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LIFTING PROPERTIES OF PRIME GEODESICS
DARIN BROWN

ABSTRACT. We continue the study begun by Sarnak and
Stopple of prime geodesics on I'\'H, I" the modular group. We
now allow I' to be a Fuchsian group whose matrix entries lie
in the ring of integers Ok of a number field K. There is a
one-to-one correspondence between the prime geodesics P on
I'\'H and the primitive hyperbolic conjugacy classes {7} in I.
An eigenvalue € of an element of {7} determines a quadratic
extension field K(g) of K. On the other hand, a prime ideal
Q of Ok determines covering surfaces of I'\{. A Frobenius
map relates the lifting of P to the splitting of Q in K(g).

1. Introduction. One of the most important objects of study in
number theory and geometry is the modular group

F::SL(2,Z):{(Z Z) :a,b,c,dGZandad—bc:l},

which acts on the upper half-plane H := {z € C : Im (z) > 0} via linear
fractional transformation z — (az+b)/(cz+d). The orbits of # under
this action form a quotient surface which has fundamental domain

MNH:={z€C:|z] >1and |[Re(z)| <1/2}.

Gauss was the first to study the modular group when he explored the
equivalence and reduction of binary quadratic forms. Gauss must have
been aware of the interplay here between number theory and geometry:
definite forms may be interpreted as points in 4, and indefinite forms
may be interpreted as geodesic semicircles on H. Reduction of forms
is obtained by letting the modular group carry points or geodesics to
the fundamental domain. This gives a geometric explanation for why
the study of indefinite forms is more difficult than the study of definite
forms.

If v € T and [tr(y)] > 2, then v is hyperbolic and determines
two distinct real fixed points. The geodesic semi-circle on H joining
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these points projects to a periodic geodesic on I'\H. The segment of
this geodesic semi-circle joining a point P to 7P projects to a closed
geodesic on T'\H, i.e., a closed curve. In this way, there is a one-
to-one correspondence between the closed geodesics on I'\H and the
hyperbolic conjugacy classes in I'. A prime geodesic on '\ is a closed
geodesic that traces out its image exactly once. Prime geodesics satisfy
an asymptotic distribution law similar to the prime number theorem
[7, page 40].

The Selberg trace formula is a nonabelian generalization of Poisson
summation which relates the length spectrum of I'\’H to the spectral
decomposition of the hyperbolic Laplace-Beltrami operator

0* 9?
A=y 5=+ =5
Y <0w2 " 8@/2)
on L%(I'\H). (“You see the lengths, and you hear the eigenvalues.”

[13, page 295].) Finding the lengths of prime geodesics on T'\H is then
important, because this tells us about the Selberg trace formula.

Now, suppose I' is a Fuchsian group (a discontinuous subgroup of
SL(2,R)) whose matrix entries lie in the ring of integers Ok of a
number field K. For a prime geodesic P on I'\H and a prime ideal @
of Ok, the Frobenius conjugacy class Frob (P) is the conjugacy class
obtained by reducing the associated hyperbolic conjugacy class {v}
modulo Q. This Frobenius map P + Frob (P) is analogous to the map
taking a prime ideal to its Frobenius conjugacy class in the Galois group
of an extension of number fields. On the other hand, an eigenvalue ¢
of an element of {7} determines a quadratic extension field K (¢) of K.
Our first two results relate Frob (P) to the splitting of @ in K (¢) and to
the characteristic polynomial f(z) of v, respectively. The first of these
shows the strong connection between number theory and geometry.

Using these results, we are able to determine how the geodesic P lifts
to T'(Q)\H, where I'(Q) is the congruence subgroup of all matrices in
I" that are equivalent to -1 mod Q. Using a Selberg zeta function, we
are able to derive a reciprocity law which relates the lifting of P to
o (Q)\H to the splitting of @ in K (¢), where I'g(Q) is the congruence
subgroup of all matrices in I which are upper-triangular mod@.

Stopple [12] investigated these results in the particular case T' =
SL(2,Z). The splitting behavior of prime ideals in quadratic extensions
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is, of course, well understood. The general idea here is to use this
understanding to gain information about prime geodesics.

2. Prime geodesics. Let H := H UR U {oo}. For any two distinct
points P and P’ in H, let G(P, P') denote the geodesic segment joining
P and P’. If T is a Fuchsian group, then the identification map makes H
a covering surface of T\'H, and G(P, P’) projects to a geodesic segment
P(P,P’) on I'\'H. In particular, if v € T' is hyperbolic, then we define
G(v) := G(z,w), where z and w are the fixed points of . The geodesic
G(v) on H then projects to a periodic geodesic P(z,w) on I'\H. This
periodic geodesic traces out its image infinitely often and has infinite
length. If we fix P € G(v), we obtain the closed geodesic P(P,~P).
This closed geodesic traces out its image an integral number of times
and has finite length. We choose not to distinguish between closed
geodesics which differ only by a change of basepoint P on G(v). In
this way, we obtain a mapping v — P(y) := P(P,7yP) which maps
hyperbolic elements of I' to closed geodesics on I'\. We make the
standing assumption that all closed geodesics are nonconstant. Under
this assumption, the given map is surjective, and it can be shown
that P(y) = P(y’) if and only if v and 7’ are conjugate in T.
This establishes a one-to-one correspondence between the hyperbolic
conjugacy classes {7} in I" and the closed geodesics on I'\'H.

Proposition 1. Let K be a number field with a ring of integers Ok,
and let T' be a Fuchsian group with I' C SL (2,0k). Let P be a closed
geodesic on T\'H with associated hyperbolic conjugacy class {v}. Let
f(z) = 22 — tz + 1 be the characteristic polynomial of v, where t > 2
is the trace of v. Suppose that f(x) is irreducible over K. Then there
exists a unique € > 1 such that

e K () is a real quadratic extension of K.

o ¢ is a unit in K(g).

e The minimum polynomial of € over K is f(z).

o The eigenvalues of v are €, €1, and so the Jordan form of v is

(E 0 ) andt=¢+¢e 1.

0e !t
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o The length | = I(P) of the closed geodesic P is I = 2log(e) :=
log(N(P)), where N(P) is called the norm of P, and so € = exp(l/2) =
N(P)Y? and t = 2 cosh(1/2).

It follows that, for any integer n # 0, the closed geodesic P™ has
associated hyperbolic conjugacy class {y}".

Proof. If v and ' are conjugate, then they have the same trace ¢ and
the same characteristic polynomial f(z). We calculate the eigenvalue
e=(t+Vt?2 —4)/2. If f(z) is irreducible over K, then f(z) is clearly
the minimum polynomial of € over K. Using the Jordan form of -y, the
length of P is the length of the geodesic segment G(i,vi) = G(i, %),
which is found to be 2log(e). For the last result, note that P(y) ! =
P(P,yP) ' = P(yP,P) = P((yP),7 '(yP)) = P(y 1), while for
n >0, e(P™) = exp(I(P™)/2) = exp(nl(P)/2) = e(P)", and the result
follows by passing to Jordan forms. o

Of particular interest to us are the prime geodesics on I'\'H; these are
the closed geodesics that trace out their image exactly once. There is a
one-to-one correspondence between the primitive hyperbolic conjugacy
classes {7} in T" and the prime geodesics P on I'\'H; here, + is primitive
if it generates its stabilizer I'y = {§ € T' : §'y§ = 7} in I, or
equivalently, if whenever a € I' and a™ = ~ for some n > 1, then
o = 7. In general, I'y is infinitely cyclic and generated by some
primitive o € T'. Thus, v = a*" for some n > 1, and so {7y} = {a*1}".
In other words, each hyperbolic conjugacy class is an integral multiple of
a unique primitive hyperbolic conjugacy class and, geometrically, each
closed geodesic is an integral multiple of a unique prime geodesic.

3. The lifting of prime geodesics. The set of all formal products
IIP]"* of prime geodesics is the geometric analogue of the set of all
fractional ideals in the ring of integers of a number field. The closed
geodesics themselves are then analogous to prime powers. We can fix
a positive orientation on the closed geodesics and obtain the analogue
of integral ideals; the prime geodesics are then analogous to prime
ideals. We wish to obtain the geometric analogues of the notions
related to an extension of number fields, namely, the Galois group,
the splitting of prime ideals, the decomposition subgroup, and the
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Frobenius element/conjugacy class. This requires a brief discussion
of deck transformations.

For any subgroup A of I', A\H is a covering surface of I'\H, with
projection map p : A\H — T'\H given by p(Az) = TI'z. Note
that 1\{ = H is the universal covering surface of I'\H. A deck
transformation of this covering map p is a homeomorphism f : A\H —
A\H such that po f = p. The set of all deck transformations of A\H
forms a group, the deck transformation group Aut (p) of the covering
map p. This group is the geometric analogue of the field automorphism
group of an extension of number fields.

If A # 1, then each prime geodesic P on A\H projects to a closed
geodesic po P on ['\H. Now, po P is an integral multiple of a unique
prime geodesic P on I'\H, say po P = P". We have [(P) = n - (P),
and we say that P is an nth degree prime geodesic lying over P.
Geometrically, this means that, as the image of P is traced out once,
the image of P is traced out n times. This projection of prime geodesics
is the geometric analogue of a prime ideal of inertial degree n lying over
another prime ideal. We may turn this observation around and ask the
following question: for each prime geodesic P on I'\H, how does P
behave as it is lifted to A\H? More precisely, we ask the following two
questions.

1. Which prime geodesics in A\H lie over P? (Or at least, how many
prime geodesics lie over P ?)

2. What are the lengths (degrees over P) of these geodesics?

This lifting of prime geodesics is the geometric analogue of the
splitting of prime ideals. In general, these are very difficult questions
to answer, much more difficult than the analogous questions for prime
ideals.

4. The Frobenius map. Assume we have a regular (normal)
covering map p : A\H — I'\H and an nth degree prime P lying over
P. Fix a basepoint x on the image of the geodesic P, and choose an
element z € p~1(z) of the fibre on the image of P. Then p induces a
monomorphism py : 1 (A\H, Z) = 7 (I'\'H, =) of fundamental groups
and a monodromy action of 71 (I'\H, z) on the fibre above z, given by
the terminal point of a lifting of an element of m; (I'\*,z). The deck
transformation group Aut (p) is then a Galois group Gal (p) isomorphic
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to the quotient group 71 (I'\H, z)/px (71 (A\H, Z)) via the monodromy
action, and by a coGalois correspondence, Gal (p) is also isomorphic to
the quotient group I'/A. Moreover, Gal (p) acts transitively on the set
of all primes above P via a change of basepoint. Details and proofs of
these facts may be found in [9, Chapter 14] and [7, pages 45-49].

The prime geodesic P is itself an element of 7 (I'\H, z), and so we
define the Frobenius element of P over P to be the element of Gal (p)
associated with P under this isomorphism. This Frobenius element
generates a cyclic decomposition subgroup D(P|P) of Gal (p) of order
n. This decomposition subgroup is the stabilizer subgroup of P under
the action of Gal (p) on the primes above P. Since Gal (p) is isomorphic
to T/A, we see that the Frobenius element is actually an element
of I'/A, and the decomposition subgroup is the cyclic subgroup of
I'/A generated by this element. As in the case with the Frobenius
element of a prime ideal, if P; and P, lie over the same prime P, then
they are conjugate in I'/A. (Geometrically, the conjugation map is a
change of basepoint.) In other words, each prime geodesic P on T'\H
determines a unique Frobenius conjugacy class Frob (P) in the Galois
group Gal(p) ~T'/A.

Let us examine these ideas in a particular case. Let K be a number
field with a ring of integers Ok, and let I' be a Fuchsian group with
' C SL(2,0k). Let Q be an ideal of Ok (not necessarily prime); then

A=T(Q):={y€Tl:vy==xI mod Q}

is a subgroup of I, the principal congruence subgroup of level Q. Here,
A = B mod Q means that each pair of corresponding entries of A
and B is congruent mod Q. Now, assume that @ is a prime ideal
of Ok lying over an odd rational prime p. Then Og/Q = F, is a
finite field, where ¢ = p™ for some integer n. We reduce vy mod @
by reducing each entry of v mod @. This defines a reduction mapping
I' = SL(2,0k) — SL(2,0k/Q) = SL(2,q) where v — 5. Note
that T'(Q) is the kernel of this reduction mapping v — 5/ £ I; we
conclude that the Galois group I'/A = I'/T'(Q) is isomorphic to the
image of this mapping. In general, the reduction mapping might not
be surjective, and so I'/T'(Q) might only be isomorphic to a proper
subgroup of PSL (2, q).

The dual nature of f(z) (as a characteristic polynomial of v, and as a
minimum polynomial of €) is the key that will allow us to connect
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number theory to geometry in the results that follow. Note that
f(z) := f(z) mod @ is a polynomial over F,, and the roots of f(z)

are
t+vA
2

where ¢ = tr(y), A = t2 — 4. Then f(z) is simply the characteristic
polynomial of %4 considered as a linear operator on the vector space
F,xF,. We can then classify ¥ according to its Jordan form. However,
some care must be taken. Because F, is not algebraically closed, it
might not be possible to find a matrix in SL (2, ¢) that conjugates ¥
to its Jordan form. If this occurs, the conjugacy classes in SL(2,q)
associated with that Jordan form will be proper subsets of the Jordan
form class. This leads to the following

mod @

Definition 2. Let K, Ok, I', Q, p, P, {y} and 7 be as above.
The Frobenius conjugacy class of v (the Frobenius conjugacy class
of P) is the conjugacy class of 5/ + I in PSL(2,q) and is denoted
Frob (y) = Frob (P). (Note that the definition of Frob (P) does not
depend on the choice of v, because Frob (P) is only determined up to
conjugacy.)

Fix a nonsquare D in F,;. The Q-type of Frob (P) is defined as follows.
e Frob (P) is Q-central if ¥ is conjugate to +1.
e Frob (P) is Q-parabolic if ¥ is conjugate to one of the following

forms:
11 1 D -1 -1 -1 —-D
o 1/)’\0 1/)°\L0 -1)’\0 -1)°

e Frob (P) is Q-hyperbolic if 7 is conjugate to

a 0
<0 a1>, U/#il.

e Frob (P) is Q-elliptic if 7 is conjugate to

a b
(Db a>’ o # +l,
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Although Frob (P) is a conjugacy class in PSL(2,q), we work in
SL(2,q) and implicitly identify matrices and conjugacy classes that
are congruent mod £ 1. Also, it is possible to give explicit formulae for
matrices which conjugate 7 to its Frobenius conjugacy class represen-
tative in SL (2, q) above, thereby showing that each matrix in SL (2, q)
is in fact conjugate to precisely one matrix of the above form [2, Ap-
pendix]. In terms of the characteristic polynomial f ,

Q-central
Q-parabolic
Q-hyperbolic
Q-elliptic

Frob (P) is

f has a double root = 41 and 7 is diagonal
f has a double root = +1 and
the Jordan form of % has a single 2 x 2 block
f has two distinct roots in F
f has two distinct roots in the quadratic extension F,(v/D) of F,

The presence of D in a matrix indicates that it cannot be conjugated
in SL (2, ¢) to its Jordan form. The elliptic case gives a Pellian equation
2 2
a® — Db* = 1.

A congruence subgroup of level Q) is any subgroup A of I' that contains
I'(Q), such that whenever A contains I'(Q'), then @ divides @’. In
addition to I'(Q) itself, an important example of a congruence subgroup
of level Q is

A:FO(Q)::{<Z Z) EF:CEOmon}.

For A = T'(Q), we will obtain complete answers to each of the
two questions above regarding the lifting of prime geodesics. For
A = Ty(Q), however, we only give a partial answer—disregarding
exceptional cases, we will determine the number of first-degree geodesics
lying over P, i.e., the number of geodesics P such that po P = P. In
both of these cases, we will show that the lifting behavior in question
is almost always completely determined by the length of P.
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Algebra

Geometry

Number field K

Hyperbolic surface I'\'H

Field extension L/K

Covering projection p:A\H — I'\'H

Galois field extension L/K

Regular covering projection p:

A\H — I\ H

Algebraic closure Q/K

Universal covering projection

H - D\H

Field automorphism

group Aut (p)

Deck transformation group Aut (L/K)

Galois group Gal (L/K)

of a Galois extension L/K

Galois group Gal (p) ~# I'/A

of a regular covering projection p

Absolute Galois group
Gal (Q/K)

Fundamental group
™1 (F\H, :E) ~T

Prime ideal @ of Ok

Prime geodesic P on I'\'H

Power Q™ of a prime ideal Q

Closed geodesic P™

Fractional ideal I of O

Formal product HP;” of prime geodesics

Integral ideal I of Ok

where n; > 0 for all ¢

Formal product H'Pin i of positively-

oriented prime geodesics,

Norm of the ideal I

Norm of the closed geodesic P

Prime ideal B of

inertial degree n lying over Q

Prime geodesic P

of degree n lying over P

Splitting of prime ideal @ in L

Lifting of prime geodesic P to A\'H

Minimum polynomial f(z) of €

Characteristic polynomial f(z) of v

Decomposition subgroup D(P | Q)

Decomposition subgroup D(P | P)

Frobenius element/conjugacy
class of @

Frobenius element/

conjugacy class Frob (P)

Artin L-function

Selberg zeta function

Landau prime ideal theorem

Prime geodesic theorem [7, page 40]

Chebotarev density theorem

Prime geodesic theorem with constraints
[7, page 49]

5. Algebra and geometry. We present a table which lists various

corresponding objects from each of the algebraic and geometric areas.
This is not (yet!) an exact mathematical correspondence but should
be thought of as a conceptual mental map. The polynomial f(z) is the
only object which is strictly identical in both areas.

6. First results. The following proposition reinterprets the defi-
nition of the @-type of Frob (P) into the language of the splitting of
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prime ideals, by using the fact that the characteristic polynomial f(z)
of ~ is also the minimum polynomial of the quadratic unit e.

Proposition 3. Let K be a number field with a ring of integers
Ok, and let T' be a Fuchsian group with ' C SL(2,0k). Let Q be
a prime ideal of Ok lying over an odd rational prime p. Let P be
a prime geodesic on T'\H with associated hyperbolic conjugacy class
{~}. Suppose the characteristic polynomial f(x) = 2> —tx + 1 of v is
irreducible over K, and let € > 1 be a root of f(x). Let ind (g) be the
conductor of order Okle] in Ok (). If Frob(P) is not Q-central, and
if ptind (g), then

Q-parabolic ramifies
Frob (P) is < Q-hyperbolic <= Q< splits in K(g).
Q-elliptic 18 inert

Proof. We combine the definition of the Q-type of Frob (P) with
a standard result on the decomposition of prime ideals in quadratic
extensions [4, page 79].

Q-parabolic
Frob (P) is ¢ Q-hyperbolic
Q-elliptic
~ has a double root

<= f(z) { has two distinct roots » in F,
has no roots

ramifies
< @ ( splits in K(¢). O
is inert

The following proposition states that determining the @Q-type of
the Frobenius conjugacy class Frob (P) is essentially as difficult as
determining squares in F,.

Proposition 4. Let K, Ok, T, Q, p, P and {y} be as above,
let f(x) = 2 — tz + 1 be the characteristic polynomial of v, and let
A =1t2—4. Then
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Q-central
Q-parabolic
Q-hyperbolic
Q-elliptic
t = +2mod Q and vy is diagonal modQ
t =+2mod Q and v is not diagonal modQ
t Z+2 mod Q and A is a square modQ
A is not a square modQ

Frob (P) is

In particular, if Frob(P) is not Q-central, then the Q-type of
Frob (P) is completely determined by the length of P.

Proof. We show that each condition on the right implies its corre-
sponding condition on Frob (P); since these conditions are mutually
exclusive and exhaustive, this will complete the proof. We begin by
making the usual identification Og/Q = F,. Let

~ (a b
T=\e d)
e Suppose t = £2 mod @ and + is diagonal mod@. Then b =c¢ =0
in F;, and we have
ad —bc=1
:>ad:1:>22:(a+d)2:(a+a71)2:a2+2+a72
=a’+a?=2
=>(a—a_1)2:O:>a:a_1:d=>a2:1=>a:d::l:1
=5 ==l
Thus, Frob (P) is Q-central.

e Suppose ¢ = +£2mod () and v is not diagonal mod ). Then
A=t>—4¢€Q,ie, A=0inF, By the quadratic formula, f(z) has
a double root in F, and since 5 # +1I, Frob (P) is Q-parabolic.

e Suppose t # +2 mod @ and A is a square in F,,. Since A =t?—4 =

(t+2)(t —2) Z 0mod Q, A is a nonzero square in Fy, so f(z) has two
distinct roots in Fy, and Frob (P) is Q-hyperbolic.
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¢ Finally, suppose A is not a square in Fy. Then f (z) must have two
distinct roots in a quadratic extension of Fy, and Frob (P) is Q-elliptic.

The last statement follows because ¢ = 2cosh (I/2), A = > — 4 and
f(x) =2 —tx + 1. o

Note that, in practice, distinguishing between (@Q-central and Q-
parabolic matrices is trivial; we simply check if each off-diagonal entry
is an element of Q.

We now explore the behavior of a prime geodesic as it is lifted to

L(Q)\H.

Theorem 5. Let K be a number field with a ring of integers Ok, and
let T be a Fuchsian group with T' C SL (2, Ok ). Let Q be a prime ideal
of Ok lying over an odd rational prime p. Let |Ok/Q| = q = p"™, and
let T/T(Q)| = r. Let P be a prime geodesic on I'\H with associated
hyperbolic conjugacy class {7}, let ¥ = ymod Q, and let € > 1 be a
root of the irreducible quadratic f(z), as usual. Then all the prime
geodesics on T'(Q)\H lying over P have the same degree, and

e If Frob (P) is Q-central, then P splits completely, i.e., P lies under
exactly v first-degree prime geodesics on I'(Q)\H.

e If Frob(P) is Q-parabolic, then P lies under exactly r/p prime
geodesics of degree p on T'(Q)\H.

e If Frob (P) is Q-hyperbolic or Q-elliptic, then P lies under exactly
r/m prime geodesics of degree m on T'(Q)\H, where m is the order of
an eigenvalue of 5 (up to sign) in the multiplicative group of units of
the quadratic extension field Fg2.

In particular, if Frob (P) is not Q-central, then the number and
degree of the prime geodesics on T'(Q)\H lying over P is completely
determined by the length of P.

Proof. Since I'(Q) is the kernel of the reduction mapping v — 5/ £1,
it is a normal subgroup of I', and the factor group I'/T'(Q) acts
transitively on the set of prime geodesics on I'(Q)\H lying over P.
Thus, all the prime geodesics have the same degree, which is equal
to the order m of ¥/ £ I in T'/T(Q) C PSL (2, ¢), and there are r/m
geodesics lying over P [7, page 47]. Note that m is equal to the order
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of 7 (up to sign) in SL (2, q). Since the order of an element is invariant
under conjugation, we may suppose that 4 is a Frobenius conjugacy
class representative.

o If Frob (P) is Q-central, clearly m =1 and r/m =r.

e If Frob (P) is Q-parabolic, then a calculation shows that the order of
7, up to sign, is the characteristic p of Fy. Thus, m = pand r/m = r/p.

e If Frob (P) is Q-hyperbolic or Q-elliptic, then the order of 7, up to
sign, is equal to the order of its Jordan form, up to sign, over F 2. Since
this Jordan form is diagonal, and since the eigenvalues are inverses,
this is equal to the order of an eigenvalue of 7 (up to sign) in the
multiplicative group of units of F .

If Frob (P) is not Q-central, then by the previous result, the Q-type of
Frob (P) is completely determined by the length of P. If Frob (P) is Q-
parabolic, then P lies under exactly r/p prime geodesics of degree p on
L(Q)\H. If Frob (P) is Q-hyperbolic or @Q-elliptic, then an eigenvalue
of ¥ can be found by reducing the eigenvalue ¢ of v mod @, and since
e = exp(l/2), the order of this eigenvalue in F > depends only on the
length of P. In each case, the number and degree of prime geodesics on
I'(Q)\H lying over P is completely determined by the length of P. o

7. Interlude—the Selberg zeta function. Before stating and
proving the reciprocity law, we present some facts concerning the Sel-
berg zeta function attached to a representation of a Fuchsian group. Let
I'; be a subgroup of a Fuchsian group I', and let o be a unitary finite-
dimensional representation of I'y. Suppose also that I'y = kernel (o)
contains I'(Q)). We define

Z(s,11/P,0) = [T T] det (1 — o (Evob (P)) N (P)~*7")..
P

k=0

Here, P varies over all prime geodesics on I';\#, and Frob (P) is a
conjugacy class in the finite group I'; /T's. (The definition of Frob (P)
originally given corresponds to I'y = I'" and I's = I'(Q).) Taking
I't = 'y and ¢ = 1, the trivial representation gives a Selberg zeta
function which is more commonly denoted Z(s,I'1).

The Selberg zeta function has several useful properties similar to
those of the Artin L-function [5, page 517]. For example, if I’y and I's
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are both normal subgroups of I'; with I'3 < I'y, then any representation
o of 'y /Ty defines a unique representation (also denoted o) of I'y /T's.
This is called pullback. We have

Z(Svrl/FZaU) =27 (S)FI/F?)aU) '

The Selberg zeta function is also well-behaved with respect to direct
sums.

Z(s,Fl/F2,01 EBO’Q) = Z(S,Fl/rz,(fl)Z(S,Fl/rz,dz).

Finally, suppose I'; is a subgroup of I'y and o is a representation of
I'; as before. Then I'1 /Ty is a subgroup of I'y/T's, and we can form
the induced representation ind (o) (not to be confused with the index
ind (¢)) [8, page 38]. One can show that

Z(S,Fl/rz,U) = Z(S,Fo/rz,ind (0’)) .

All of these properties hold for all local factors of the zeta function; in
fact, the above properties are proved by piecing together the properties
for all local factors.

8. Reciprocity law.

Theorem 6. Let K be a number field with a ring of integers Ok, and
let T be a Fuchsian group with T' C SL (2, Ok). Let Q be a prime ideal
of Ok lying over an odd rational prime p, and let |Ok/Q| = q¢ = p".
Let P be a prime geodesic on I'\'H with associated hyperbolic conjugacy
class {v}, and let € > 1 be a root of the irreducible quadratic f(z), as
usual. Then

P lies under exactly I : Ty (Q)] first-degree prime geodesics on
Ty (Q)\H <= Frob (P) is Q-central.
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If Frob (P) is not Q-central, and if p{ind (¢), then

1
P lies under ezactly { 2
0

first-degree prime geodesics on Iy (Q) \H

ramifies
< Q{ splits in K ().
15 tnert

In particular, if Frob (P) is not Q-central, and if p t ind (g), then
the number of first-degree prime geodesics on T'o(Q)\H lying over P is
completely determined by the length of P.

Proof. Suppose P,... ,fg are the prime geodesics lying over P.
Then N(P;) = N(P)/:, i.e., the length of P; is f; times the length of
P,and fi+---+f; = [[' : To(Q)]. Since I'y(Q) is not a normal subgroup
of I, the f; need not all be equal. By using the above properties of the
Selberg zeta function and comparing the local factors associated to the
prime P, we expand as a polynomial in N(P)~% and see that

1—F.-N(P) °+---+ higher terms
=1 — [trace (ind (1) (Frob (P)))] N (P) ° + --- + higher terms,

where F is the number of first-degree prime geodesics on I'g(Q)\# lying
over P, 1 is the trivial representation of I'g(Q)/T'(Q), and ind (1) =1
induced up to I'/T(Q). But, by a result in the character theory of
finite groups [8, page 30|, trace (ind (1)(Frob (P))) is the number of
elements 8/ + I of I'/T(Q) that conjugate an element 5/ + I of Frob (P)
to T'o(Q)/T(Q), i.e., to upper-triangular, and such that they are not
congruent modI'y(Q)/I'(Q). This number is independent of the choice
of the element 7/ & I of Frob (P).

For the remainder of the proof, we work with matrices 7, which are
only determined up to sign. This does not affect any of the arguments.

e If Frob (P) is Q-central, then § = =+, so any matrix 4 in I'/T'(Q)
will conjugate 5 to upper-triangular; hence, F = [[" : 'y (Q)].

If Frob (P) is not Q-central, and if p { ind (g), then the proposition
relating the Q-type of Frob (P) to the splitting of @ applies.
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e If ) ramifies in K(g), then Frob (P) is Q-parabolic, and we may
assume -
~ 1 D ~
= :l: D .
gl (0 1 > , D#0

Since 7 is already upper-triangular, clearly I '] = ¥ is upper-

triangular. Also, if § = ( p g) is any other element of I'/T'(Q) such

that 6 156 is upper-triangular, then the lower-left entry of 5156 is
-DC? = 0, which implies C' = 0, so that 5 is upper-triangular. Hence,
F=1.

o If @ splits in K(g), then Frob (P) is Q-hyperbolic, and we may

assume
~ a 0
’Y_<0 a—l)v a#il

Since 7 is already upper-triangular, again I~'5I = 7 is upper-
0 —

triangular. However, the matrix E =%

1) is clearly not upper-

triangular, and 5 acts by conjugation to switch the eigenvalues on the

diagonal of 7. If § = (A B) is any other element of I'/T'(Q) such

cD
that 5’ 76 is upper-triangular, then the lower-left entry of 6 154 is
AC(a™ fa)—(] As a # a” ,wehaveC—OorA—O In the

former case, ¢ is upper-triangular, and in the latter case ﬂ 15 is upper-
triangular. Hence, F' = 2.

e If Q is inert in K(g), then Frob (P) is @Q-elliptic, and an element
¥ of the Frobenius class cannot possibly be conjugate in I'/T(Q) to
any upper-triangular matrix, since this matrix would necessarily be in
Jordan form and hence not be Q-elliptic. Hence, F' = 0.

The last statement follows by considering the proposition relating
the @Q-type of Frob (P) to the splitting type of @ in K(g), and the
proposition which says that the Q-type of Frob(P) is completely
determined by the length of P. O

9. Future directions. There are many possible directions for
further research based upon these ideas.

e The examples given so far [2, Chapter 6] involve the three simplest
Hecke groups. Examples using other Hecke groups or Fuchsian groups
would be welcome.



LIFTING PROPERTIES OF PRIME GEODESICS 453

e Can these ideas be used to say anything about the lifting behavior
of prime geodesics on surfaces determined by Fuchsian groups that are
not of the type given in the results?

e Can these ideas be used to say anything about the number of
nonfirst-degree geodesics lying over a given prime geodesic when A =

Lo(Q)?

e Can these ideas be used to say anything about the lifting behavior
of prime geodesics to A\H for congruence subgroups A # I'(Q) or
Lo(Q)?

e The above table of analogies (including Galois groups, split-
ting/lifting of primes, Frobenius maps, zeta functions, and asymptotic
distribution of primes) appears in many other areas of mathematics,
e.g., in graph theory [9, 10] and in the theory of dynamical systems
[5]. Is there a general theory which encompasses many of these cases?
The beginnings of such a theory can be found in the categorical Galois
theory of Grothendieck, Borceux, and Janelidze [1] and in the theory of
abstract analytic number theory developed by Knopfmacher [3]. The
former provides a context for algebraic aspects, while the latter focuses
on analytic techniques and provides abstract asymptotic distribution
results. Each theory has its own notion of “zeta function.” Can the
two approaches be combined?
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