 + f))/[fP®]? = k are as follows:

(a) k=0 = f is quadratic.

(b) k=1=1+ f' = et for some 0 < a € R, and b € R.

)k #0and k #1 = 1+ f = /(1 —k)(au+0b) for some
0<acRandbecR.

(3) Any solution to By = k where k is constant is also a solution to
Be = k' where k' is constant.

Proof. Assertion 1 is obvious as each summand is a function of differ-
ent variables. We apply the previous assertion to the differential equa-
tion B2 = k to note that each of the summands (f;B)(l + fJ'))/[f](Z)]2 is
constant. We can solve this explicitly for all functions on which 3y is
defined. The hypotheses ensure that the given expression makes sense
in a small neighborhood of w = 0. We consider each case given in the
theorem:

Case I. k = 0. This is more or less obvious since the denominator of
Q is nonzero, and (1 + f') is nonzero. Thus f(3) = 0; this establishes
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assertion 2 (a). For the next cases, we compute

fOa+7)
I
flll fll
(5.2) TR
log f" = klog(1+ f') + d' —
fl/ _ ea, _
(L+ f1)* '

Case II. k = 1. We integrate equation (5.a) to get

log(1+ f')=au+b<—=
1+f/ — eau+b.

Case IIL. k # 0 and k # 1. We integrate (5.a) to get

1 N1—-k __
L+ f'= /(1 —k)(au+Db).

One can simply check that each of the families found in the previous
assertion are also solutions to 8y = constant. Of course, more initial
conditions will need to be given for higher values of ¢ to completely
describe all solutions. o

We will need another family of invariants which can be constructed
in the same manner as [y using the other nonzero higher covariant
derivatives of the curvature tensor R, as listed in Lemma 5.1. Here, we
may remove the hypothesis that f/’ # 0.

Theorem 5.5. Adopt the notation of Definitions 1£ > 2, and set

Ye = ZVER(U(),U]',UJ', U(); Uj, . ,Uj) - VR(U(), Uj,Uj, U(); Uj)Z_Q.
J
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(1) ¢ is independent of the normalized basis chosen, and is an £-
model invariant.

€ (F)257"
() 92 = X, |t (402 + 285 + 65,87 — )]

(3) If MpF is £-curvature homogeneous, then y, is constant for 1 <
p <UL
(4) If Mg is locally homogeneous, then v, is constant for all £.

Proof. Let B be another normalized basis. By Theorem 1.5 there
exists an ag # 0 and a ¢ € Symy, so that

VZR([’}(), ﬁj, ﬁj, [70; ﬁj, ce ,Uj)

-2
1
= < > VZER(U(),U]'/,Ujl,Uo;Ujl,... ,Uj/),

Vaol

and
VR(Uy, U;, U;, Un; U;) = v/lao| VR(Uo, Uyr, Ujr, Un; Uyr),
where j' = o(j). Combining the above according to the definition

of ¢ establishes assertion 1. Lemma 2.3 and Theorem 5.1 establish
assertion 2.

Assertions 3 and 4 follow similarly as in the proof of assertions 2 and
3 of Theorem 1.8. a

We use the invariants described above to study the local homogeneity
of the manifold Mg and establish Theorem 1.9.

Proof of Theorem 1.9. If M were 2-curvature homogeneous, then
by assertion 3 of Theorem 5.2, B is constant. By assertion 3 of
Theorem 5.5, 2 must also be constant. None of the solutions to 82 =
constant listed in Lemma 5.4 make 7, constant as well. O

In most cases, Theorem 1.9 tells us these manifolds are not 2-
curvature homogeneous, and hence not generally locally homogeneous.
One asks if any of the Mg are 1-curvature homogeneous. We will study
this question in a subsequent paper.
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