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A CLASS OF
NONLINEAR MULTISTAGE DYNAMICAL SYSTEM
AND ITS OPTIMAL CONTROL

HUIYUAN WANG, ENMIN FENG AND ZHILONG XIU

ABSTRACT. In this paper we study a nonlinear multi-
stage dynamical system as well as its optimal control. Specif-
ically, based on the batch fermentation including three differ-
ent phases of bio-dissimilation of glycerol to 1,3-Propanediol
by Klebsiella pneumonicae, the nonlinear multi-stage dynam-
ical system is proposed. Then we discuss several properties of
this nonlinear system. In order to optimize the initial state
such that the concentration of 1,3-Propanediol at terminal
time is as large as possible, an optimal control model is estab-
lished. We investigate the existence of the local maximizer.
Furthermore, by using the infinite-dimensional optimization
principle, the necessary condition for the optimal control prob-
lem is obtained. Finally, employing some properties of the
feasible region, infinite-dimensional constraints can be trans-
formed into finite-dimensional constraints.

1. Introduction. In nature, kinestate in many problems, such as
the control of modifying 3D horizontal wells trajectory while drilling
[9], biotechnology, macroscopical or microcosmic control of economy
and so on, has some characteristics, such as jump or speed change,
for example. For this kinestate the common continuous differential
dynamical system is not so valid that a new dynamical system, the
nonlinear multistage dynamical system, has to be adopted. In this
paper, we investigate both properties and optimal control of a nonlin-
ear multistage dynamical system developed from a practical problem.
Specifically, the system is developed from the batch fermentation of the
bio-dissimilation of glycerol to 1,3-Propanediol by Klebsiella pneumon-
icae which is a popular subject.
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1,3-Propanediol (1,3-PD) is a very important chemical material.
Polyesters which use 1,3-PD as a monomer have some excellent char-
acteristics, such as strong capacity of pigmentation, weak capacity of
adsorption water and so on. Hence, it attracts the increasing attention
of many big companies all over the world; DuPont, Shell and Degussa,
for example. At the present, the main technique to produce 1,3-PD is
chemical synthesis. In the course of production silver is used as cat-
alyst, so that this technique has some drawbacks such as high cost,
severe pollution, etc. Since a new technique, the bio-dissimilation of
glycerol to 1,3-Propanediol by Klebsiella pneumonicae, was proposed
in the 1990s, the research on this new technique is becoming more and
more popular. Compared with the traditional technique, the new tech-
nique has many distinct merits: soft production condition, being easy
to operate and few byproducts, for example. However, up until now
the technique has just been used in the laboratory.

With the exception of a lot of fermentation experiments, there has
been much theoretical research on this new technique. In 1995, Zeng
and Deckwer provided a kinetic model of the bio-dissimilation of glyc-
erol to 1,3-PD [10]. The phenomena and characteristic of oscillation
and hysteresis were studied in [1, 6]. In 2005, Xiu modified Zeng’s
kinetic model and used the excess kinetic model to describe the con-
tinuous and batch fermentation of the bio-dissimilation of glycerol to
1,3-PD. Based on Xiu’s model, Gao et al. [2] and Li et al. [5] investi-
gated the optimal control and stability of equilibrium of the continuous
fermentation, respectively. With the development of this technique, re-
searchers proposed the fed-batch fermentation of bio-dissimilation of
glycerol to 1,3-PD. Gao established a nonlinear impulsive dynamical
system in 2005 [3] to describe the process of fed-batch fermentation.
The optimal control and some properties of this system were studied
by Wang et al. [8] and Gao and Li [4].

In this paper, we briefly discuss the system of batch fermentation.
According to the specific formation rate of 1,3-PD, the whole process of
batch fermentation can be divided into three different phases which are:
developmental, growth and stationary. Since the common continuous
differential system cannot describe the three phases as good as well,
we establish a nonlinear multi-stage dynamical system. Then the
optimal control model of this system is established as well, in which
the initial state is a control variable and the objective is to maximize
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the concentration of 1,3-PD at terminal moment. By the compactness
of the festival region and the continuousness of the optimal function,
the existence of the local maximizer is proved. Finally, in light of some
properties of a closed set, infinite-dimensional constraint conditions are
transformed into finite-dimensional constraint conditions. We get the
necessary condition for the optimal control.

This paper is organized as follows: in Section 2, the nonlinear
multistage dynamical system is proposed. In Section 3, we establish the
optimal control model of the nonlinear system, prove existence of the
local maximizer and present the necessary condition. Some conclusions
are presented at the end of the paper.

2. The nonlinear multistage dynamical system and its
properties. Considering the nonlinear dynamical system as below
[11]:

&(t) = h(z(t),up) te€I=]ty,ty]
(1)

m(to) = T,
where z(t) € R® is a state vector, the components of which denote the
concentrations of biomass, glycerol, 1,3-PD, acetate and ethanol at ¢

in the reactor respectively, I is the time-interval of batch fermentation
and h: R% x R'Y — R® is continuously differentiable.

(2)  h(z,up) = (pz1(t), —gaa1(t), gsz1(t), qaz1(t), 521 (t)) € R®

_ z2(t) ;(t)
3) =) 008 11 (1'75?_>

(4) %:%®+i%+wﬁgé%%ﬁ
5) g = up(5) + puy (6) + w(?)#f)m
(6) qa = up(8) + pup(9) + up<1o>#“§m
(7) q5:q2(&0££iiﬂﬂ_+5045iiixﬁ@>

where p denotes the specific growth rate of biomass, ¢ denotes the
specific consumption rate of glycerol and g3, g4 and g5 denote the
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specific formation rates of three products, respectively. =z is the
maximum of z;, for all i € Q5 := {1,2,3,4,5}, which are positive
numbers under some conditions. u, = (up(1),...,u,(10)) € RV is a
vector, the components of which are parameters in the model. The

value of it has already been given.

In fact, the real process of fermentation contains three different
phases. However system (1) cannot describe these phases sufficiently.
Therefore, we will establish a new system, that is, a nonlinear multi-
stage dynamical system:

{a‘:l t) =h'(z'(t),ul) tel=I[t,ts],

(
(
{iz(t) = h*(2*(t),up) t €Iy = [ty tp),
(
(
10
(10) (

{a'c3 t) = h3(23(t),ud) t €Iy =ts, tg),

where z'(t), #2(t) and z3(t) are state vectors of the developmental,
growth and stationary phases, respectively. The meanings of compo-
nents are the same as system (1). The initial state u € R® is the
element of the following set

(11) U,q := [0.001, 10] x [200,2500] x {0} x {0} x {0} C R®,

ts,,ty,, ty, are terminal times of the developmental phase, growth phase
and stationary phase, respectively, which satisfy

0<tyg =ty <ty <ty <ty =ty <oo.

hi: R% x R19 — RS is continuously differentiable on I;,i € Q5.

(12)

i i h(t : z;(t)
(13) " =up(1)x,i)(ﬂ—i)o_28r[2(1 )
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(14) g = up(2) + u:(ig) + %VD%

19 =)+

(16) i = (9 + i 9) + u10) D
o 0.0025 5.18

(17) 95 = ¢ <0‘06 T+ iai(t) 5045 + w’:cé(t)>

where puf, ¢4, ¢4, ¢4 and ¢i denote the specific growth rate of biomass,
the specific consumption rate of glycerol and the specific forma-
tion rates of three products in different phases, respectively. uf) =
(uh(1),... ,u5(10)) € R is a vector, the components of which are pa-
rameters of the ith phase, i € Q3 := {1,2,3}. 7 is defined by system
(1), @.; is the minimizer of z;, for all j € @5, which satisfy z.; < z}.
Setting

(18) So == H[w*j,a:;f] C R°.

It is obvious that Sy C R® is a nonempty, bounded and closed
set. The norm of y in R® is denoted by || - || and is defined by
lyll := max;eq, |yi|. The norm of the function z*(t) is defined by
l&*|| = sup{[|z" ()|, t € Li}, i € Q3.

Property 1. Suppose that hi(xi(t),uf)), for all i € Q3, are defined
by (13)—(17), and for all t € [to,ts],z'(t) € So, then the following
statements hold.

(i) h*(z*(t),u;) are Borel measurable on I, for all i € Qs.

(ii) There ezists a constant K > 0, such that

(19) ||h’(a:’(t),u;,)|| < K(1+||2i(t)]), for all z*(t) € So,i € Q3.

Furthermore, h*(z*(t),u’) and their gradients V,h'(x'(t),u}) are

Lipschitz continuous on the bounded set Sg.
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Proof. It is obvious that h'(z'(t),u;) are Borel measurable on
I,i¢€ Qg.

Next we will show that there exists a constant K such that ||hi(z%(t),
u,,)|| < K(1+ [[z*(t)]]) for all z*(t) € So, @ € Q3.

Clearly, for any ¢t € [to,tf], there exists an i € (@3 such that
t € I; = [t,_,,t5]. Now we will establish the Lipschitz continuity

of each component of h'(z’(t), ).

B (2 (t), up)| = 'z} ()]

We conclude that [k (z*(t), u})| < K{|lz*(t)]], where K} = |u),(1)] .
Ry (2 (t), )| = | — g3 (¢)]

_ i p i zh(t) i
= | = (up(2) + 7 tu (4)M)$1(t)

A
g@
©
+

< @)+ i) +u@|l= )l
We conclude that|hb(a*(t),u;)| < Kjllz*(t)||, where K5 = |u},(2) +
(u (1) /15,(3)) + wj, (4)]-
[R5 (2" (8), up)| = lasz1(2)]
< Jug (5) + up (1)ug (6) + up (7)] |z (£)]]-

We conclude that |hj(z'(t),u;)| < K§|lz*(t)||, where K§ = |u;,(5) +
uy, (1)us,(6) + us, (7)].
[Pz’ (8), up)| = |dazy (2)]
< Jup (8) + upy (D)u (9) + uy, (10)[[|2* (£)]]-
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We conclude that [hj (' (t),u})| < Kjil|«'(t)|, where Kj = |u},(8) +
uy, (1)uy,(9) + uy, (10)].
[R5 (" (8), up)| = laz1(¢)]

(00025 518 g (t)‘
- % 0.06+mx;() 50.45 + piah(t) ) !

< Jui,(2)

- p

‘00025 5.18 O
0.06 ' 50.45|!C \WI-

We conclude that |h’5(ac’(t),u;)\ < Ki||a'(t)||, where Ki = |ul,(2) +
(ub(1)/ui(3)) + ui(4)](0.0025/0.06) + (5.18/50.45)|.

Consequently, in terms of the definition of the norm, we know that
for all t € [to, ts], (19) holds, where K = max{K} | i € Qs,j € Qs}.

Finally, we will show that h*(z*(t), u;,) and their gradients V,h*(z"(t),

u;) are Lipschitz continuous on the bounded set Sp.
Suppose that z(t),z% (t) € S, and z* (t) = z(t) + Azi(t); by the
mean-value theorem, we see that
17 (" (8), up) = B (2" (2), w)
= [[p*(z"(t) + Aa*(t),w,) — h* (2" (E), w,)|
H dh’

“(t) + 0N (t), .)Am"

(t) + 0Lz u)

< |9 " (0l

where 6 € (0,1).
Making use of the definition of hi(z?(t ), u}) and the boundedness of

z'(t), we get the result that ||(dh’/dx)(z(t) + 0Az’, u})| is bounded,
i.e., there exists an L* > 0, such that ||(dh’/dz)(z*(t )+9Aw up)|| < L.

Consequently,
B8 (=" (8), u) — W (2" (8), up) || < Lifle* () — 2" (D).

In the same way, we get that ||V hi(z? (t), up) — Veh'(2'(t), up)|| <
Li||z¥ (t) — 2i(t)||, where L' satisfies ||V,ohi(zi(t) + 0102, ud)|| < LY,
61 € (0,1). Our proof is complete. O
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By Property 1 and the existence theorem for the solution to the
differential equation, the following conclusion is easy to obtain.

Property 2. Consider system (8), (9), (10). Then, for any u € Uyq,
there exists a unique solution to system (8), (9), (10), which is denoted
as T'(t) = 2 (t; 2" (ty, ,),u) € R®, i € Q3.

The solution of system (8)—(10) can be written as below.

t
Stint o)) =o' )+ [ K0 dr,
(20) tr 4

te [tfi—17tfi]7
where 2°(ts,) = u, i € Q3. O
Property 3. Consider system (8)—(10). Then, for any u € Uyq,

there exists a constant M > 0 such that ||z (t; 2" (ts,_,),u)|| < M,
for alli € Q3.

Proof. If t € I, the solution of the system can be denoted as
t
z(tyu,u) = u + / ht(zt(r), uzl,) dr.
to

Hence,

t
e w, 0| < [l + K / 1+ e (s, 0)]]) dr.
to

The above inequality is equal to y(¢) < y(to) + Kftto y(r) dr, where
y(t) = llz' (6 w, )| + 1.

Making use of the Bellman-Gronwall lemma, we get the result that
y(t) < y(ty) exp K. Therefore,

2t (t;u,u)|| < (1 + ||lul|)exp K, foralltecI.
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Then, for any ¢t € I, there exists M' = (1 + ||ul|) exp K such that
llzt(t;u,u)|| < ML. If t € I, the solution of the system can be denoted
as

22t tg,),u) = 2 (Eg,) + / B2 (?(7), u2) dr.

Hence,

(s 2 (¢,), W < Nl (tp,) +K/t L+ lla*(t 2t (tr, ), w) | dr

The above inequality is equal to y(t) < y(ts,) + K f:f y(r) dr, where
1
y(t) = lle* (2t (tn), w)ll + 1.

Making use of the Bellman-Gronwall lemma, we get the result that
y(t) < y(ts,)exp K. Therefore,

[a?(t; 2t (), W) < (L4 [l2* (tg,) ) exp K < (1+ M') exp K,
for all t € I,.

Then, for any t € I, there exists M2 = (1 + M')exp K such that
22 (s 2t (tg,), w)l| < M.

In the same way, we can conclude that, for any ¢ € I3, there exists an
M? such that [|z®(¢;2%(ty,),u)|| < M3. Consequently, for any t € I,
there exists an M such that ||z¢(t;z° 1(ts,_,),u)|| < M, i € Q3, where
M = max{M*, M?, M3}. O

Property 4. For any t € I, the solution of system (8)—(10) is
Lipschitz continuous on Ugq.

Proof. Suppose u,v € Uyqg and u = v + Av. If t € I, then

(21)
|zt (t; u, u) — ' (t; v, )|

¢ ¢
u+/ A (2! (75 u, ), up) dT—’U—/ A (z* (T3 v,v),uy) dT
tso

tso
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t
<Jlu - —I—/t At (2 (15 u, u),u},) — hl(xl(T;U,U),U;})H dr
f
’ t
<ol +2* [ ot - o (riv,o)
th
Formula (21) is equal to
t
y(0) < Ju-ol +2' [ y(ran

5o
where y(t) = ||z'(t;u,u) — z'(t;v,v)||. By the Bellman-Gronwall
lemma, we see that, for any ¢ € Iy, y(t) < ||u — v|| exp L. Therefore,

2 (85w, w) = @ (&0, 0)|| < flu— o] exp LT = lfu — o],

where I; = exp L!.

If t € I, then
(22) |lz®(t2' (), uw) — 2 (2" (87,), 0)|

t
— et tsu + [ R ) 0, dr

tyy

—at(tgs0) /1t W@ (732 (), 0), ) d

tf1
< &t (tr;u,u) — 2t (tg;v,0)|

+ / IW2(22 (s 2ty )y ) ) — B2 (2 (s (8, ), ), ) | dr

try
S ||x1(tf1;uau) - wl(tﬁ;vav)”

t
y / |2 (rs 2 (tg,),0) — 22(riat (), 0) | dr

tf
Formula (22) is equal to
t
(t) < 12 (tgs0) — o v 0) |+ 2 [ (o),
ts

where y(t) = [|2°(t; 2 (t7, ), u) — 2 (7' (t5,), v)].
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By the Bellman-Gronwall lemma, we see that, for any ¢ € I, y(t) <
lzt(ts;u,u) — zt(ts;v,v)| exp L2 It follows from ||zt(ts,;u,u) —
Il(tfl;’l),’l))” < l1||u - UH that

Ja® (&2 (t7,),uw) — 2®(t 2 (t,), 0) || < laflu— v,
where Iy = [} exp L?.

In the same way, we conclude that, for any t € I, ||z3(¢; 2%(ts,), u) —
z3(t;22(tg,),v)|| < Ilsllu — v||, where I3 = lyexp L3, which completes
our proof. a

Let the set of solutions of system (7 + i) be denoted by S;, ¢ € Q3,
i.e.,
(23) o
St i= (o' (52 (ty,_,), ) € OL(Ts R®) | @i(ts 0¥ Lt ), u) s the
solution of system (7 + i) for any u € Ugq}-

Now we define a mapping from U,y into S; x Sy X S3, as below

A(u) = (xl(t;u,u),m2(t;w1(tfl),u),m3(t;wz(tfz),u)) €51 x Sy x 85.

Property 5. Suppose that the sets S; are defined by (23). Then the
sets S; are compact on C(I;; R®), for all i € Q3.

Proof. By Property 4, we see that A(u) is continuous on Uyg.
Moreover, since U,q is compact in R®, our result is completed. ]

3. The optimal control of the nonlinear multistage dynami-
cal system. The problem, to optimize the initial state such that the
concentration of 1,3-Propanediol at the terminal moment is as large as
possible, can be described as follows.

MOP : min J(u) = —z3(ts;22(ts,),u)

st A(u) = (2 (tu,w), 22 (82 (ty,), w), 22 (L 2% (ty,), u)
€851 x Sy x Ss
u €Uy C R
' (t;x by, ) u) €Sy forallt €1, i€ Qs.
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Theorem 1. Consider the problem MOP. Then there ezists a
u* € Uyq, such that J(u*) < J(u), for all u € U,gq.

Proof. By Property 4, we see that the performance function J(u)
is continuous on U,y. Furthermore, since U,q C R® is a nonempty,
bounded and closed set, there exists a u* € U,q4 such that J(u*) < J(u),
for all u € Uyy. ]

The problem MOP has some infinite-dimensional constraints:

(24) 2(t;z" Mty ,),u) € Sy, forallt €I, =[ts_,,tz], i€ Q.

In terms of (18), (24) is equal to the following inequalities:

(25) xy; < acj-(t; o7ty ) u) <zt forallte L, (i,5) € QsxQs.

J

For the sake of studying the infinite-dimensional constraints, we
define the following functions

(26) o
80;' (t,u) := @(t; z'(t; mlil(tﬁA)a u),u)
=2yt Nty u) — o
27 . o
Ples(tu) = G s (e’ (G2 (t, ), w),u)
= —xj(t; Mty ) u) +xag,  (6,7) € Q3 X Qs
(28) FOu) = J(u)
(29) fi(u) = It%al?i{@;'(t,u)}a (4,5) € @3 X Q1o-
Since, for any u € U,q, z*(t; 2 1(ts,_,),u) is continuously differential
with respect to t on the interval I; C R,, the max function f;(u) is
well defined on U,g.

It follows from the theorem of variational analysis in Banach space
[7] that the following property holds.

Property 6. Suppose that ¢%(t,u) are defined by (26), (27) and
(i,7) € Q3 X Q10. Then the following statements hold:
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(a) For any u € Uy, g@%(lﬁ, u) are continuous differential on I;, for all
1€ Qg.

(b) For any t € I, np;'- (t,u) are continuous differential on U,q and

du@;'(t,u) = Vu‘P;’(tau)T dua (Zaj) € Q3 X QlOa

where Vugaz. (t,u) are defined by
(30) o ,
Vunp;-(t,u) = Vunﬁ;-(t; z*(t; x’_l(tfifl),u),u)Pt’j(thl,u), tel

and Ptij (r,u) € R is the solution of the adjoint equation

P(T, u) = —Vzh;'-(mi(T;a:i_l(tfifl,u),uf))TP(T, u) TE [ty ,,t]
P(t,u) = Vo @i(t; 2t (G2 Mty ) u)yu). O

Property 7. Suppose that f;(u) is defined by (29) and (i,j) €
Q3 X Q19- Then the following statements hold:

(a) The function fi(u) is Lipschitz continuous on the bounded set
Uad.

(b) (i) For any u € Uyq and any du € U,q, the directional derivative
df(u; 6u) exists and is given by

df]’:(u;éu) = max {Vugaz-(t,u)T(M},
teT; (u)
where T} (u) := {t € I; | p}(t,u) = f;(u)}.
(ii) The directional derivative df}(u;du) is upper semi-continuous on

Usa X Uyq and, for every u € Uyq, df} (u;-) is positively homogeneous,
subadditive and Lipschitz continuous. a

By Property 7, the infinite-dimensional constraint conditions can be
transformed into the finite-dimensional constraint conditions as below:

f;(u)gov (iaj)EQBXQIO-
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Therefore, the optimal control problem MOP is equivalent to MOP1.

MOP]‘ mln{fo(u) | f;(u) S 07 (17]) € QS X QlOaA(u)
€851 X 83 X S3,u € Uad}-

It follows from f°(u) = J(u) that f°(u) is continuous differentiable on
Uqa.

Let u* € U,q be a local minimizer for MOP, setting
(31) F(u) := max{f°(u*) — f°(u),v(u)},
where (u) = max{fi(u) | (i,7) € Qs x Q1o} and

dp(u'su— )= max {dfi(utiu—u")},
(i,5)€a(ur)

where q(u*) := {(4,]) € Q3 X Quo | f;(U*) = P(u”)}.

Theorem 2 (Optimal condition). Suppose that u* is the local
minimizer of MOP. Then u* is also the local minimizer of F(u) and

dF (u*;u —u*) >0 for all u € Uygq.

Proof. Since u* is the local minimizer of MOP, fi(u*) < 0, (i,7) €
Q3 X Q10 and fO(u*) < fO(u), for all u € Uyg.

It follows from ¢ (u) = max{f}(u) | (i,j) € Q3 x Q10} that ¥(u*) < 0.
By (31),we see that F(u*) = max{f’(u*) — f°(u),¥(u*)} = 0. For
any u € Ug, if ¥(u) > 0, then F(u) > 0. And if ¢(u) < 0, then
fo(u*) — f%(u) > 0, which also implies that F(u) > 0. Hence, u* is a
local minimizer for F(u).

Assume that there exists an u € U,q such that dF(u*;u — u*) <
0,u # u*. By the definition of the directional derivative, we conclude
that

lim F(u* 4+ t(u — u*)) — F(u*)
t}0 t

—dF(u*;u—u*)| =0.

Then there exists a t* € (0, §/||ju — «*||) such that

Fu1) — F(u”)

1
= —dF(u*;u—u*)§—§dF(u*;u—u*),
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which is equal to

F(u;) - F(u") = F(u" +t"(u —u")) — F(u")

1
< §t*dF(u*;u —u") <0,

where u1 = u* +t*(u — u*) € B(u*, p) NUyq.

The above conclusion contradicts the fact that v* is the local mini-
mizer of F(u). Hence, our result is true. O

4. Conclusions. In this paper, the properties of both the nonlinear
multi-stage dynamical system and its optimal control were discussed.
Then we investigated the existence of the local minimizer as well as the
necessary conditions for the optimal control problem. The construction
of the optimization algorithm of this nonlinear multistage dynamical
system will be the main work in the future.
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