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A GAUGE INVARIANT UNIQUENESS THEOREM FOR
CORNERS OF HIGHER RANK GRAPH ALGEBRAS

STEPHEN ALLEN

ABSTRACT. For a finitely aligned k-graph A with X a
set of vertices in A, we define a universal C*-algebra called
C* (A, X) generated by partial isometries. We show that
C* (A, X) is isomorphic to the corner PxC*(A)Px, where
Px is the sum of vertex projections in X. We then prove
a version of the Gauge Invariant Uniqueness theorem for
C*(A, X) and then use the theorem to prove various results
involving fullness, simplicity and Morita equivalence as well
as results relating to application in symbolic dynamics.

1. Introduction. Much study has been done lately in regards to
higher rank graphs (also known as k-graphs) and their associated graph
algebras since their first appearance in [12]. As k-graphs are a higher-
dimensional generalization of directed graphs (which can be regarded as
one-dimensional), it is important to be able to adapt the known results
for directed graphs to the field of k-graphs. So far this has been done
with a reasonable amount of success, for example, see [1, 13, 19, 23]
to name a few; however, the complex nature of k-graphs often makes
the proofs of these adapted results much more complicated than the
previous ones.

Corners of graph algebras naturally arise in many places when study-
ing graph algebras, see [10, 14, 26, 27| for example, and have been
shown to be a necessary tool in the understanding of arbitrary graph
algebras. In particular, there is an important link between graph al-
gebras and symbolic dynamics, see [2, 4, 9], since directed graphs
represent subshifts of finite type, see [15]. Transferring results from
symbolic dynamics to graph algebras frequently involves using corners.

It is the goal of this paper to provide tools for dealing with corners
of k-graph algebras generated by vertex projections. As such, we
describe a universal C*-algebra generated by partial isometries which
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is isomorphic to a corner of a graph algebra. We then show that
this algebra has a version of the Gauge Invariant Uniqueness theorem
(Theorem 3.5) which tells us when mappings that respect the gauge
action are injective. We then show the facility our definition provides
by proving various applications. As such, we gain some new results
as well as some generalizations of existing results for directed graphs.
In particular, we obtain conditions for checking Morita equivalence of
graph algebras using corners and also realize the AF core of a k-graph
as a corner.

We begin in Section 2 with the preliminaries involved in finitely
aligned k-graphs and their associated graph algebra since for the most
part of this paper we restrict ourselves to this class of k-graph. In
Section 3, given a set X of vertices in a k-graph A, we define a (A, X)-
family of partial isometries subject to a set of relations similar to the
Cuntz-Krieger relations of [20] that generates a universal C*-algebra
C*(A,X). We then prove a Gauge Invariant Uniqueness theorem
(Theorem 3.5) for C*(A, X) which generalizes [20, Theorem 4.2] and
then use this theorem to show that C*(A, X) is isomorphic to a corner
of C*(A).

In Section 4 we describe saturated and hereditary sets of vertices and
use them to find conditions for fullness of our corners (Corollary 4.4).
We also describe the Morita equivalence class (Proposition 4.2) of a
corner based on saturated and hereditary sets. In Section 5 we examine
a class of k-graph morphisms which induce maps between corners and
in particular how these can be used to show Morita equivalence of k-
graph algebras (Corollary 5.4).

In Section 6 we establish necessary conditions for a corner to be simple
(Proposition 6.2) and, in particular, if our k-graph is row finite the
condition is also sufficient (Proposition 6.4). In Section 7 we briefly
look at some corners that are generated by more general projections
using the dual graph defined in [1].

Finally in Section 8 we look at skew product graphs and establish a
connection between certain fixed-point algebras of k-graphs and corners
of skew product graphs. In particular, we give a condition for the AF
core of a k-graph algebra to be Morita equivalent to a skew product
graph naturally associated to it.
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2. Preliminaries. Throughout this paper we let N :={0,1,2,...}
be the set of counting numbers and regard N* as an abelian monoid
with identity 0 = (0,0,...,0) and canonical generators e; = (0,...,1,

.,0), (1 is the th coordinate). For n € N* we write n; as the ith
coordinate of n. There is a partial order [ on N* given by m < n
if m; <n;foralll <i <k, withm <nifm <nandm # n. For
m,n € N* we write mVn and mAn for their coordinate-wise maximum
and minimum, respectively.

Definition 2.1. A k-graph is a pair (A, d) consisting of a countable
category A and a degree functor d : A — NF which satisfies the
factorization property: for every A € A and m,n € N* with d(\) =
m + n there exist unique p,v € A such that d(p) = m, d(v) = n and
A = pv, see [12] for more details. A k-graph morphism is a functor
between two k-graphs which respects the degree map.

Throughout this paper we will simply write A instead of (A,d)
whenever it is clear what we mean. Since we regard k-graphs as
analogues of directed graphs, we will sometimes refer to morphisms as
paths (denoted with Greek letters A, u,v,...) and objects as vertices
(denote u,v,w,...), and we will write s and r for the domain and
codomain maps, respectively.

Definition 2.2. For all n € N* we define A" := {\ € A :d()\) = n}.
The factorization property ensures that Obj (A) can be identified with
A°, and we will regard them as the same thing. Given any v € A° and
n €F we define vA™ := {A € A" : r(\) = v} and A"v := {\ € A" :
s(A) = v}. Similarly, for any X C A°, we define XA™ := U,cxvA™ and
A"X :=UpexA™ and XA :={ e A:r()\) € X}.

Definition 2.3. A k-graph is row finite if the set vA™ is finite for all
v e A® and n € N*. We call a vertex v € A? a source if vA¢ = & for
some 1 <7<k and a sink if A®v = & for some 1 < i < k.

Definition 2.4. A k-graph is locally conves if, for all v € A° and
i,7 € {1,... ,k} such that ¢ # j and vA® and vA® are nonempty, then
for all A € vA® the set s(A)A% is nonempty.
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Definition 2.5. For A € A and m < n < d(A), the factorization
property gives unique paths A’ € A™, A" € A»™ and X" € AdN-—n
such that A = XX'X". We denote A" by A(m,n), so A’ = A(0, m) and
A" = A(n,d(N)).

Definition 2.6. For A\, u € A, we write
AT\ ) = {(@, B) : da = pfB,d(Aa) = d(N) V d(u)}

for the collection of pairs which give minimal common extensions of A
and p. For any set F' C A:

MCE (F) = {AeA d()) = \/ d(a) )):aforallaeF},
a€EF

and VF = Ug-rMCE (G). We say the A is finitely aligned if A™™(\, u)
is finite (possibly empty) for all A, u € A.

Definition 2.7. A set £ C vA is ezhaustive if for every p € vA there
exists A € E such that A™B(\ u) # 2.

For this paper we are only concerned with finite exhaustive sets. This
is reflected in Definition 2.8 (iv) and Definition 3.1 (iii). We note that
if A is row finite with no sources, then for any v € A and n € N* the
set vA" is a finite exhaustive set.

Definition 2.8. Let (A, d) be a finitely aligned k-graph. A Cuntz-
Krieger A-family is a collection {ty : A € A} of partial isometries in a
C*-algebra satisfying:

(i) {t, : v € A°} is a collection of mutually orthogonal projections;
(ii) taty = tau whenever s(X) = 7(u);
(ili) t3tu = X-(agyeamin(r ) tatp for all A, u € A; and
(iv) [Thep(to —taty) = 0 for all v € A° and finite exhaustive E C vA.

Remarks 2.9. (1) Relation (iii) implies that ¢3¢\ = t,(\) and that
txt, = 0 if A™"(\,u) = @. Also, the finitely aligned condition is
necessary for relation (iii) to make sense. See [20, Definition 2.5] for
more details.
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(2) Relation Definition 2.8 (iv) allows vertex projections to be written
as a linear combination of path projections. That is, for any v € A with
a finite exhaustive set £ C vA:

ty= Y catat}.

AEVE

Given a finitely aligned k-graph (A,d), there exists a C*-algebra
C*(A) generated by a Cuntz-Krieger A-family {s) : A € A} which
is universal in the following sense: given a Cuntz-Krieger A-family
{tr : A € A} of bounded operators on a Hilbert space #, there exists
a unique homomorphism 7 : C*(A) — B(#) such that m(sx) = ¢y for
all A € A. Given a Cuntz-Krieger A-family {ty : A € A}, then as a
consequence of Definition 2.8 (i)—(iii) and [20, Lemma 2.7], we have

C*({ta: A € A}) =span {tat}, : \, u € A, s(N) = s(p)}

Given any finitely aligned k-graph (A,d), then it has a strongly
continuous gauge action ¥y* : TF — Aut(C*(A)) determined by
vA(sy) = 2¢Ms, where z € TF and for any m € NF we have
2™ = z{"* ... z,"". The fixed-point algebra C*(A)”/A is AF and is equal
to span {sxs, : d(\) = d(u)} and is called the AF core of C*(A), see
[20, Theorem 3.1].

3. Cuntz-Krieger (A, X)-families. We now wish to describe cor-
ners of finitely aligned k-graph algebras determined by vertex projec-
tions as universal C*-algebras generated by partial isometries. A sim-
ilar method was used in [25, Section 2] to describe corners of certain
directed graph algebras. The notation used in this paper is also com-
parable to that of [22, Section 3] where rank 2 Cuntz-Krieger algebras
are defined in a similar way.

Definition 3.1. Let (A,d) be a finitely aligned k-graph, and let
X C A° be nonempty. A Cuntz-Krieger (A, X)-family is a collection of
partial isometries

{Top:0a,be XA and s(a) = s(8)}

(with notation T\ := T for each A € A) subject to the following
relations:
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For any «, 8, A\, p € XA with s(a) = s(8) and s(A\) = s(u),
(i) T, 5 = 1pa;
(ii) Ta’gTA# = Z(ﬁl,)\l)eAmin(ﬁ’A) Taﬁ’,u)\’; and

(iii) [ eg(Th — Thy) = 0 for all A € XA and finite exhaustive
E C AA.

Remarks 3.2. (1) As a result of relations (i) and (ii) {Th : A € XA}
is a set of commuting projections, and in particular {T}, : v € X} is a
set of mutually orthogonal projections.

(2) When X = A° these relations reduce to a Cuntz-Krieger A-family.
That is, the set {T’\ 5(n) : A € A} satisfies Definition 2.8.

Given a finitely aligned k-graph A and X C A° there exists a C*-
algebra generated by a Cuntz-Krieger (A, X)-family {T, 5 : o, € XA :
s(a) = s(B)}, denoted C*(A, X), which is universal in the following
sense: given a Cuntz-Krieger (A, X)-family {tap: 0,8 € XA : s(a) =
s(B)} there exists a unique homomorphism 7; of

C*(A, X) such that m(Ty g) = top for all o, 8 € XA with s(a) =
s(B).

It was shown in [20, Proposition 2.12] that for any finitely aligned k-
graph A there exists a nondegenerate Cuntz-Krieger A-family {s, : A €
A}. By the universal property of C*(A, X) there is a homomorphism
¢+ B — C*(A) given by ¢(Tu,) = sasj. Hence, for every finitely
aligned k-graph A with X C A° there exists a nondegenerate Cuntz-
Krieger (A, X)-family.

By the same argument as [20, Lemma 2.7(iv)], it can be shown that

C* (A X) = W{Ta,ﬁ ta,B € XA, s(a) =s(8)}.

By the universality of C*(A,X) and a standard ¢/3 argument,
C*(A, X) has a strongly continuous gauge action X of T* given by

Y (Tap) = 247 4OT, 5.

We call the fixed-point algebra C*(A, X)VX the core of C*(A, X).
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Using a standard argument, it can be shown that
C*(A, X)" =span{T, s € C*(A, X) : d(e) = d(B)},

see [12, Lemma 3.1] and [5, Lemma 2.2] for example.

Our next goal is to prove that C*(A, X)VX is AF. We proceed by
showing that every finite set of generators {1}, g} is contained in a finite-

dimensional subalgebra of C*(A, X )VX, which suffices. Following from
[20, Definition 3.3], for any finite set E C XA then [] E is the smallest

set containing E such that span {T, s € C*(A,X)" :a,8 € [[E} is
closed under multiplication.

Lemma 3.3. Let A be a finitely aligned k-graph with X C A°. Then
the fized-point algebra C*(A, X)'YX is AF.

Proof. Let F = {T,, 5, € C*(A,X)"" }7_,, and let E = {ay, B;}™,.
Then the set [[ E is finite by [20, Lemma 3.2], and span{T, 3 €
C*(A,X)"’X : a,8 € []E} is a finite-dimensional subalgebra of
c* (A,X)”/X containing F. Hence, C*(F) is finite-dimensional. There-
fore, C’*(A,X)VX is AF by [6, Theorem 2.2]. o

We now wish to prove an analogue of the Gauge Invariant Uniqueness
theorem for C*-algebras generated by Cuntz-Krieger (A, X)-families.
Recall the following definition from [20, Proposition 3.5]: for any
el E,

Q(T)EE =T [[ (Tn—Tw).
awel] B

d(v)>0

By [20, Proposition 3.5], the set {Q(T)!\_[E : A € [[E} is a set of
mutually orthogonal projections. Our claim is that every ideal in
C*(A, X)"™ contains a Q(T))\HE for some finite £ C XA and A € [[ E.

By claim (ii) of [20, Corollary 3.7], THQ(T)ﬂE = 0 for any p,o €
[1E with 0(0,d(u)) # p. If {\v € [[E} is exhaustive then clearly
Q(T)AHE = 0 by Definition 3.1 (iii). Also [20, Proposition 3.13] shows
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that Q(T)HL® — 0 only if {\v € []E} is exhaustive. The following
lemma will be useful for proving Theorem 3.5.

Lemma 3.4. Let E C XA be a finite set, and let \,u € [[ E be such
that Ty , € C* (A, X)"". Then

(1) Thp = iy ¢iTa, p, where o;,3; € []E and Q(T)CIJE # 0,
Q(T)},:[E £0foralll <i<n.

@ o1, = 101 I1”, ot 20, Lemma 3.10].

Note. We cannot use [20, Lemma 3.10] in this paper because the
proof relies on [20, Remark 3.6] which is not applicable to this paper.

Proof. For (1), let ng = VE, and let « € ES"#, Since o has no
extensions in [[ E, then Q(T)aHE =Ty # 0 for all @« € ES™=. Suppose

Q(T)[IE =0, and hence {\v € [[ E} is a finite exhaustive set. Using
Definition 3.1 (iii) we can write

T)\,}L = Z CVT)\V”uV-
Au,quH E
d(v)#0

Because [ E is a finite set and because d(a) < ng for all a« € [ E, we
can repeat these steps on each term until the hypothesis is met.

For (2), let A, u, A\v,v € [ E; then

T/\,M(Tu - T;W) =Dy — D = (T/\ - TAV)TA#'

E
Since Q(T)l\I is a finite product we can perform the above calculation
term by term. ]

Theorem 3.5 (Gauge Invariant Uniqueness theorem). Let A be a
finitely aligned k-graph with X C A°, {to 5} a Cuntz-Krieger (A, X)-
family and 7 a representation of C*(A, X) such that 7(Tag) = top-
Suppose that w(Ty) # 0 for each A € XA, and suppose that there is a
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strongly continuous action § of TF on C* (tap) such that §,om = mo~y,
for all z € T*. Then = is faithful.

Proof. First suppose T, g € C*(A,X)VX and 7(T,,g) = 0; then since
(%) To =T pTp,a5

we must have that 7(T,,) = 0 which contradicts our hypothesis.

Next suppose ¢ = Y i, ¢;Tu, 5, € C* (A,X)VX such that z # 0 and
m(z) = 0. Let E = {a;,Bi}";. By Lemma 3.4 (1) we may assume
that Q(T))\HE # 0 for all A € E. Since E is a finite set, then there
exists 1 < j < n such that «;(0,d(ce;)) # a; and 3;(0,d(5;)) # B; for
all a;,8; € E and i # j. Hence,

o sqll” — comll’z,, . amll”

—qomiFomilr,
(by Lemma 3.4 (2))

E
= ch(T)CIx_J[' Toj,p;-

117

However, (T, ;) # 0 by the above argument, and clearly 7(Q(T)
# 0. Hence, 7(z) = 0 contradicts our hypothesis.

Hence, 7 is faithful on F = span{T, s € C*(A, X) : d(o) = d(B)}
and since C*(A, X )7X is AF by Lemma 3.3 then every nontrivial ideal in
C*(A, X)”" must intersect F by [6, Lemma 3.1] and since the kernel of
7 is an ideal then m must also be faithful on C*(A, X )7X. Finally, since

m is faithful on C*(A, X)'YX which is AF, the remainder of the proof is
now standard, see [12, Theorem 3.4] or [20,Theorem 4.2]. o

Remark 3.6. If X = A°, then Theorem 3.5 is equivalent to the usual
Gauge Invariant Uniqueness theorem for finitely aligned k-graphs as
seen in [20, Theorem 4.2].

Given a k-graph A with X C A and Cuntz-Krieger A-family {s)},
then by the same argument as [17, Lemma 3.3.1] the sum ) s,
converges to a projection Px € M(C*(A)) in the strict topology.
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Corollary 3.7. Let A be a finitely aligned k-graph and {s»} a Cuntz-
Krieger A-family. Let X C A° and {T, s} be a Cuntz-Krieger (A, X)-
family. Then

PxC*(A)Px = C*(A, X).

Proof. Since {sasj : aff € XA, s(a) = s(8)} satisfies Definition
3.1 (i)—(iii), the universal property of C*(A, X) implies that there is a
homomorphism ¢ : C*(A, X) — PxC*(A)Px given by ¢(Ta,5) = sa8h-
Then ¢ is surjective and 72 (¢(T5)) = ’yﬁsasg = ¢(vX(Tn,p)) and
#(Th) = sasy # 0 for all A € XA. Therefore by Theorem 3.5, ¢ is also

injective. O

Remark 3.8. Using the map ¢ in the proof of Corollary 3.7, we have
that

C* (A, A%) = C*(A).

In this case the relations in Definition 3.1 are equivalent to the relations
of a Cuntz-Krieger A-family as given in Definition 2.8. Hence, when it
is convenient, we will identify C*(A,A°) with C*(A) via the mapping
Top— sasg in order to avoid conflicts of notation.

4. Fullness of C*(A, X). When considering corners it is natural to
ask when the corner is full. The answer has a lot to do with saturated
hereditary subsets of A? and their association with gauge invariant
ideals in C*(A, A?), see [23] for details.

Definition 4.1. Given a k-graph A with H, S C A°, then:
(1) we say H is hereditary if for all v € H, then vA = vAH,

(2) we say S is saturated if for any v € A° such that there exists a
finite exhaustive set £ C vAS then v € S.

If H is the smallest hereditary set containing V" and S is the smallest
saturated set containing H, then S is the smallest saturated and
hereditary set containing V, see [23, Lemma 3.2]. We denote the
smallest saturated hereditary set containing V' by (V).
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Proposition 4.2. Given a finitely aligned k-graph A with X C A°,
then C*(A, X) is Morita equivalent to C*(A,X(X)).

Proof. By [21, Example 3.6], C*(A, X) is Morita equivalent to the
ideal generated by Px and by [23, Theorem 5.5], see also [20, Remark
5.6 (1)], this ideal is equal to the ideal generated by Pg(X). O

Remark 4.3. If A is finitely aligned and X C A%, then C*(A, X)
is not usually a k-graph algebra but is always Morita equivalent to
a k-graph algebra because of Proposition 4.2. If A is row finite and
locally convex and X C A° is a hereditary set, then by [19, Theorem
5.2 (c)] C*(A, X) =2 C*(XA, X) where XA is a k-graph because X is
hereditary. Since XA = X, then it follows that C*(XA, X) is a k-
graph algebra. If A is finitely aligned but not row finite and X C A°
is a saturated and hereditary set, then by [23, Lemma 3.6] we again
have C*(A, X) = C*(XA, X). Hence, for any finitely aligned k-graph
with X C AP then by Proposition 4.2 we have C*(A, X) is Morita
equivalent to C*(A,3(X)) with the latter being a k-graph algebra.

In particular, Proposition 4.2 says that C*(A, X) is a full corner of
C* (A, 2(X)).

Corollary 4.4. Given a finitely aligned k-graph A with X C A°,
then C*(A, X) is a full corner of C*(A,A°) if and only if ¥(X) = A°.

Proof. By Proposition 4.2 if ¥(X) = A°, then C*(A,X) is full in
C*(A, A%). Conversely, if C*(A, X) is full, then the ideal generated by
Px is equal to the ideal generated by Pyo and hence ¥(X) = A by
[20, Theorem 5.5]. o

Corollary 4.5. Let A be a finitely aligned k-graph, and let X, Y C A°
be such that X(X) = X(Y). Then C*(A,X) is Morita equivalent to
C*(A,Y).

Proof. C*(A, X) is Morita equivalent to C*(A, X(X)) = C*(A, 2(Y))
which is Morita equivalent to C*(A,Y’) by Proposition 4.2. O



1898 STEPHEN ALLEN

Example 4.6. Let X C A° be any subset, and let X¢ = A°\ X and
suppose ¥(X) = %(X°¢). This implies ¥(X) = A° and hence C*(A, X)
and C*(A, X¢) are complimentary corners, see [7, Theorem 1.1].

5. k-graph morphisms.

Definition 5.1. Given k-graphs A;, A, with X C A) and a k-graph
morphism ¢ : Ay — Ag, then we say ® is saturated with respect to X
if ¢ : XA1 — ¢(X)Az2 is a bijection, cf. [18, Definition 3.2, Proposition
3.3]. If X = AY, then we call ¢ a saturated k-graph morphism.

Theorem 5.2. Given finitely aligned k-graphs Ay, Ay with X C A9
and a k-graph morphism ® : Ay — Ay that is relatively saturated with
respect to X, then C* (A1, X) = C*(Aq, ¢(X)).

Proof. This proof follows the same argument as [18, Proposition 3.3]
and is repeated here for convenience. Let {T, 3} be a Cuntz-Krieger
(A1, X)-family, and let {S, s} be a Cuntz-Krieger (A2, ¢(X))-family.
The relative saturation property ensures that {Sy(a),s(s)} is a Cuntz-
Krieger (Ag,#(X))-family and the universal property of C*(Ay,X)
induces a homomorphism ¢, : C*(A;,X) — C*(A3,¢(X)) given by
¢+(Ta,8) = Sp(a),6(8)- Then ¢, is surjective since ¢ is saturated and
also ¢ is degree preserving since it is a k-graph morphism and hence
¢« respects the gauge action. Finally, ¢.(Tx) = S4n) # 0, so by
Theorem 3.5, ¢, is also injective. ]

Example 5.3. Let A be a finitely aligned k-graph with H C A a
hereditary subset. Then HA is a sub k-graph of A and the identity map
i: HA — A is a relatively saturated k-graph morphism with respect to
H. Hence, we have C*(HA) = C*(A, H) by Theorem 5.2 which is an
improvement of [19, Theorem 5.2 (c)] which requires A to be row finite
locally convex and [23, Lemma 3.6] which requires H to be saturated
and hereditary.

Corollary 5.4. Given finitely aligned k-graphs A1, Ao and a satu-
rated k-graph morphism ¢ : A; — Ay such that $(p(AY)) = AY, then
C*(Ay1) is Morita equivalent to C*(As).
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Proof. Follows from Theorem 5.2 and Corollary 4.4. o

Example 5.5. Recall from [13] that €y is the k-graph {(m,n) €
NF x N* : m < n} with r(m,n) = m, s(m,n) = n and d(m,n) =
m — n and object space identified with N*, while AF is the k-graph
{(m,n) € Z, x Zy, : m < n} with the same range, source and degree
maps as above and object space identified with Z*. So there is a natural
embedding using the identity map i : Q — Ay which is a saturated
k-graph morphism. Noting that Q) = N* is a hereditary subset of
A} = Z*, then, as in Example 5.3, C*(;) = C*(Ay, N¥). However,
S(N*) = Z* so by Corollary 5.4 C*(Ag, N¥) is a full corner of C*(Ay,)
and thus we have C*(Qy,) is Morita equivalent to C*(A).

We now look at an application of saturated k-graph morphisms to
symbolic dynamics in which we are concerned with the bi-infinite path
space of a k-graph.

Definition 5.6. Given a k-graph A, the bi-infinite path space of A
is the set of k-graph morphisms

A ={z: A — A}

where Ay is as defined in Example 5.5.

A typical construction is the essential subgraph which is the largest
subgraph with no sinks or sources. The bi-infinite path space of the
essential subgraph can be identified with the bi-infinite path space of
the original graph, see [15, Section 2], and is also identified with the
edge shift associated to the graph. This was done for 1-graphs in [15,
Proposition 2.2.10].

We will now adapt this construction to k-graphs and show conditions
for a k-graph and its essential subgraph to have Morita equivalent alge-
bras. Constructing the essential subgraph involves removing ‘stranded’
vertices that do not lie on any bi-infinite path.

Remark 5.7. If A® = @, then the essential subgraph will be empty.
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Definition 5.8. Given a finitely aligned k-graph A then for any
v € AY we say v is stranded if there exists n € N* such that vA" = @
or A"v = &. We denote S(A) as the set of all stranded vertices in A°.

For any k-graph A we construct the essential subgraph E(A) by
first identifying all the stranded vertices in A and then constructing
the subcategory with objects A \ S(A) and morphisms {\ € A :
s(A), r(A) ¢ S(A)}, cf. [15]. We can constructively define the set of
stranded vertices in a recursive manner, cf. [3, Remark 3.1], as follows.
First, let Sy be the set of all sinks and sources. Next, let

k
Snt+1 =5, U U {ve A® s wAC C vAS,}U{ve A : A%y C Saly},

i=1

and finally let S(A) = UpenSh-
It is worth taking a moment to check that E(A) forms a k-graph.

Lemma 5.9. Let A be a finitely aligned k-graph with A® # @; then
there exists a unique k-graph E(A) = (A \ S(A))A(A?\ S(A)) such
that E(A) is the largest subgraph of A with no sinks or sources and
E(A)A = A~

Proof. To see that F(A) is a k-graph, we need to check the factoriza-
tion property. Suppose A € E(A). Then this implies that A € A and
7(A)A™ and A"s()\) are nonempty for all n € N*. Let p,q € N* be
such that p + ¢ = d(\). Then there exist 4 € AP and v € A? such that
A = pv. By the factorization property of A, we must have A"s(u) and
s()A™ nonempty for all m < p and n < ¢ and further, since s()\) and
r(A) are not stranded, we then have s(u)A™ and A™s(u) are nonempty
for all n € N* and hence p,v € E(A). Therefore, E(A) is a k-graph.

Clearly if 2 € A® then = € E(A)® and vice-versa so A® = E(A)?
and clearly E(A) is unique. To show E(A) is the largest subgraph with
no sinks or sources, suppose S is also a subgraph of A with no sinks or
sources. Then every v € S° is not stranded and hence S C E(A). O

Example 5.10. Let Q; and Ay be defined as in Example 5.5. Then
E(Q) = O since every vertex is stranded; however, F(Ay) = Ay since
every vertex is not stranded.
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6. Simplicity.

Definition 6.1. A k-graph is cofinal if £({v}) = A° for all v € A°.
Also, given X C A% then X is relatively cofinal if ¥({v}) = X(X) for
all v e X.

Cofinal is usually defined using the infinite path space of A, see [12,
Definition 4.7] or [23, Definition 8.4]. A k-graph is cofinal if for every
vertex in v € A and every infinite path £ € A°, then there exists an
n € N* such that vAz(n) # @, while relatively cofinal means every
vertex in X has the same property. The problem with this definition is
that it is undefined for k-graphs with the property A*° = @&. It should
also be noted that A is cofinal if and only if A° is relatively cofinal.

Proposition 6.2. Let A be a finitely aligned k-graph with X C A°
such that all ideals in C*(A,X) are gauge invariant. Then C*(A, X)
is simple if and only if X is relatively cofinal, cf. [24, Theorem 12].

Proof. By Proposition 4.2 we may assume X is saturated and
hereditary and so C*(A, X) = C*(XA) by Theorem 5.2. In particular,
if X is relatively cofinal in A, then XA is cofinal. Finally, by [23,
Proposition 8.5], C*(XA) is simple if and only if XA is cofinal. O

For most purposes Proposition 6.2 is unsatisfactory for determining
simplicity since there is not yet a necessary and sufficient condition for
the ideals of k-graph to all be gauge invariant. In [23, Theorem 7.2]
condition (D) is stated for when all the ideals of a finitely aligned k-
graph are gauge invariant; however, it is not easily checkable. However,
if A is row finite with no sources k-graphs we can define simplicity in
terms of aperiodicity and cofinality as in [12, Section 4].

Recall from [12, Definition 4.1] that x € A is periodic if there exists
p € ZF such that z(m + p,n + p) = x(m,n) for all m,n € N¥ (with
m + p > 0) and is eventually periodic if there exists n € N* such that
o™z is periodic (where o is the shift map). A path in A* is aperiodic
if it is not periodic or eventually periodic.
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Definition 6.3. Let A be a k-graph with X C A°. Then we say X
is relatively aperiodic if for all v € X there exists © € vA*> such that z
is aperiodic. We say A is aperiodic if A° is relatively aperiodic.

In [12, Proposition 4.8] it was shown that if A is a row finite k-graph
then C*(A) is simple if A is aperiodic and cofinal. Here we extend this
notion to corners of locally convex and row finite k-graphs using the
definition of relative aperiodicity.

Proposition 6.4. Let A be a row finite k-graph with no sources, and
let X C A° be X relatively aperiodic. Then C*(A, X) is simple if and
only if X is relatively cofinal.

Proof. By Proposition 4.2 we may assume X is saturated and
hereditary and C*(A,X) = C*(XA) by Theorem 5.2. We note that
if X is relatively aperiodic in A then XA is aperiodic. Hence, [12,
Proposition 4.8] applies and C*(A, X) is simple if and only if XA is
cofinal. Since X is relatively cofinal if and only if XA is cofinal, then
this completes the proof. a

7. Corners generated by subsets of AP. If A is a nonaperiodic k-
graph, then not all ideals are generated by saturated hereditary subsets
of A°, see [23, Section 5], and hence not all corners can be generated
by subsets of A®. In this section we show that if A is any row finite
k-graph with no sources then we can easily extend our ideas in this
paper to corners generated by certain subsets of AP for some p € N*,

Definition 7.1. Let A be a k-graph, and let p € N*. Then the
dual graph is pA := {\ € A : d(\) > p} with range, source and degree
maps defined as follows: For any A € pA with A\ = ¢\ = \’p and
d(o) = d(p) = p,

rp(A) =p, sp(A) =0, dp(A) =d(}) —p,
and composition defined as follows: For any A = XNp, p = pp’ € pA
with 7,(A\) = s,(p) = p, then Ao, = Npp'.

For more details of dual higher rank graphs, see [1, Section 3]. In

particular, pA is a k-graph and if A is row finite with no sources, then
C*(A) = C*(pA), see [1, Proposition 3.2, Theorem 3.5].
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Lemma 7.2. Let A be a row finite k-graph with no sources, and let
X C (pA)° = AP for some p € N* be such that X NvAP is finite for all
v €A°. Then

PXC*(A)PX = C*(pAaX)v

where Px = Y,y 5a54-

Proof. Since A™"(q, 3) = @ for all a, 3 € X it follows that {s,s% :
a € X} is a set of mutually orthogonal projections in C*(A). Then Px
converges to a projection in M(C*(A)) (by the same argument as [17,
Lemma 3.3.1]), and the rest follows from Corollary 3.7 and [1, Theorem
3.5]. O

We can extend Definition 3.1 to include X C AP subject to the
hypothesis in Lemma 7.2. Note that if p = 0 then Lemma 7.2 reduces
to Corollary 3.7.

When we talk about corners generated by arbitrary subsets of A,
we have to be careful to watch that Px converges to a projection in
M(C*(A)). However, in some cases we can still talk about Cuntz-
Krieger (A, X)-families generated by such arbitrary subsets. For exam-
ple, let us suppose A is row finite with no sinks or sources with X C A,
and suppose pu,v € X with 4 = vv/. By definition

C*(pA, X) =span{Tap : o, € XA, sp(a) =s,(8)},

and hence for any A € pA U vA there is a T\, € C*(pA, X). However,
pA C vA so C*(pA, X \ {u}) is identical to C*(pA, X) in this case.

8. Skew product graphs. In this section we look at a k-graph
construction called a skew product graph G x. A and its relation to
fixed-point algebras.

Definition 8.1. Given a k-graph A and a functor ¢ : A — G where G
is a discrete group, then the skew product graph G x. A is the k-graph
with objects G x A® and morphisms G x A with s(g, A) = (gc()), s()))
and 7(g,A) = (g,7()\)) and degree map d(g,\) = d(\), see [12,
Definition 5.1] for details.
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In particular, a functor ¢ : A — G gives rise to a normal coaction .
of G on C*(A, A%) given by:

Ye(Ta,8) = T8 ® le(a)e(s)-1>

where for any g € G, then 1, is the point mass function in C*(G).
Then the fixed-point algebra is C*(A, A%) = span{T, 3 € C*(A,A°) :
c(a) = ¢(B)}, see [16, Section 7] for more details.

Proposition 8.2. Let A be a finitely aligned k-graph, let G be a
discrete group with a functor ¢c: A — G, and let ¢ be the corresponding
coaction of G on C*(A,A%). Then

C*(A,A°)% = C*(G x. A, V),

where V.= {1} x A® and 1 is the identity element of G.

Proof. For any (g,\) € G x. A with range in V' we must have g = 1.
Also for any (1, 1), (1,v) € G x. A with the same source we must have
c(u) = c(v) and s(u) = s(v). Hence C*(G %A, V) = span {T(1,.), (1) *
c(p) = c(v), s(u) = s(v)}. Thus, by the universal property of C*(G x.
A, V) we define the homomorphism ¢ : C*(G x. A, V) — C’*(A,AO)AYA
by ¢(T(1,1),(1,0)) = Tpu,v- Clearly, ¢ is surjective and respects the gauge
action, and since ¢(T(;,x)) = Tx # 0 for all A € A, then by Theorem 3.5
¢ is also injective. ]

Proposition 8.2 is a well-known property of directed graphs, see [8,
Theorem 4.6] and [11, Proposition 2.8] to name a few, and as such, it
is no surprise that it is also true for finitely aligned k-graphs. However,
by using the universal property of corner algebras and Theorem 3.5,
we obtain a shorter proof.

Example 8.3. For any finitely aligned k-graph A, let G = Z*
and take the degree map as our functor. Then C*(Z* x4 A, V) =
C*(A, A%)7 by Proposition 8.2 where 74 = 7" is the gauge action.

Now we will find a condition for C*(Z* x4 A, V) to be full and hence
C*(A, AO)AYA to be Morita equivalent to the C*(Z* x4 A). Recall from
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Section 5 that the essential subgraph E(A) is the largest subgraph of
A with no sinks or sources. The bi-infinite path space of E(A) can be
identified with the bi-infinite path space A of A.

Definition 8.4. A k-graph A is essentially saturated if the smallest
saturated set containing E(A)? is A°.

Remark 8.5. Given a finitely aligned k-graph A that is essentially
saturated, then A2 # @. Also, F(A)° must be a hereditary set and
hence A must have no sources. Finally, by Corollary 4.4, C*(E(A)) is
Morita equivalent to C*(A).

Proposition 8.6. Let A be a finitely aligned k-graph and V =
{0} x A®. Then C*(Z* x4 A, V) is a full corner of C*(Z* x4 A) if

and only if A is row finite and essentially saturated.

Proof. Firstly, for any k-graph A such that E(A) # & and any
v € E(A)° the set A"v # @ for all n € N*. Hence, if H(V) is
the smallest hereditary set containing V, then N* x E(A)® C H(V).

Suppose A is row finite and essentially saturated. Given any (n,v) €
N* x A% then there is a finite exhaustive set E, C v(A)E(A)°. Thus,
Enpy = {(n,A) : X € E,} C (n,v)(Z* x4 A)NF x E(A)° is a finite
exhaustive set, and hence (n,v) € (V).

Now let (z,v) € ZF x A® with z ¢ N* and let m = 2V 0. Since A
has no sources, the set vA™ # @ is finite exhaustive for all v € A and
n € NF. Thus, the set B, ,){(z,A) : A € vA™ "} is a finite exhaustive
set such that s(E(,,,)) C N* x A°, and hence (z,v) € (V). Therefore,
Y(V) = ZF x A° is full by Corollary 4.4 and hence C*(Z* x4 A, V).

Now suppose that X(V) = Z¥ x A°. Then for any (z,v) € ZFxA® with
z < 0 there exists a finite exhaustive set Ezx C (z,v)(Z* x4 A)V. This
means that for all n € N* there is a finite exhaustive set En C vA such
that d(\) > N for all A € Ey. Hence, vAY must be a finite nonempty
set for all v € A° and N € N*. Hence, A must be row finite and have
no sources.

Suppose (n,v) € x A%\ H(V). Then there is a finite exhaustive
set By C (n,v)( xqg A)H (V). For all (m,w) € s(En,,)) we must
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have A™w # &. Since n can be any value in N* and since m > n then
A™w # @ for all n € N*. Thus, w € E(A)° since A has no sources and
therefore A is essentially saturated. i

Corollary 8.7. Given a row finite k-graph A that is essentially
saturated, then the AF core C*(A)" is Morita equivalent to C*(Z* x 4A).

Proof. Follows from Proposition 8.2 and Proposition 8.6. o
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