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DYNAMIC BEHAVIORS OF A SINGLE-SPECIES
POPULATION MODEL WITH BIRTH PULSES
IN A POLLUTED ENVIRONMENT

FENGMEI TAO AND BING LIU

In this paper, we investigate the dynamics of a single-species
model with birth pulses, pulse harvesting and pulse toxicant
input in a polluted environment. Using the discrete dynamical
system determined by the stroboscopic map, we obtain an
exact 1-period solution of system whose birth function is the
Ricker function or Beverton-Holt function, and obtain the
threshold conditions for their stability. Further, we show
the effects of the time of pulse harvesting and pulse toxicant
input on the maximum annual-sustainable yield. Our results
show that the best time of harvesting is immediately after the
birth pulses, and the maximum annual-sustainable yield is not
significantly affected by the time of toxicant input. Numerical
simulation results also show that birth pulses, pulse harvesting
and pulse toxicant input make the single-species model in
the polluted environment we consider more complex, and the
systems are dominated by periodic and chaotic solutions.

1. Introduction. Due to rapid technological advances and signif-
icant increases in the human population during the past half century,
the amount of the world’s fish has been deeply decreased. About three
quarters of the world’s marine fisheries are either fully exploited or over-
exploited. Such heavy use of these resources means that our main task
is to strengthen global efforts to ensure the effective and sustainable
use of marine resources and the sound management of the ecosystem.
Therefore, it is very realistic for decision-makers to plan practicable
schemes which sustain fisheries at a good level of productivity and meet
economic goals. Economic and biological aspects of renewable resources
management have been considered by Clark [6] and other authors [2,
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32-34|. However, most existing theories on harvest strategies largely
ignore the effects of seasonality and environmental pollution. In 2005,
Xu et al. [34] investigated harvesting in seasonal environments and
focused on maximum annual yield (MAY) and population persistence
under five commonly used harvest strategies. They concluded that
pulse harvesting is the best amongst all the strategies that they had
explored with much larger MAY and mean population size but smaller
population variability at MAY. Also they obtained that harvest tim-
ing was of large importance to annual yield and population persistence
for pulse harvesting. Harvesting too late may overexploit a population
risking extinction with much smaller MAY as well.

Environmental pollution by various industries is one of the most im-
portant of present day socio-ecological problems. Uncontrolled contri-
bution of pollutant to the environment has led many species to extinc-
tion and several others are on the verge of extinction. Such environ-
mental uncertainty also affects the incentive to harvest a resource. The
nature of optimal exploitation and its effects on the dynamics of bio-
logical populations when the growth process of a specie is subject to
random environmental shocks are not very well understood. In recent
years some investigations have been conducted to study the effect of
toxicant emitted into the environment from industrial and household
sources on biological species ([9, 11, 14, 24]) by using mathematical
models, but most of the previous models have invariably assumed that
the exogenous input of toxicant is continuous; however, it is often the
case that toxicant is emitted in regular pulses. One example is the
use of pesticides. Pesticides are useful tools in agriculture and forestry
because they quickly kill a significant portion of a pest population and
they sometimes provide the only feasible method for preventing eco-
nomic loss. Pesticides can be sprayed instantaneously and regularly.
Another example is the pollution by heavy metals. Most of heavy metal
pollution of river and consequently of soil is caused by artificial indus-
try. When the pollutants of heavy metal drain into the environment,
they affect human population and other biological species seriously,
such as pulse copper pollution ([17, 18]). Therefore, the continuous
input of toxicant is then removed from the model and replaced with
an impulsive perturbation. In this case, although the input of toxicant
is transient, the effect of toxicant on the species is continuous. So in
this paper, considering the results in [34], we will study an optimal
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pulse harvesting problem of a single species in a polluted environment
with pulse toxicant input and see how the pulse harvesting and pulse
toxicant input affect population persistence and the volume of mature
fish stock in a polluted environment. How do the pulse harvesting and
pulse toxicant input affect the maximum annual-sustainable yield? Can
we obtain similar results to those of [34]?

In most models of population dynamics, an increase in population due
to birth is assumed to be time dependent, but many species reproduce
only during a short period of the year. In between these pulses of
growth, mortality takes its toll and the population decreases. Basing
on the single-species model with continuous harvesting policy in a
polluted environment and integrating the ideas of pulse harvesting,
pulse toxicant input and birth pulses mentioned above, we suggest an
impulsive equation, see [3, 21], to model the processes of birth pulses
and pulse harvesting at different fixed times in a polluted environment
and investigate the dynamics of the system. We want to know the
effects of pulse harvesting, pulse toxicant input and birth pulses on the
dynamics of the system and compare our results with those in [34].
To our knowledge, there have been no results on this problem in the
literature. Impulsive equations are found in almost every domain of
applied science and has been studied in many investigations [1, 12,
22-26, 28, 30, 31, 32|.

The organization of this paper is as follows. In the next section,
we formulate a single-species population model with pulse harvesting,
pulse toxicant input and birth pulses in a polluted environment by using
impulsive equation. In Section 3, we investigate the dynamics of such
a system by using the stroboscopic map. In Section 4, we focus our at-
tention on the relationships between the differential dynamical system
with birth pulses and the discrete dynamical system determined by the
corresponding stroboscopic map. In Section 5, numerical simulations
show how the dynamics are affected by changes in birth rate, the har-
vesting effort and toxicant input amount, and whether chaos will occur
in such a system. In Section 6, we study the effects of pulse harvest-
ing time and pulse toxicant input on the maximum annual-sustainable
yield. In the last section, we conclude our results.

2. Model formulation. In the absence of a polluted environment,
we assume that the size of single species changes according to the
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following population growth equation
(2.1) z(t) = B(z)x(t) — dz(t),

where d > 0 is the death rate constant and B(z)z is a birth rate
function with B(z) satisfying the following basic assumptions for N €
(0, 00):

(A1) B(z) > 0;
(A2) B(z) is continuously differentiable with B'(x) < 0;
(A3) B(0") > d > B(c0).

Note that (A2) and (Asz) imply that B~!(x) exists for z € (B(c0),
B(0")), and (A3) gives the existence of a carrying capacity K such
that B(z) > d for # < K and B(z) < d for z > K. Under these
assumptions, nontrivial solutions of (2.1) approach B=1(d) as t — oo.

Examples of birth functions B(z) found in the biological literature
that satisfy (A;)—(As) are:

(B1) Bi(z) = be™", with b > d;
(B2) Ba(z) =b/(q + z™), with b,q,n > 0 and b/q > d.
(Bg) Bg(m) = (A/.I') + ¢ with A > 0,d>c>0.

Functions B; and By with n = 1 are used in fisheries and are known as
the Ricker function and Beverton-Holt function, respectively. Function
Bjs(z)z represents a constant immigration rate A together with a linear
birth term cx.

For the population model (2.1), it can be postulated that the size of
the population is affected by the input of toxicant, and the presence of
toxicant in the environment decreases the growth rate of species. These
lead to the following single population model with toxicant effects in
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the polluted environment:

dx(t)
dt (t)(B(x) — re(t) — d),
22 d(:i_(tt) = kf(t) — gre(t) — gac(t),
dfd—(tt) = —kif()x(t) — hf(t) + kac(t)z(t) + u(t),

where z(t) is the density of the species at time ¢; ¢(¢) is the concentra-
tion of the toxicant in the organism at time ¢; f(t) is the concentration
of the toxicant in the environment at time ¢; B(z)x is a birth rate
function satisfying the assumptions (A4;)—(As); The meanings of other
parameters are the same as those of model (2.1) in [24].

In this paper, we assume that the capacity of the environment is
so large that the change of toxicant in the environment that comes
from uptake and egestion by the organisms can be ignored (k1 = 0,
k2 = 0) and the toxicant input is constant (u(t) = u). For convenience
of computation, let g = g1 + go.

Now, considering the above assumptions and the continuous harvest-
ing policy of the population, we construct the following system:

dx(t)
e z(t)(B(z) — re(t) —d — E),
(2.3) ) _ ks - gett)
) _
“at U — hf(t),

where E denotes the harvesting effort.

Model (2.3) has invariably assumed that the population is born
throughout the year, whereas it is often the case that births are seasonal
or occur in regular pulses. Many large mammal and fish population
exhibit what Caughley [6] termed a “birth pulse” growth pattern. That
is, reproduction takes place in a relatively short period each year. In
this paper, we take pulse harvesting policy and assume the time we
take to harvest is fixed every year. Also we remove the continuous
input of toxicant in model (2.3) and consider pulse toxicant input
at fixed moment in a polluted closed environment. Now, based on
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the impulsive differential equations, we will develop system (2.3) by
introducing periodic birth pulses, pulse harvesting and pulse toxicant
input at different fixed time. That is, we consider the following system:

dﬂ;(t) = —re(t)z(t) — dz(t),
. - t m~+T; ’
= kf(t) — ge(t), t # m+T;a

daf(t) _

=5 = —hi®),

z(tT) = x(t),

ct+ :C(t), t:m+T1’

(2.4) fAY) = f(t) + u,

f t+ = f(t)v

z(tT) = x(t) + B(z(t))z(t), emad

Ct+ :C(t), mEZOZ{Oylaéa"'}a
f t+ = f(t)a

where the meanings of parameters r,d, k,g,h and E are the same as
model (2.3); z(tT) is the quantity of population after the birth pulse,
a(tt) = lmy et 2(t), c(th) = limy et c(t), f(¢F) = limy 4+ f(2). For
convenience, here we assume that the toxicant input has only one and
the population z(t) can reproduce only once in each year. 0 < Tj <1
represents the time of pulse toxicant input in each year; 0 < 75 <1
represents the time of pulse harvesting in each year; p > 0 represents
toxicant input amount at time m + 717, 0 < E < 1 represents pulse
harvesting effort at t = m + 15, m € Zy. In the following section, we
will investigate the dynamics of system (2.4).

3. Dynamical behaviors of system (2.4).

3.1 Stroboscopic maps of system (2.4) with Ricker function
and Beverton-Holt function. We can easily obtain the analytical
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solution of system (2.4) at the interval [m,m + 1). Let

g—h\g
T
_ ;Cm(l _ efg(tfm)),
- g’“ﬁ”"h G(l_e—g(t ety L _ gmhte (m+T1>>)>
Fy = gk_“h(e—h(t (m+12) _ g=glt=(m+11)))

if 0 < Ty < Ty < 1. Then
(3.1)
z(t) =z, efi—d(t—m)
o(t) = Fm(hte-m) _ mgt-m))
g—nh m<t<m+Ty
+ Cme_g(t_m)

F(t) = frme ™

I(t) =z, eF1+F27d(t7m)

C(t) _ kfm ( —h(t—m) _ g(t—m))

g— h m + T1
<t<m+T
+ Cme 9™ 4 Ry ?
F(t) = frue="E=m) L ye=h(t=(m+T1))
(t) ( ) F1+F2 d(t—m)
kfm - m —m
c(t)_g h( hlt=m) _ g=9g(t )) m+ Ty
<t<m+l;

+eme 9™ 4 Ry
f(t) _ fme—h(t—m) +ﬂ€_h(t_(m+Tl))

if 0 < Ty < Ty <1. Then
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(3.2)
z(t) = T ef1—dt=m)
kEfm o _hit—m —a(t—m
C(t):g_—h(e Mimm) _ gmolt=m)) m <t
_}_cme*g(tfm) < m+T2,
F(t) = frne~ =™
z(t) = (1 — E)zpefr—dt=m)
Efm . hit-m —a(t—m
C(t):g_—h(e Mimm) — gmgltmm)) m + Ty
+cme—9(t—m) §t<m+T1,
f(t) — mefh(tfm)
z(t) = (1 — E)zpyefti-dt-m
kfm , _hit—m —a(t—m
C(t)zm(e Pl=m) _ gmg(t=m)) m+1T) <
b eglt-m) 4 p t<m+1,
m 3
F() = fre=h=m) 4 ye=hli=(m+10))

where x,,, ¢,, and f,, denote the densities of the population, the
concentration of the toxicant in the organism, and the concentration
of the toxicant in the environment at time m, respectively. For the
Ricker function, i.e., B(z) = be ®, equation (3.1) (or (3.2)) holds on
the interval [m,m + 1). After each successive birth pulse, more of
population is added, yielding

(3.3)
Trmg1 = (14 be AMom) A(m)z,,,
mi1 = (kfm/g — h)(e~"—e=9) + (kp/g — h)(e~h(1—T1) —e=9(1=T1))
+cme
fn41 = fme " + pe~h(=T0),
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where
A(m) = (1— E)e(kr)/(g*h)fm((l/g)(176_9)*(1/h)(176_h))
+ e(’wr)/(g—h)((l/g)(l—tfg“’Tl))—(l/h)(l—e’h(l’T”))

_ or/9)em(1—e"7)—d

Similarly, for the Beverton-Holt function, i.e., B(N) = b/(q + z"),
we have the following stroboscopic map of system (3.2):

Bt = (14 8/ + (Alm)z) ") A(m)a,
e = (6f)/(g = W)e™ — e°9)

. (k) (g = We0T) = e=00-T0) 4,7,
fm+1 fm h+li€7h(1 Tl)

Equations (3.3) and (3.4) are difference equations. They describe
the density of the population, the concentration of the toxicant in the
organism, and the concentration of the toxicant in the environment
at t = m + 1 in terms of values at ¢ = m. We are, in other words,
stroboscopically sampling at its pulsing period t = m + 1, m € Z+.
The dynamics of system (3.3) and system (3.4), coupled with system
(3.1) (or 3.2)), determine the dynamical behavior of system (2.4) for
the Ricker function and for the Beverton-Holt function, respectively.
Thus, in the following we will focus our attention on system (3.3) and
system (3.4), and investigate the various dynamical behaviors.

The dynamics of these nonlinear models can be studied as a function
of any of the parameters. Here we will focus on b for the Ricker
function and the Beverton-Holt function, and expound the changes
in the qualitative dynamics of the models (3.3) and (3.4) as b varies.

3.2. Stability of nonnegative equilibria of system (3.3) and
system (3.4). The system (3.3) (or equation (3.4)) exists as a
trivial equilibrium Ep(0, c*, f*), where ¢* = (ku(e "1-T1) — ¢—9(1-T1)
+e - (MH9)(esTs —ehT))) /((g—h)(L—e ") (1—e9)), f* = (pe "1 -T0))/
(1 — e~") and a unique positive equilibrium E* = (z*,c*, f*) if Ry > 1,
which are listed in Table 1.

In the neighborhood of Ey (E*), the dynamics of equations (3.3) and
(3.4) are controlled by the linearization,

(3.5) Vi1 = CYp
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TABLE 1. Nontrivial equilibria of the two models with birth pulses.

Function Equilibrium Rg = R{' (or RP)
z* =1/(1 — E)e®TFrr)/(gh) 1n RE
Ricker c* = (ku(e h(1=T1) _ o—9(1-T1 R _p((1/1 - E)

RE —
+e(ht9)(e9T1 _ chT1y))/((g = h)(1 — e M)(1 = e 9)) ed+?k;”)/(9h) -1t
fr = (pem "0 /(1 e )

z* = (1/1 — B)ed+(kur)/(gh) Vq(Rg —1)
Beverton- c* = (ku(e h(A-T1) _ ¢~9(1-T1) RE = (b/9)((1/1 - E)

Holt +e(ht9)(e9T1 — chT1)))/((g — h)(1 — e ) (1 — e 9)) | edH(kur)/(gh) _ 1)—1
fr=(pe PO /(1 —e7h)

with C equal to the linearization counterpart of equation (3.3) or (3.4)
and Y = (z,c¢,f). Ep (or E*) is stable when the absolute values of
eigenvalues of C are all less than one.

For the trivial equilibrium Fy(0, c*, f*) of equation (3.3),

(1+4)/8 '
C’gﬂ = 0 e 9 (k/g—h)(e™" —e9)
0 0 el

where 8 = (1/1 — E)ett(k#r)/(9h) > 1 and there is no need to calculate
the exact form of (x) as they are not required in the analysis that
follows.
The eigenvalues of Cf are Ay = (1+b)/8, A\ = ¢ 9 < 1 and
A3 =e P <1, if
1+

then Ej is locally asymptotically stable. In terms of model parameters,
and after a bit of rearranging, for equation (3.3), inequality (3.6) reads

(3.7) b<B—-1=bf.

Similarly, for the trivial equilibrium Ey(0, ¢*, f*) of equation (3.4),

(1/8)(1 +(b/a))  * *
CE, = 0 et (ko= h) (e —e7)
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So if
(3.8) b<q(B—-1)=0bE,

then Ej is locally asymptotically stable.

Thus, if inequality (3.7) (or (3.8)) holds true, E4(0,c*, f*) is sta-
ble. For this range of b, the population will be extinct. Otherwise,
Ey(0,c*, f*) is unstable and a small population will be increased from
EO = (O,C*, f*)

For the difference equations (3.3) and (3.4), we can also define the
intrinsic net reproductive number R (the average number of offspring
which an individual produces over the course of its lifetime). For
equation (3.3), Ry is given by

Ri =b(B—1)"".
For equation (3.4), Ry is given by

b
R§ = 6(5 -1 h

Inequality (3.7) ((3.8)) can be rewritten as RY¥ < 1 (RP < 1). That
is, if on average, individuals do not replace themselves before they die,
then the population is doomed.

Note that when b = by, i.e., R = RE = 1, then E* = (0,c*, f*) =
Ey. Thus, as b increases through by, E* passes through the equilibrium
at Ey and exchanges stability with it in a transcritical bifurcation.

For the linearization C' of equation (3.3) about this positive equilib-
rium E*,

1—(1-(1/B))In(R{) *
CE. = 0 ¢ (k/g = h) (" — ™)

There is no need to calculate the exact form of () as it is not required
in the analysis that follows.
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B

(a)

FIGURE 1. Bifurcation diagrams of equations (3.3) and (3.4) for the population

z(t). This shows the effect of parameter b on dynamical behavior. Parameter values

arek=1,g=12,h=2,r=1,d=04, 4 =0.5,T =0.25, E=0.5,qg = 3,n = 10.
(a) Ricker function, b € [0, 350]. (b) Beverton-Holt function, b € [0, 80].

The eigenvalues of Cff are \j =1— (1—(1/8))InR{ < 1,0 < Xy =
e 9<,0< Ny=e"" <1,if

(3.9) 1-— (1 - %) In R > —1;

then E* is locally asymptotically stable.

Similarly, the linearization C' of equation (3.4) about this positive
equilibrium E*,

1-n(l—(1/8))(1— (1/Rf)) =* *
ct - 0 5 (kfg—m)(e" —e)
0 0 e"

If

(3.10) 1—n(1— %) (1— Ri(?) > -1,

then E* is locally asymptotically stable.

The stability of E* is lost in only one way as b increases. Condition
(3.9) or (3.10) is violated for b > b.. The critical values are listed in
Table 2 for each model. A flip bifurcation occurs and the equilibrium
loses stability to a stable two-cycle, see Figure 1.
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TABLE 2. Critical value b. of the parameter b for each model. b must be less than
bc for stability.

Function be Interval of Type of
stability bifurcation
Ricker bE = (B—1)e2A/(B=1)  pE <b < bE Flip bifurcation

c(B-1)
1—(2/n(1-(1/8)))

Beverton-Holt b2 =

bf < b< bB Flip bifurcation

4. The relationships between model (2.4) and model (3.3)
(or (38.4)). In Section 3, we present the dynamics of system (2.4)
using the stroboscopic map. This is a special case of the Poincaré
map for a periodically forced system or periodically pulsed system; the
system trajectory is not recorded continuously in time but once every
harvesting period. Long-term solutions of system (2.4) will then appear
as follows.

(i) Fixed point of the stroboscopic map (corresponding to 1-period
solution having the same period as the birth pulse term).

(ii) Periodic points of the stroboscopic map, of period & (correspond-
ing to k-period solutions, often called subharmonic periodic solutions
or subharmonic period k’s).

(iii) Invariant circles (corresponding to quasi-periodic solutions, tori
T? for the original system of impulsive differential equations).

(iv) Chaotic (strange) attractors.

In the following, we show that the solutions of system (3.3) behave
like the above three cases (i), (ii) and (iv).

For b < by, the equilibrium Ey(0,c*, f*) is stable. For this range of
b, trajectories of model (2.4) approach the origin.

For by < b < b, the equilibrium E* is stable. For this range of b,
trajectories of models (3.3) and (3.4) approach the 1-period solution

(#(t), &(t), f(t)). O < Ty < T < 1,
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(4.1)
z>¢=eF1*—d(t—m,)7 m S t< m+T1,
i‘(t) = z*eFl+Fz7d(t77n)7 m + Tl S t<m + T27
(1 _E)‘,L.*eF1+F27d(t—m), m+Ty<t<m+l,
ih(e*h(tfm) ,efg(t—m)) +C*efg(t7m)7 m<t<m+Ti
&(t) = gk :
Lh(e*h(tfm) _ efg(t—m)) + cre—9(t—m) + F;, m4+Ti<t<m+1,
g—
~ fre Mmoo <t < m4 T,
f@t) =
f*e—h(t—m) +’ue—h(t—(m+T1)), mATL<t<m41,
where
krfx= (1 1 r
r=21 : (—(1 —egmm) o (1 - eh“m>)> Lo — ety
g—- g g

k 1 1
= HUT <_(1 _ e—g(t—(m—i—Tl))) _ E(l _ e—h(t—(m+T1)))>’

Fp = FH (ol T) _ mgle—(maTi)y,

3 — g _ h
If 0 < Ty < Ty <1, then
(4.2)

z*ef1—d(t—m) m<t<m+Ti,

2(t) =4 (1—E)*efT4t-m  my Ty <t<m+Ts,
(1— B)z*efi tFa—dlt=m) 'y L Th) <t <m+1,
Lh(e—h(t—m em0(tmm)) 4 rem9(=m) < m Ty,

o =4 °
Lh(efhufm 9= | or (=) L o LTy < <m 1,
g

_ f*eih(tim), m<t<m+Ti,

ft)=
*emh(t=m) | e=h(—(mtT)) LTy < p <1,

That is, the 1-period solution (4.1) (or(4.2)) of system (2.4) is
locally asymptotically stable. Right at b = by, there is a transcritical
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FIGURE 2. Bifurcation diagrams of equations (3.3) and (3.4) for the population
z(t). This shows the effect of parameter b on dynamical behavior. Parameter values
arek=1,9g=12h=2r=1d=04, p=05 T =025 Ts = 0.5 E = 0.5,
g = 3, n = 10. (a) Ricker function, b € [0,6500]. (b) Beverton-Holt function,
b € [0,3500].

bifurcation of periodic solutions. (0,0,0) and (Z(t),é&(t, f(t)) pass
through each other and exchange stability.

As b increases beyond b., it passes through a cascade of period-
doubling bifurcations that eventually lead to chaotic dynamics and
many other complexities (see Figure 1 and Figure 2). For details, see
Section 5.

5. Numerical analysis. Our focus so far has been on the equilibria
of systems (3.3) and (3.4), and in particular, on the existence and
stability of those equilibria. But, if the parameter is beyond some
critical value, the models exhibit a wide variety of dynamical behavior.
The dynamics of nonlinear models can be studied as a function of any
one of the parameters, and we will focus on parameters b, £ and p.

As bincreases beyond b, each model passes through a series of period-
doubling bifurcations that eventually lead to chaotic dynamics. In
Figures 1 and 2, we have displayed typical bifurcation diagrams for
each model. For the Ricker function, when 2.67 < b < 41.74, the
1-period solution of system (2.4) is still stable. When b > 41.7, it
becomes unstable, and there is a cascade of period doubling bifurcations
leading to chaos. This period-doubling route to chaos is the hallmark
of the logistic and Ricker maps (see [27]) and has been studied by
mathematicians (see [10, 15]). As b increases further, we can see
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FIGURE 3. Bifurcation diagrams of equations (3.3) and (3.4) for the population
z(t). The effect of parameter E on the dynamical behavior is shown. Parameter
values are k =1, r =1, g = 1.2, h = 2, d = 0.4, p = 0.5, T = 0.25, T = 0.5.
(a) Ricker function, b = 200. (b) Beverton-Holt function, b = 50, ¢ = 3, n = 10.

that the population locks into cycles of various periods, which in turn
proceeds through its own period-doubling sequences. For the Beverton-
Holt function, from Figure 1b we can also observe that the symmetry-
breaking (sb) bifurcations occur after the period-doubling bifurcations
(symmetry-breaking pitchfork bifurcations, see [28], are particularly
simple bifurcations which give rise to multiplicity of steady states),
which is followed by a cascade of period-halving bifurcation; and then
again period-doubling bifurcation occurs, which is also followed by
chaos with wide periodic windows.

The bifurcation diagrams of both models reveal another interesting
phenomenon. From Figure 2 we notice that if the cycles to the left of
a given chaotic window are of period k, then the cycles to the right are
period k 4+ 1. These so-called “period-adding” sequences have been
observed in chemical reactions, see [15], and electrical circuits, see
[16], and have been studied in one-dimensional difference equations
[19]. “Period-adding” phenomenon is also present in a delay difference
equation population model with density-dependent reproduction, see
[4], and in the density-dependent age-structured model studied by
Guckenheimer et al. [13].

In Figure 3, we fix another parameter and choose E as a bifurcation
parameter. System (3.3) with Ricker function and system (3.4) with
Beverton-Holt function both display very complex dynamical behaviors
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as FE increases. When the parameter E increases to some critical
value (for Ricker function, £ = 0.99; for Beverton-Holt function,
E = 0.89), the population decreases deeply and eventually goes extinct.
In Figure 3a, as the parameter E increases, it exhibits period-doubling
bifurcation phenomena leading to chaos, which is eventually followed
by a cascade of period-halving bifurcation. In Figure 3b, a sequence
of period-doubling bifurcations interchanging with regions of chaos
followed by period-halving bifurcations is observed, and it also shows
that cascades are oriented in both directions. That is, the periodic
orbits are both created and annihilated as E increases. This shows that
system (3.4) has the property of antimonotonicity. The phenomenon
of “antimonotonicity” was studied by Dawson [8].

Similar phenomena can be observed in Figure 4 if we choose p as
the bifurcation parameter. In Figure 4a (for the Ricker function), as
the parameter p increases, there are many chaotic bands, which are
followed by a cascade of period-halving bifurcations. In Figure 4b (for
the Beverton-Holt function), as the parameter u increases, system (3.4)
experiences a process of chaos — period-halving cascade — period-
doubling bifurcation — chaos — period-halving cascade — period-
doubling bifurcation — chaos — period-halving cascade.

All of the above results show that birth pulses, pulse harvesting policy
and pulse toxicant input in a polluted environment make the dynamical
behavior of system (2.4) more complex.

6. The effects of pulse harvesting time and pulse toxicant in-
put time on the maximum annual-sustainable yield. Many au-
thors are interested in studying the optimal management of renewable
resources, which has a direct relationship to sustainable development.
From the point of view of ecological managers, it may be desirable to
have a unique positive equilibrium which is asymptotically stable, in
order to plan harvesting strategies and keep sustainable development
of the system. In this section, we will study how the pulse harvesting
and pulse toxicant input affect the maximum annual-sustainable yield.

For by < b < b, the equilibrium E*(z*,c*, f*) is stable. For this
range of b, trajectories of system (2.4) approach the periodic solution

(Z(t), &(t), f(t)) with period 1, that is, periodic solution (4.1) (or (4.2))
of system (2.4) is locally asymptotically stable.
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FIGURE 4. Bifurcation diagrams of equations (3.3) and (3.4) for the population
z(t). The effect of parameter p on the dynamical behavior is shown. Parameter
values are k = 1, g = 1.2, h =2, r =1, d = 0.4, E = 0.5, T} = 0.25, T = 0.5.
(a) Ricker function, b = 200. (b) Beverton-Holt function, b = 50, ¢ = 3, n = 10.

Since we only need to consider the annual-sustainable yield in one
period, without loss of generality we can choose m = 0 and the annual-
sustainable yield is

X(E)= EX(m+Tb)

(B ekrf )/ (g-h)((1/g)(1—e~9T2)~(1/h)(1—e~"T2))~(r/g)c" (1—e~972)

+ ekur)/(g=h)((1/g)(1—e™ 92 ~T) —(1/h) (1~ "F27T1)) —dT,
= if Ty < 15,
Ex*ekrf)/(g=r)((1/9)(1—e=9T2)—(1/h)(1—e~""2))~(r/g)c* (1—e~9T2)—dT,

if Tr < T1.

’

\

Our main purpose is to get an E such that X (E) reaches its maximum
at E and study how the maximum annual-sustainable yield X (E)
changes as T or T vary. Numerical analysis implies that there exists
a unique E such that X(FE) reaches its maximum for each fixed T
and Ty (see Figure 5. For Figure 5a, X (F) reaches its maximum at
E = 0.83; for Figure 5b, X (F) reaches its maximum at E = 0.88). Also,
from Figure 5 and Figure 6 we can observe that the maximum annual-
sustainable yield dramatically depends on the pulse harvesting time,
and the maximum annual-sustainable harvest yield is largest at 7" =0
and smallest at 7" = 0.8. This shows that if we harvest immediately
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Yield

FIGURE 5. Annual-sustainable yield of equations (3.3) and (3.4), showing the rela-
tionship between maximum annual-sustainable and the harvesting time. Parameter
values are k =1, g =12, h=2,r=1,d =04, p = 0.5, T1 = 0.5. (a) Ricker
function, b = 25. (b) Beverton-Holt function, b = 50, ¢ =3, n = 9.

after the birth pulse, the largest maximum annual-sustainable harvest
yield is obtained; however, if we harvest near the time of the birth pulse,
the maximum annual-sustainable yield is smallest. Further, it shows
that the maximum annual-sustainable harvest yield is not significantly
affected by the time of toxicant input, see Figure 6.

7. Conclusion. In this paper we have investigated the dynamics of
a single-species population model with pulse harvesting, pulse toxicant
input and birth pulses in a polluted environment. By using the
stroboscopic map, we have obtained the complete expression for the
1-period solution and the threshold conditions for their stability. We
show the effects of the time of pulse harvesting and the time of
pulse toxicant input on the maximum annual-sustainable yield. Our
results show that the best time of harvesting is immediately after
the birth pulse, and the maximum annual-sustainable yield is not
significantly affected by the time of toxicant input. From the viewpoint
of biology, the mathematical results are full of biological meanings
and can be used to provide reliable foundations for making decisions.
Numerical simulation results also show that pulse harvesting, pulse
toxicant input and birth pulses make the single-species model in a
polluted environment we consider more complex and dominated by
periodic and chaotic solutions.
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FIGURE 6. The annual-sustainable yield of the equations (3.3) and (3.4), showing
the relationship between the maximum annual-sustainable and the toxicant input
time T7. Parameter values are k = 1, g = 1.2, h =2, r = 1,d = 04, p = 0.5,
E = 0.83. From above to below, T3 is 0, 0.3, 0.5, 0.6, 0.8 respectively. (a) Ricker
function, b = 25. (b) Beverton-Holt function, b =50, c =3, n = 9.

Our results about harvesting and those in [34] all conclude that
harvest timing is of great importance to annual yield and population
persistence, whether it is pulse harvesting or open/closed piecewise
continuous-time harvesting. Harvesting too late may overexploit a
population risking extinction, with much smaller maximum annual
yield as well. Therefore, wider seasonal closures are the best way to
adequately protect fish during the spawn season.
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