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A PRIME GEODESIC THEOREM FOR
HIGHER RANK II: SINGULAR GEODESICS

ANTON DEITMAR

ABSTRACT. A prime geodesic theorem for singular geo-
desics in a locally symmetric space is proved. As an appli-
cation, an asymptotic formula for units in number fields is
given.

1. Introduction. The prime geodesic theorem gives an asymptotic
growth for the number of closed geodesics counted by their lengths
[11, 18, 23-27, 31]. Before the paper [7], it has only been proven
for manifolds of strictly negative curvature. For manifolds containing
higher dimensional flats it is not a priori clear what a prime geodesic
theorem might look like. In the paper [7] the author has given such a
theorem for regular geodesics in a locally symmetric space. Regular
geodesics give points in a higher dimensional Weyl cone, and the
prime geodesic theorem describes the distribution of these points. In
the current paper we turn to the remaining, i.e., singular geodesics.
As already mentioned in [7], there are serious obstacles to giving an
asymptotical formula in general, but if one imposes extra regularity
conditions on the space, then these obstacles disappear and one can
derive an asymptotical formula for singular geodesics.

We describe the main result of the paper. One of the various equiva-
lent formulations of the prime geodesic theorem for locally symmetric
spaces of rank one is the following. Let X be a compact locally sym-
metric space with universal covering of rank one. For T' > 0, let

W= Y Ue):
c:ella) T

Here the sum runs over all closed geodesics ¢ such that e!(©) < T,
where [(c) is the length of the geodesic ¢, and ¢ is the prime geodesic
underlying c. Then, under a suitable scaling of the metric, as T" — oo,

(T) ~ T.
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486 ANTON DEITMAR

We now replace the space X by an arbitrary compact locally symmet-
ric space which is a quotient of a globally symmetric space X = G/K
where G is a semi-simple Lie group of split-rank r and K is a maximal
compact subgroup. So the space under consideration is '\ X = I'\G/K,
where I' C G is a torsion-free discrete subgroup. The extra regularity
condition one has to put on this space is that I' be a regular group,
see Section 1. In geometric terms regularity means that each closed
geodesic in the space I' \ G/K has highly nontrivial monodromy. A
closed geodesic c gives rise to a point a. in the closure of the negative
Weyl chamber A of a maximal split torus Ag. We pick a wall A~ of
Ay which might be equal to A or of smaller dimension. We consider
all geodesics ¢ that give points a. in A~. Let r be the dimension of
A-. ForTy,..., T, >0, let

(T, T = Y Ao

c:ac ;<Tj

where ). is the volume of the unique maximal flat c lies in and a. ; are
the coordinates of a, with respect to a canonical coordinate system on
A~ given by the roots. The sum runs over all closed geodesics ¢ with
a. € A~ modulo homotopy. The main result of this paper is that, as
T; tends to infinity for every j,

1/1(T1,--- 7TT‘) ~Ty---Th.

The proof is based on a Lefschetz formula similar to the one [7], but
at various places one has to argue in a fashion different to the previous
case.

The restriction that the space be regular is a strong one, but fortu-
nately the most important application which is an asymptotic formula
for units in orders of number fields, can be derived in this context if
the degree of the number field is a prime.

1. The Lefschetz formula. In this section we give a Lefschetz
formula for regular locally symmetric spaces. Let G be a connected
semi-simple Lie group with finite center, and choose a maximal compact
subgroup K with Cartan involution 6, i.e., K is the group of fixed
points of 6. Let P be a cuspidal parabolic subgroup with Langlands
decomposition P = MAN. Cuspidality here means that the group
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M admits a compact Cartan subgroup. Modulo conjugation we can
assume that A and M are stable under . The centralizer of A is AM.
Let W (A, G) be the Weyl group of A, i.e. W(A,QG) is the quotient of
the normalizer of A by the centralizer. This is a finite group acting
on A.

We have to fix Haar measures. We use the normalization of Harish-
Chandra [15]. Note that this normalization depends on the choice of
an invariant bilinear form B on gr which we keep at our disposal until
later. Changing B amounts to scaling the metric of the symmetric
space. Note further that in this normalization of Haar measures the
compact groups K and M have total volume 1.

We write gr, tr, ar, mr, nr for the real Lie algebras of G, K, A, M, N
and g,¢ a,m,n for their complexifications. U(g) is the universal en-
veloping algebra of g. This algebra is isomorphic to the algebra of all
left invariant differential operators on G with complex coefficients. Pick
a compact Cartan subgroup 7" of M, and let t be its complexified Lie
algebra. Then h = a @ t is a Cartan subalgebra of g. Let W(h,g) be
the corresponding absolute Weyl group.

Let a* denote the dual space of the complex vector space a. Let ag
be the real dual of ar. We identify af; with the real vector space of all
A € a* that map ar to R. Let ® C a* be the set of all roots of the
pair (a,g), and let ® be the subset of positive roots with respect to
P. Let A C &1 be the set of simple roots. Then A is a basis of a*.
The open negative Weyl chamber ag C agr is the cone of all X € ar

with a(X) < 0 for every a € A. Let ag be the closure of ag.

The bilinear form B is indefinite on ggr, but the form
(X,Y) € -BX,6(Y))

is positive definite, i.e., an inner product on gr. We extend it to an
inner product on the complexification g. Let || X| = /(X,X) be the
corresponding norm. The form B, being nondegenerate, identifies g to
its dual space g*. In this way we also define an inner product (.,.) and
the corresponding norm on g*. Furthermore, if V' C g is any subspace
on which B is nondegenerate, then B gives an identification of V*
with V' and so one gets an inner product and a norm on V*. This in
particular applies to V' = b, a Cartan subalgebra of g, which is defined
over R.
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Let I' C G be a discrete, cocompact, torsion-free subgroup. We
are interested in the closed geodesics on the locally symmetric space
Xr =T\ X =T\ G/K. Note that every locally symmetric space of
nonpositive curvature without Euclidean factors is of this form. Every
closed geodesic c lifts to a ['-orbit of geodesics on X and gives a I'-
conjugacy class [y.] of elements closing the particular geodesics. This
induces a bijection between the set of all homotopy classes of closed
geodesics in Xt and the set of all nontrivial conjugacy classes in I, see
[10].

Let C be an arbitrary Cartan subgroup of G. The regular elements
of C are

crs pec:. G, =CY,

where G, denotes the centralizer of  in G. Then G*# is by definition
the union of all C™# over all Cartan subgroups. This is an open dense
set in G. The group I is called regular if

T\ {1} C G™.

We will from now on assume that I' is regular.

To give an example of a regular group, let d be a prime > 3, and let
D be a division algebra of degree d over Q. Assume that D splits at
infinity, i.e., that D ®q R = Matq(R). Choose a maximal order D(Z)
in D and define for any ring R,

D(R) ¥ D(Z) ®z R.

The reduced norm defines a multiplicative homomorphism det: D(R) —

R, and we let

G(R) % {z € D(R) : det(z) = 1}.

Then G is a linear algebraic group defined over Z with G(R) = SL4(R).

Let T' 2 G(Z); then T is a discrete cocompact subgroup of G = G(R)).

We show that it is regular. For this let v € '\ {1}. It follows that
v ¢ Q- 1p, hence the division algebra D., = centralizer of v in D is
neither Q nor D. Since the degree of D is a prime, D, must be a
subfield, i.e., commutative. So the centralizer of v in G is a torus, i.e.,
v is regular, so the group T is a regular group.
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1.1. Lefschetz numbers. Let I" be a torsion-free regular subgroup
of G. Let Ep(T") denote the set of all I'-conjugacy classes [y] such that
7 is G-conjugate to an element a,t, of A~T. Let £%(T) be the set of
all T'-conjugacy classes [y] such that v is G-conjugate to an element
ayty of A_TN“, where T is the intersection of T with the connected
component M of the unit in M. Then EX(T') is a subset of Ep(I"). Let
n = #(T/T) € N; then for every [y] € £p(T") we have [y*] € E4(I).

Let [y] € Ep(T"). There is a closed geodesic ¢ in the Riemannian
manifold I' \ G/K which gets closed by 7. This means that there is
a lift ¢ to the universal covering G/K which is preserved by 7 and
7 acts on ¢ by a translation. The closed geodesic ¢ is not unique in
general. Since I is regular, there is a unique maximal flat F,. containing
c. By mazimal flat we here mean a flat, totally geodesic submanifold
which is maximal with these properties with respect to inclusion. Note
that other authors sometimes insist that a maximal flat should be of
maximal dimension which we do not. Let A, be the volume of that flat,

Ay L Jol (F.).

As the notation indicates, this number only depends on v and not on c.

Let n denote the complexified Lie algebra of N. For any n-module
V let Hy(n,V) and H%(n,V) for ¢ = 0,...,dimn be the Lie algebra
homology and cohomology [3]. Let G denote the unitary dual of G, i.e.,
the set of isomorphism classes of irreducible unitary representations of
G. For m € G, let T be the (g, K)-module of K-finite vectors. If 7 € G,
then Hy(n,7x) and H9(n,7wg) are admissible (a & m, M)-modules of
finite length [17].

Note that AM acts on the Lie algebra n of N by the adjoint
representation. Let [y] € £p(T'). Since ay, € A~ it follows that

every eigenvalue of a,t, on n is of absolute value < 1. Therefore,
det(1 —ayt, | n) # 0.

For [y] € Ep(T), let

Ay

ind (7) = det(1 —ayty | n)

>0,

where r = dim A. Since I" is cocompact, the unitary G-representation
on L*(T'\ G) splits discretely with finite multiplicities
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= @ Nr(m)m,
7r€a

where Np(7) is a nonnegative integer and G is the unitary dual of G.
A quasi-character of A is a continuous group homomorphism to C*.
Via differentiation the set of quasi-characters can be identified with the
dual space a*. For A € a* we write a — a” for the corresponding quasi-
character on A. We denote by p € a* the modular shift with respect
to P, i.e., for a € A we have det(a | n) = a?”.

For a complex vector space V' on which A acts linearly and A € a*
let (V) denote the generalized (X 4 p)-eigenspace, i.e.,
(M) ={veV|(a-a*"Id)"v = 0 for some n € N}.

Since HP(n, ) is of finite length as an (a @ m, Kjs)-module, one has

n7rK @H”nwk

vea*

Let T be a compact Cartan subgroup of M, and let t be its complex
Lie algebra. Then AT is a Cartan subgroup of G. Let Ky = M N K.
This is a maximal compact subgroup of M. Let A, € (a @ t)* be a
representative of the infinitesimal character of 7. By [17, Corollary
3.32], it follows

Hp(nvﬂK) = @ Hp(ﬂ,ﬂK)V,

v=whAr|q

where w ranges over W (g, b).

Lemma 1.1. For 0 < p < d = dim(n) we have
Hy(n,mx) = H*P(n,mx)® det(n),

where the determinant of a finite dimensional space is the top exterior
power. So det(n) is a one dimensional AM -module on which AM acts
via the quasi-character am — det(am | n) = a®¢. This in particular
implies

H Il TI'K @ Hp ‘ll 71'K v—2p-

v=wAr|q
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Proof. The first part follows straight from the definition of Lie algebra
cohomology. The second part follows by [17, Corollary 3.32]. O

Let m = £y @ pm be the Cartan decomposition of the complex Lie
algebra m of M with respect to K. For A € a* and 7 € G, let

dim n dim par P Ky
m/\(ﬂ-): Z Z (_1)q+dimndim (H‘?(n,ﬂ'K))\@/\pM) ,

where the superscript Kj; indicates the subspace of Kj/-invariants.
Then my(7) is an integer and, by the above, the set of A for which
ma () # 0 for a given 7 has at most |W (g, h)| many elements.

Likewise, define

dim n dim pas

P K9,
mg(w) — Z Z (,l)qudimﬂ dim (Hq(n, TI'K))\ ® /\pM> ,

q=0 p=0

where KR/[ is the connected component of the unit in Ky, or KR/I =
Ky N MO,

1.2. The formula. For y € a* and j € N, let C/*~(A) denote
the space of functions ¢ on A which

e are j-times continuously differentiable on A,
e are zero outside A~

e are such that a #Dyp(a) is bounded on A for every invariant
differential operator D on A of degree < j.

For every invariant differential operator D of degree < j let Np(p) =
sup,c4 | * Dp(a)|. Then Np is a semi-norm. Let Di,...,D, be a
basis of the space of invariant differential operators of degree < j, then
N(p) = 2?21 Np,(¢) is a norm that makes C/#~(A) into a Banach
space. A different choice of basis will give an equivalent norm.

Let fgp € C°(M) denote an Euler-Poincaré function on M. This
means that for every irreducible unitary representation 7 of M one has

dim p s

trn(fep) = Z (=1)?dim <n® /p\pM>KM.

q=0
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Euler-Poincaré functions have the property that their orbital integrals
filter out elliptic elements, i.e., for z € M a regular element one has

0 (fer) =/ fep(yry™) dy

M/M,

equals 1 if z is elliptic and zero otherwise.

Theorem 1.2 (Lefschetz formula). Assume ' is regular and torsion-
free. There exists j € N and p € a* such that for any ¢ € CI*~(A),
we have

ZANF(W) Z m(m) /A— o(a)a* ™ da = Z ind (7) ¢(ay),

€@ A€a* [v]e€p(T)

where all sums and integrals converge absolutely. The inner sum on
the left is always finite; more precisely, it has length < |W(h,g)|. The
lefthand side is called the global side and the other the local side of the
Lefschetz formula. Both sides of the formula give a continuous linear
functional on the Banach space C7+~(A).

We also obtain a weak Lefschetz formula as follows.

S Ne(m) S m8(n) /A p(@)a* da

Fea A€a*

=[M:M) D ind(7)¢(as),
eEn(r)

Proof. The proof is in [8, Section 4] or, in a special case, in [7]. The
proof of the weak version is a variant of that proof where one replaces
the Euler-Poincaré function of M with the Euler-Poincaré function of
the connected component MO, ]

2. The Dirichlet series. We keep assuming that the torsion-free
group I also is regular. Let »r = dim A and, for k =1,...,r, let ay be a
positive real multiple of a simple root of (A, P) such that the modular
shift p satisfies
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2p=a1+ -+ a,.
This defines aj, ..., a, uniquely up to order.

We fix a form B, i.e., a Haar measure, such that the subset of A,
{a€A|0<a)(loga) <1, k=1,...,7}

has volume 1.

For a € A and k = 1,...7r, let lx(a) = |ax(loga)| and l(a) =
li(a)---l-(a). For s = (s1,...,8,) € C" and j € N, define

D)= Y ind()ia,y e,
[Ve€p(T)

where s-a = sja; +- -+ + sa,.. We will show that this series converges
if Re(sg) > 1for k=1,...,r. Likewise, we define

L% (s)=[M:M° > ind(y)l(a)) e
[]€€(r)

Let D denote the differential operator

Let G(T) denote the set of all 7 € G, 7 # triv with N () # 0. For
a given 7 € G, let A(7) denote the set of all A € a* with my_,(7) # 0.
Then A(m) has at most |W(h, g)| elements.

Let A € a*. Since ay,...,q, is a basis of a* we can write A =
Araq + -+ 4+ Ay, for uniquely determined A\, € C.

Let Rk(s), k € N be a sequence of rational functions on C". For an
open set U C C", let N(U) be the set of natural numbers k such that
the pole-divisor of R does not intersect U. We say that the series

> Ri(s)
k

converges weakly locally uniformly on C" if, for every open U C C",
the series
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Z Rk(s)

kEN(U)

converges locally uniformly on U.

Let
q fdimpM P Kwm
awE Y (—1)pdim(/\pM> :
p=0
and

Note that if A = Ay, then M is compact and gpr = ¢, = 1.

Theorem 2.1. For j € N large enough the series L7 (s) converges
locally uniformly in the set

{s€C:Re(sk)>1, k=1,...,r}

The function L7(s) can be written as the Mittag-Leffler series,

i(g) = pitt am
EA N T R PR

+ Y No(r) Y ma,(m)DiH

wea(F) AeA(m)

1
(s1+ A1) (sr+Ar)

The double series converges weakly locally uniformly on C”. For
m # triv and A € A(w) we have Re (\;) > —1 for k =1,...,7. So
in particular, the double series converges locally uniformly on {Re (sg)
> 1}.

The same holds for L% (s) which satisfies

0,j _ i+l Q?\/I
L (8)—D+(51_1)...(3T_1)
+ Z Nr(m) Z m?\f,,(w-)DJL|r1

WE@(F) AEA(T)

1
(51 4+ A1) (s +Ar)
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The integers qu, g%, satisfy

qu[M : M°] > g8 > 0.

The proof will occupy the rest of this section. We will show that the
series L7 (s) converges if the real parts Re (si) are sufficiently large for
k=1,...,r. Since L7(s) is a Dirichlet series with positive coefficients,
the convergence in the set {Re(sg) > 1} will follow, once we have
established holomorphy there. This holomorphy will in turn follow
from the convergence of the Mittag-LefHler series.

Since the sum defining L%J runs over a smaller set, we have for
(s;) > 1, that Li(s)[M : M°] > L%i(s). Approaching the pole at
§1 = 89 = --- = s, = 1 from above, say along sy = sy =---=s, =1
and t | 1, we infer gy [M : M°] > ¢%. To see ¢, > 0, let Mc
be the complexification of M, and let My C M¢ be a compact form
containing Kjpr. Then Xprq = M4/ Ky is the dual symmetric space
to M/Kps. The Betti numbers of X7 4 can be computed using the
complex Q°*(X M,d)Mg of MY-invariant differential forms, where M9 is
the connected component of the unit. This complex is isomorphic to

. . MOxKS,
0" (Xpr,0) " = (C°°<M3> ® /\pM)

= (Aw)™

Thus we see that ¢, equals the Euler characteristic X(Xarq). It
is known that Euler characteristics of compact symmetric spaces are
positive, so g3, > 0. Note that this deduction of gps > 0 is the sole
reason for introducing m$, ¢%,, and L% (s).

Let
a;{r:{)\lal"““"‘)\rar|)‘1a-"7)‘7“>0}

be the dual positive cone. Let ag' be the closure of ag’ in ak.
Proposition 2.2. Let w € G, A € a* with mx(m) # 0. Then Re ()

lies in the set
C=-3p+ag".
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For m € G and X in the boundary of C, we have my(m) = 0 unless 7
is the trivial representation and \ = —3p in which case mx(7) = qum .
The same assertion holds for my () replaced with m§ (), only then the
integer qns changes to q?\/l.

Proof. We introduce a partial order on a* by
U >v<= u—vr Iisa linear combination,

with positive integral coefficients, of roots in ®*. 0

Lemma 2.3. Letp € N, let m € G and @ € a* be such that
H,(n,mk), # 0. Then there exists a v € a* with v < p and
H()(I‘l, 7TK)1, 75 0.

Equivalently, if 0 < p < d = dim (n) and HP(n,7x), # 0, then there
exists 7 € a* with n < p and H(n, 7 ), # 0.

Proof. The first assertion is a weak version of Proposition 2.32 in [17]
and the second follows from the first and Lemma 1.1. o

To prove Proposition 2.2, we consider the trivial representation = =
triv first. Using the definition of Lie algebra homology, it is easy to
show that m_s,(triv) = gp and the other X with my(triv) # 0 lie in
~3p+ay". Likewise for mQ(m).

For 7 # triv we show the stronger statement that if H?(n, 7x )y # 0,
then Re (\) € —3p+ag . We start with the case of P being a minimal
parabolic. Then M is compact, i.e., M = Kj; and qpy = 1. Using
Lemma 1.1 we see that it suffices to show that if Hy(n, mx)y # 0, then
Re()\) € —p+ag’. So assume Ho(n,mg)y # 0 and 7 is nontrivial.
Theorems 4.16 and 4.25 of [17] imply that X is a leading coefficient of
the asymptotic of matrix coefficients of 7. By the Howe-Moore theorem
[19], these matrix coefficients vanish at infinity on G, and this implies
that Re (A + p) € agt. The case of a minimal parabolic is settled.

In general, there is a minimal parabolic Py = MgAgNg C P = M AN
such that My C M, Ag D A, and Ny D N. Let mg, ag,ny be the Lie
algebras of My, Ay, and Ny. Then

ng = ndnyy, ap = ad apy,

where np; = ng Nm and ap; = ag N m. Note that n is an ideal in ng.
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In light of Lemma 2.3 it suffices to show that if H¢(n,mx) # 0, then
Re(N\) € =3p + a;’Jr. Let dyy = dimnys and dp = dimng. Then
dy = d + dps. Consider the Hochschild-Serre spectral sequence

EY? = HP(np, H(n, 7))
which abuts to HPT9(ng, 7). We assume that H%(n,7x )y # 0. Then
H™ (npr, H (n,7g)2) # 0
as well and thus there exists A\ € a}, with
H™ (npr, H (0, i )2 )ny, # O
Since A acts trivially on np, the latter equals

H (npg, HY (7)) aian = (Bs™ ) airn

where we view A 4+ Aps as an element of aj = a* ® a},. The spectral
sequence F is supported in the set of indices 0 < p < dp, 0 < g < d
and its differentials are Ap-homomorphisms. So EgM 4 is the right top
corner of this spectral sequence, hence equals E2%-¢ which in this case
is H% (ng, 7). It follows that H% (ng, 7x)x1x, 7 0 and hence, by the
above,

Re (A+An) € —3po + ag '

which by projection implies Re ()\) € —3p + a;ﬁ. Proposition 2.2 is

proved. ]

We continue the proof of Theorem 2.1. For a € A set
o(a) =1(a)’ ! o

For Re(sg) > 0, k = 1,...,r, the Lefschetz formula is valid for this
test function. The local side of the Lefschetz formula equals

Z ind (7) l(a,)’ ™" a5® = L7(s).
[V]egr ()

The convergence assertion in the Lefschetz formula implies that the
series converges absolutely if Re(sy) is sufficiently large for every
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k=1,...,r. We will show that it extends to a holomorphic function
in the set Re(sg) > 1, k = 1,...,r. Since L’(s) is a Dirichlet series
with positive coefficients, it must therefore converge in that region.

With our given test function and the Haar measure chosen, we
compute

/_ np(a)a)‘ da = (-1 )T(j+1)/ (a1(loga)-- (loga))j+1as'°‘+>‘ da

- r(]+1 / / J+1

—((51+)\1)t1+ A (sr+Ar) dtl .dt,

_ Dj+1/oo.../ e~ ((s1HAD)t ++(sr+Ar)Er) dty ... dt,

1
(81—1-)\1)...(87--{-)\7«)'

Performing a p-shift, we see that the Lefschetz formula gives

Ni( _(w) Di*! qm
Z r( me (51 + A1) (S + Ar)

— pitl

7r€G A€ar
au (G +1)Y"
= N - -
Z r( Z ma—p( (51 F A1) T2 (5, + Ap)it2
WEG A€ar

for Re (s) > 0. For every w € G we fix a representative A, € (a+t)* of
the infinitesimal character of 7. According to Lemma 1.1, if my_,(7) #
0, then A = wA, |, — p for some w € W(h, g). By abuse of notation, we
will write wA, instead of wA, |4. Hence, we get

j am
— Nr(m) Mawa. —2p(m) DIt ‘
% “’GWZ('?:E) ’ (81 +>‘1)"'(5r+>\r)

For A € a*, let ||A|| be the norm given by the form B as explained in
the beginning of Section 1.

Proposition 2.4. There are m € N, C > 0, such that for every
m € G and every A € a*, one has

[ma—p(m)] < C(1+[[A)™
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Proof. Harish-Chandra has shown that there is a locally integrable
function ©F on G, called the global character of 7, such that

br(h) = /G h(2)0S (z) dx

for every h € C°. It follows that ©F is invariant under conjugation.
Hecht and Schmid have shown in [17] that, for at € A~ T,

Yoo (—1)1OpM, (at)

G
t) =
O (at) det (1 — at | n) :

where ©4M is the corresponding global character on the group AM.

Let T = C4,...,C, be a set of representatives of the Cartan sub-
groups of M modulo M-conjugation. Choose a set of positive roots
¢j‘ C ¢(Cj,m) for each j. Let p; = Zaeﬁ a/2. For z € C}, set

D¢, (x) = 7 H (1—z7%).

a€¢;

This is the Weyl denominator. By the Weyl integration formula, the
integral

/ Fep(m) 3 (—1)F 0 @AY (am) dm
M =0

equals
)dlmn dimn
Z |W(C M)| Jores DCj(m)OZ‘(fEP) Z( 1)4 qu(n,n.K (az) dz,
VR C 7=0

where fgp is the Euler-Poincaré function on M and O denotes the or-
bital integral. Since the orbital integral of the Euler-Poincaré function
vanishes unless x is elliptic, in which it equals 1 for regular =, we see
that this equals

i dimn
(_1)d1mn .
W Treg DT(t) Z ( ) ®Hq nﬂ-K)(at) dt.

q=0
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On the other hand, by the defining property of the Euler-Poincaré
function we get that

dimn
/M fep(m) 3 (~1)THmAQAM () din
q=0

equals
P K
3 (-1)etdme gim (H‘f(n, K) ® /\pM) = > may(m)at,
P,q>0 aca*

We put this together and use the result of Hecht and Schmid to infer

Z my_,(m)a’

aca*
dimn .
= / fEP(m) Z (_1)q+d1m ueﬁ%mwK)(am) dm
M 7=0
(_l)dimn , o
B m Treg |DT(t)| Z(_l) eH‘J(n,ﬂ-K)(a/t) dt

q>0

_ (*l)dimn 72p/ \ o
= |W(T,M)|a e |Dr(t)| qgo( 1) ®Hq(n,7rx)(at) dt

(—l)dimn _zp/ , )
= =~ 7 @ D 1 _ .
W (T, M)|“ Treg| 7(t)[> det(1 — atn)OF (at) dt

The function (—1)4™"g2°det(1 — am | n)Dr(t) equals the Weyl
denominator for H = AT. By [22, Theorems 10.35 and 10.48] there
are constants ¢,,, w € W(h, g) such that

(=1)4mng=2¢ det(1 — am | n) Dy (t)OF (at) = Z Cw (at)®P=.
weW (hg)

We thus have proved the following lemma.

Lemma 2.5. Forae€ A™,

> mmat = 3 et

Aea* weW (h,g)

X twAm—Pum 1—t%)dt.
/. I (-

acgt(t,m)
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Proposition 2.4 will follow from explicit formulae for the global
character ©F (see below) which give bounds on the c¢,. Another
remarkable consequence of Lemma 2.5 is the fact that there is a finite
set E C t* such that whenever my_,()) # 0 for some A € a* it follows
A, |c€ E. Hence Proposition 2.4 will follow from the estimate

[ma—p(m)] < C(L+ [[A]))™.

In [13] Harish-Chandra gives an explicit formula for characters
of discrete series representations which imply the sharper estimate
|ma—,(m)| < C for the discrete series representations. From Harish-
Chandra’s paper, a similar formula can be deduced for limit of discrete
series representations. Alternatively, one can use Zuckerman tensoring
([22, Proposition 10.44]) to deduce the estimate for limits of discrete
series representations. Next, if 7 = 7, , is induced from some parabolic
P; = M1 ANy, then the character of 7 can be computed from the char-
acter of o and v, see [22, formula (10.27)]. From this it follows that
the claim holds for standard representations, i.e., admissible represen-
tations which are induced from discrete series or limit of discrete series
representations.

Lemma 2.6. There are natural numbers n,m and a constant d > 0
such that for every m € G there are standard representations i, ..., T,

and integers cy, ..., cn with
n

67r = Z Ck ewk
k=1

and |cg| < d(1+||AL||™) fork=1,...,n.
Proof. This is Lemma 2.6 of [7]. o

It remains to deduce Theorem 2.1. Since the coefficients mx_,(7)
grow at most like a power of ||A.||, the convergence assertion in
Theorem 2.1 will be implied by the following lemma.

Lemma 2.7. Let S denote the set of all pairs (m,\) € G x a* such
that mx_,(m) # 0. There is an mq € N such that



502 ANTON DEITMAR

) (N&«)o_

o LI

Proof. By the remark following Lemma 2.5 it suffices to show that
there is an m € N such that

Nr(m)
" .
(MZ)GS (1 + [[Ag]])m

Let 7 € G. The restriction of 7 to the maximal compact subgroup K
decomposes into finite dimensional isotypes

T k= @ (7).

‘ref(\
Let C'k be the Casimir operator of K, and let

Ac®™ 0120k,

Then Ag is the Laplacian on G given by the left invariant metric which
at the point e € G is given by (.,.) = —B(.,6(.)). Since Ag is left
invariant it induces an operator on I' \ G denoted by the same letter.
This operator is > 0 and elliptic, so there is a natural number & such
that (1 + Ag) " is of trace class on L?(I'\ G). Hence,

00 > tr(l+Ag)™*
= Nr(r) Y (1-7(C) +2r(Ck)) ¥ dimn(r)

rea TEE
Nr(ﬂ')
>
- Z (1=m(C) + 27 (Ck))*’
TeG

where for each # € G we fix a minimal K-type 7. Since the in-
finitesimal character of the minimal K-type grows like the infinitesimal
character of m, the lemma follows. a
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Proof of Theorem 2.1. Finally, let U € C" be open. Let S(U) be the
set of all pairs (m,A) € G x a* such that my_,(m) # 0 and the pole

divisor of
1

(81 4+ A1)+ (sr + Ar)

does not intersect U. Let V C U be a compact subset. We have to
show that for some j € N which does not depend on U or V,

Nr () ma—p(m)
(51 +A1)I+2 o (s, + A, )i+2

sup
seV

< 0.
(m,A\)ES(U)

Let m be as in Lemma 2.4, and let m; be as in Lemma 2.7. Then let
j>m+mqg—2. Since V C U and V is compact there is an ¢ > 0
such that s € V and (w,\) € S(U) implies |sp + Ag| > € for every
k =1,...,r. Hence, there is a ¢ > 0 such that for every s € V and
every (m,A) € S(U),

((s1+ A1) (80 + An)| = e(1+[IA]]).

This implies

mx—p(m) 1 [ma—p ()|
G T A (5, T AT | S 7 (L4 A2
< -
Tt (T [A[)I

c 1
< — .
Tt (LA

The claim now follows from Lemma 2.7. The proof of Theorem 2.1 is
finished. The version for L%/ is analogous. O

3. The prime geodesic theorem. We now give the two main
results of the paper.

Theorem 3.1 (Prime geodesic theorem). ForTi,...,T, > 0, let

U(Ty,...,T) = Y. Ay
[V€Er(D)
ay B LTy,
k=1,...,r



504 ANTON DEITMAR

Then, as Ty, — oo, for k =1,...,r, we have

\II(Tl,...,TT) ~ qMTl Tr

Proof. Using Theorem 2.1 the proof is the same as the proof of
Theorem 3.1 in [7]. O

Finally, we give a new asymptotic formula for class numbers in
number fields. It is quite different from known results like Siegel’s
theorem [1, Theorem 6.2]. The asymptotic is in several variables and
thus contains more information than a single variable one. In a sense
it states that the units of the orders are equally distributed in different
directions if only one averages over sufficiently many orders.

Let d be a prime number > 3. Let r, s > 0 be integers with d = r+2s.
A number field F is said to be of type (r,s) if F has r real and 2s
complex embeddings. Let S be a finite set of primes with |S| > 2. Let
C:,s(S) be the set of all number fields F' of type (7, s) with the property
p € S = p is nondecomposed in F'.

Let O, 5(S) denote the set of all orders O in number fields F' € C,. (.S)
which are maximal at each p € S. For such an order O, let h(O) be
its class number, R(O) its regulator and As(O) =[], g fp, Where f, is
the inertia degree of pin F' = O ® Q. Then f, € {1,d} for every p € S.

For A € O*, let p1,..., p, denote the real embeddings of F' ordered
in a way such that |pp(A\)| > |pk+1(A)| holds for £k =1,...,r — 1. For
the same ), let 01 ... 0, be pairwise nonconjugate complex embeddings
ordered in such a way that |ox(\)| > |ok41(A)| holds for k =1,...,s—1.

Fork=1,...s—1, let

ar(A) % 2k (d — 2k) log (%)

oo (53

If s >0, let

Fork=s+1,...,7r+s—1, let

A N s k) log [ PR
k() & (k +5)(r + ’f“g<|pks+1<x>|>'



SINGULAR GEODESICS 505

For T4,...,Tr4s—1 > 0, set

vo(Th,- -, Traac1) B #{A€0X/ 210 < ag(N)

<Tp, k=1,...,r+s—1}

¢ = (V3 < ﬁ(4k(d - 2k))>2rs<rﬁ1 2(k + s)(r + s — k)>,

k=s+1

where the factor 2rs only occurs if rs # 0. So ¢ > 0 and it comes
about as correctional factor between the Haar measure normalization
used in the prime geodesic theorem and the normalization used in the
definition of the regulator.

Theorem 3.2. With

Is(T) = 3" vo(T) R(O)h(0) As(0),
0e0(S)
we have, as T, ..., T,1s_1 — 00,

Ty, Trgs1) ~

Proof. For a given S, there is a division algebra D over Q of degree

p which splits exactly outside S. Fix a maximal order D(Z) in D and

for any ring R define D(R) def D(Z) ® R. Let det : D(R) — R denote

the reduced norm. Then

G(R) % {z € D(R) | det(z) = 1}

defines a group scheme over Z with G(R) = SLg(R) = G. Then
I’ = G(Z) is a cocompact discrete regular torsion-free subgroup of G, see
Section 1. In this case we choose A = diag(ay,ay,...,0s,05,0541,--- ,
asir). Then M =2 S((SL¥)® x {£1}") and gas = 1. The factor c is the
correction one has to put in when comparing the Haar measure on G to
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the measure defining the regulator. As can be seen in [6], the theorem
can be deduced from the prime geodesic theorem. ]
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