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THE ANALYSIS OF TWO EPIDEMIC MODELS
WITH CONSTANT IMMIGRATION AND QUARANTINE

ZHIXING HU, YANG YU AND WANBIAO MA

ABSTRACT. Combining models with classifying immigra-
tion and with quarantine, this paper constructs an SIQS
model and an STQR model which incorporate constant im-
migration and quarantine for the special case of simple mass
action incidence rate. The decline of the disease-related death
rate and the increase of the individuals’ recovery rate after in-
dividuals are quarantined are considered in the paper. Then,
the unique endemic equilibria of the two models are attained,
and local and global stability of the endemic equilibriums is
also proved.

1. Introduction. As many people know, quarantine is the sepa-
ration and/or restriction of movement of persons who, because of re-
cent exposure to a communicable disease, risk acquiring that disease
and subsequently exposing others. It is apparent, as presented in the
hadith, that principals of quarantine should be defined. This prevents
people from entering a plague area, as well as preventing others from
leaving. The quarantine is a new concept that has recently been discov-
ered for human beings is still being applied today. It is intuitive why a
healthy person is banned from going to the epidemic area. Unless one
has a great knowledge of modern medical science, it is hard to under-
stand why leaving an area of epidemic is important, especially to those
who are healthy. It makes sense when the healthy person, who lives
in an epidemic area, runs to another safer area in order to avoid the
infection. Chen Jun-jie [2] and Herbert Hethcote et al. [5] have con-
sidered models of SIQS and SIQR with different reaction incidence
rates, which are the simple mass reaction incidence rate, the standard
reaction incidence rate and the quarantine-adjusted incidence rate. Im-
migration is an essential problem in the epidemic models [1, 3, 4, 7,
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8]. Nowadays, only susceptible immigration is not considered enough
in modeling the epidemic; Li Jianquan et al. [7] classified immigration
into three classes and obtained global stability of the models.

Differential equation models have been used to study the dynamics
of many diseases in human and wild animal populations. In this paper,
the traditional K-M compartment model [6] is adopted to analyze
the problem. Assume the total population NV is divided into four
classes: the susceptible class S, the normal infectious class I in which
individuals are not quarantined, the quarantined infectious class @, in
which the individuals have been removed and isolated either voluntarily
or coercively from the infectious class, and the removed class R.

2. The SIQS model with classifying immigration. Consider
the following STQ.S model, where infection does not confer immunity.
In the model, some of the susceptible individuals become infected and
then some infected individuals remain in the I class for their entire
infectious period before they return to the susceptible class, while other
infected individuals are transferred into a quarantined class ). The
individuals in the infectious class including the normal infectious class
I and the class @ of quarantined individuals remain there until they
are no longer infectious, at which time they return to the susceptible
individuals. To formulate the model, the assumptions are:

i) There is a constant flow of A new members into the population
in unit time, of which a fraction p (0 < p < 1) is infective;

ii) There is a natural death rate constant d > 0 in each class;

iii) Each infective makes SN contact sufficient to transmit in unit
time;

iv) A fraction § > 0 of infectious individuals isolate from the infec-
tious class;

v) In unit time, the infectious individuals and the quarantined indi-
viduals recover into class S with the fractions v; and +,, respectively,
and die from the infection with the different fraction oy and as, evi-
dently, a1 > as > 0, 72 > 71 > 0.

Based on these assumptions, the fraction made by an infective that
is with a susceptible and thus can produce a new infection is S/N and
the rate of new infection is BN - S/N - I = BSI, which is called the
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FIGURE 1. The general transfer diagram for the SIQS model.

simple mass action incidence rate. The transfer diagram is as shown in
Figure 1.

From the above assumptions, the model for transmission of infectious
diseases can be described by

§'=(1-p)A+mnl+7Q—dS - pSI,
(1) I'=BSI +pA—(m+d+oa+0),
Q’ :617 (d+0&2+’)/2)Q

Due to N =S5+ 1+ Q, from (1) we obtain the equation

2) N'(t) = A — dN — onT — asQ.

In the absence of disease, the population size N approaches the
carrying capacity A/d. The differential equation (2) implies that
solution of (1) starting in R} = {(5,1,Q) € R*| S >0,1 >0,Q >0}
either approaches, enters or remains in the subset of Rﬁ_ defined by
D={S1,Q)e RR|0<S+I1+Q < A/d,S >0,I>0,Q >0}
Thus, it suffices to consider solutions in the region D. Solutions of the
initial value problem starting in D and defined by (1) exist and are
unique on a maximal interval. Since solutions remain bounded in the
positively invariant region D, the maximal interval is [0, +00).

If p = 0, analysis of the stability of the STQS system and the following
SIQR system is very similar to the research which Hethcote did in
2002 [5]. The two models have their basic reproduction numbers Ry
and Ro = 1 is the threshold, that is, there is the unique disease-free
equilibrium which is globally asymptotically stable, if Ry > 1, the
disease-free equilibrium, is unstable and the epidemic equilibrium is
globally asymptotically stable. In the paper, analysis of the case p =0
is omitted, and the case of 0 < p < 1 is considered.
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Lemma 1. When 0 < p < 1, system (1) has a unique positive
equilibrium (I*,Q*, N*) which is locally asymptotically stable.

Proof. Substituting S = N — I — @ into (1), then from the last two
equations of (1) and (2), we have

I'=B(N—-I1-Q)+pA—(y1+d+a1+0)I,
(3) Q' =06l —(d+ az+72)Q,
N' =A—dN — oI — a@.

So the equilibrium (I*,Q*, N*) of system (1) satisfies the following
equations

BN —1—-Q)+pA—(n1+d+a+0)I =0,
(4) 0I — (d+ az +72)Q =0,
A*dN*()élI*OéQQ:O.

From the last two equations of (4), we obtain

I:(A—dN)(d+a2+72) Q= 0(A—dN)

ar(d+az+72) + a2’ ag(d+az+y2) Fagd’

Substituting them into the first equation of (4), we have

B{(d+az+72)[(c1 +d)N — Al + 6 [(a2 + d)N — A}
= [a1(d + a2 + 72) + asd]
pAlai(d + az +72) + azd] }
(A—dN)(d+ a2 +72)

{(d+a1+71+5)—

Denote

h(N) = B{(d+ a2 +72) [(a1 + d)N — A] + 6 [(az + d)N — A]},
g(N) = [ar(d+ az +72) + a2d]
pAlai(d+ a2 +12) +C¥25]}
(A—dN)(d+az+72) |

{(d+a1+’71+5)—

It is easy to see that h(N) is a nondecreasing function of N and
h(N) < 0 for sufficiently small N. At the same time, ¢'(N) < 0,
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g(0) > 0, limy_, 4/4- g(N) = —o0, so in the interval (0,A/d), h(V)
and g(N) intersect at a unique point. Therefore, in D equation (4) has
a unique root denoted with P*(I*,Q*, N*), which is also the unique
positive and epidemic equilibrium of (3). To prove the local asymptotic
stability of P*(I*,Q*, N*), the Jacobian matrix of system (3) at P* is
obtained as follows

—BI* — (pA)/I* —pI* pI*
J*: (5 *(d+0&2+"/2) 0
— Q] — Qi —d

The characteristic equation of J* is
f(A) = a0>\3 + a1>\2 + ag)\ + az = 0,

where

A
a0 =1,a1 = BI" + 2= +2d + 0z + 35,

I*
A
a2:<BI*+I}—*) (2d+ as+7v2)+ (a1 +8) BI" +d(d+ az + 72),
* pA * *
az=d(d+az+2) | BI +I* + B0+ 1) (a2 +d) I* + ay fyal”.
Then
A
Alzalzﬁl*—i—]}* +2d+az+72 >0,
_|ja1r ao| _ .
AQ— as  as = aias as
A A
:<5I*+Z"r_*+2d+a2+72> {(/3]*+1"’_*> (2d+ a2 +72)

+(a1+§)BI*+d(d+a2+72)]

A
—d(d+ as +72) <ﬁI*+I}*>

—,8((5+a1) (062 +d)I* —011,8’}/2[*
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pA 2 pA
_<ﬁI*+F> (2d+0¢2+72)+<BI*+I—*>
x [d®+ (2d + az + 72) (d + a2 + 72)]

A
+ (a1 + 0) BI* (51* + 7}—* n d> + BI*67,

A
+d(d+ a2 +72) <5I*+Z}—*+2d+a2+72>

> 0.

Hence, the Routh-Hurwitz conditions are satisfied. Thus, it follows
that the endemic equilibrium P* of (3) is always locally asymptotically
stable. o

Theorem 1. When 0 < p < 1, the endemic equilibrium P* of system
(1) is always globally asymptotically stable.

Proof. From the first equation of (4), we can easily obtain

A
BN —I'=Q)+ 55— (v +d+a+d) =0,

In order to prove the global stability of P*, we rewrite (3) as follows
A(I-TI" * * *
I'=1 |- 4 BN - NY) = (- I7) - BQ - Q)]

(5) § @ =6(I—-1I") = (d+ o2 +72)(Q — Q")
N' = —d(N = N*) — a1 (I - I*) — a2(Q — Q*).

Define the Liapunov function

V(I,Q,N) = a2(5+a1);§1(72 + 2d) (II* ~I*In Ii>
2
1 X w2, 2d+72 #12
+3{l@-@) - - NP HER e )
2
a1(2d + )

+ (Q—Q*)Z} >0,

062(5
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which is a positive function in the region Ri. Then the time derivative
of V(I,Q, N) along the solution (5) is given by

AV as(d+on)+on(y2+2d)
dt (5) Oézﬁ
A(I — I*)?
: [—%‘FB(I—I*)(N—N*)

—BUI=I")? = B(I-I")(Q - Q")

+[(Q-Q") — (N -N")]
6 =I") = (d+ az +72)(@ - Q) +d(N — N¥)

ban(T - )+ aa(@ - @) + 222
' [_d(N - N*) - 041(I_ I*) - 042(@ - Q*)]

+ %(Q —QY)-[0(I - I") — (d+ az + 12)(Q — Q)]
(0 +a1) +ai(ye +2d) [pA(I— )
= (){2,8 II*
a1(2d +v2)(d + s + 72)

042(5

(N —N7)

+B(I—I*)2]

— [(d+) + }(Q—Q")2

_ d(Oéz + 2d + ’}/2)
(6]

(N — N*)2

<0.

Note that V' = 0 on the set D holds if and only if (I,Q,N) =
(I*,Q*,N*). Because the largest positively invariant subset is the
equilibrium (I*,@Q*, N*), the Liapunov-Lasalle theorem implies that
P*(I*,Q*,N*) is globally attractive in R%Y. Combining with the
local stability of (I*,Q*, N*), we can conclude that P*(I*,Q*, N*)
is globally asymptotically stable in the region Ri. So the endemic
equilibrium P* is globally asymptotically stable in the region D. ]

Figures 2 and 3 using Matlab reflect how system (1) develops from
different initial values and in two different situations. We choose
(1000, 0,0), (700,300, 0) and (400, 300, 300), which can represent three
different cases engendering initially, as original values. They represent



1428 ZHIXING HU, YANG YU AND WANBIAO MA

600

ag| 0, 0)
1000

FIGURE 2. The trajectories of system (1) from initial points (1000, 0, 0), (700,
300, 0) and (400, 300, 300), where A = 2, p = 0.5, a1 = 0.1, d = 0.001, v1 = 0.1,
B =0.01, as = 0.05, § = 0.5 and 72 = 0.2.

that initially there are no infectious people in the region, there are
infectious individuals and none of them quarantined in the region, and
there are infectious individuals and some of them quarantined. In the
two figures, what we find is that the trajectories from different initial
points go to one point respectively, which is the endemic equilibrium.
We can prove the global asymptotic stability of the point.

From the figures, we can divide the period when the epidemic affects
the change of population in the region into the following phases:

i) During the origin of the infection, because of the huge base of sus-
ceptible population, the infectious population increases dramatically.
For the lag effect of the isolation, although the quarantined population
increases too, it can’t match the leap of the infectious population.

ii) Along with the epidemic developing gradually, the susceptible
population declines slightly, and the number of normal infectious in-
dividuals decline too; but, the quarantined individuals increase more
rapidly than in phase 1 in numbers for the lag effect of the isolation
also.

iii) In this section, the susceptible population and the normal infec-
tious population go to stable gradually, and the quarantined population
begins to decrease.
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FIGURE 3. The trajectories of system (1) from initial points (1000, 0, 0), (700,
300, 0) and (400, 300, 300), where A = 2, p = 0.5, a1 = 0.1, d = 0.001, v1 = 0.1,
B =0.01, az = 0.02, 8 = 0.8 and 2 = 0.3.

iv) The population of all four classes in the region keeps stable, and
the epidemic exists in the region persistently.

In the two figures, the constants A, p, a1, d, v; and B are fixed, and
the constants as, & and 7, which can reflect the condition of isolation
are changed. Note that the quarantined therapy in Figure 2 is better
than Figure 3, and the unique endemic equilibrium of the two cases is
(60,49,97.7) and (92.5,64.6,161), respectively. Hence, we can conclude
that the living population in the former case in the region ultimately is
more than in the latter case. The dominant causation of the decline of
the population in the region is the death from infection; therefore, the
population dying from infection in the latter case is much more than
in the former case.

3. The SIQR model with classifying immigration. In the
basic SIQS model, we assume that the infected individuals transfer
to removed class R, in which individuals have immunity from the
epidemic. In this model, some of the susceptible individuals become
infected and then some infected individuals remain in the I class for
their entire infectious period before they gain immunity and enter the
removed class, while other infected individuals are transferred into a
quarantined class (). Individuals in the infectious class including the



1430 ZHIXING HU, YANG YU AND WANBIAO MA

nl

fooe o +
BSI . :

s I 51 0 7,0 R

i ds ‘(d +ay)l ‘(d +a,)0 ‘ dR

FIGURE 4. The general transfer diagram for the SIQR model.

normal infectious class I and the class @@ of quarantined individuals
remain there until they are no longer infectious, at which time they
return to the susceptible individuals. The transfer diagram is as in
Figure 4.

The SIQR model for transmission of infectious diseases has the
following form

S'=(1-p)A—dS -pBSI,
I'=pA+BSI— (1 +d+ a1 +9)I,
Q =61 —(d+ a2 +72)Q,

R' = v1+7%Q — dR,

(6)

where all of the constants are the same as the SIQS model. So the
total population N satisfies the following equation

N’(t) =A—dN — alI— OézQ.

In the absence of disease, the population size N approaches the
carrying capacity A/d. In the SIQR model, the solution of (6) starting
in Ri either approaches, enters or remains in the subset of Ri defined
by D = {(S,I,Q,R) € R1|0 < S+ 1+ Q+ R < (A/d)}; thus, it
suffices to consider solutions in region D. As before, the initial value
problem is well posed both mathematically and epidemiologically in
D. By setting the right side of each of the four differential equations in
(6) equal to zero, we can easily obtain the unique positive equilibrium
P*(S*,I*,Q*, R*), which is also the endemic equilibrium of system (6),
where

g - 20 -pAn+d+o+a)
CAB+(mtd+ 6+ a)d+ A’
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CAB-(m+d+d+a)d+A
B 28(n+d+86+ a1)
. O[AB—(m+d+0+ar)d+ A
28+ d+ S+ an)(d e+ a)
ge = 2 +d+02)+00] - [AB — (m +d+6+a1)d+ A
2dB(v2 +d+ a2)(y1 +d+ 0+ ay)

I*

)

and

A= \/[(’Yl+d+5+a1)d—A6]2+4pdﬁA(’Yl+d+5+a1).

Theorem 2. When 0 < p < 1, the endemic equilibrium P* of system
(6) is globally asymptotically stable.

Proof. As the method used in Lemma 1, the local asymptotic stability
of the endemic equilibrium P* of system (6) can be easily proved by
analyzing the Jacobian matrix of system (6) at the endemic equilibrium
P* and the Routh-Hurwitz criterion. In order to prove the global
stability, consider the former two equations of (6), which can compose
an ST subsystem about system (6), for the absence of S and I in the
two equations. By analogy with the method in Theorem 1, we rewrite
the ST subsystem as follows:

g —s|-U=P g gy _pur-r),
(7) SS*
! _pA(I_I*) _ *
I_I[ T +6(5—-5%)].
Consider the Liapunov function
S _ * I, 7«
V(S,I):/ Bu (71+d+041+5)+((PA)/I)du+5 =TI
* u I* u

which is obviously positive definite and goes to infinity as S — 400 or
I — 4o00. Using (y1 +d+ a1 +§) — ((pA)/I*) = BS*, the Liapunov
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derivative is

av._ B(S-57) ,S{_ (1-p)

w—sw—ﬂu—ﬂﬂ

dt S S5+
(I-1%) pA(I - T%) .
Ty A .1[_ = +5(5—5)]
_ B(-p w2  PBA(I-I')?
=~ g5 =SV -

<0.

Note that V' = 0 on the set RY where (S,1) = (S*,I*). Because
S" #£ 0on S = S* unless I = I*, the largest positively invariant
subset is the equilibrium (S*, I*), so that the Liapunov-Lasalle theorem
implies that (S*, I*) is globally attractive in RZ. For the local stability
of (S*,I*,Q*,R*), we can easily obtain the conclusion that (S*,I*)
is locally stable. Therefore, (S*,I*) is globally stable in R and
lim, 10 S(t) = S*, limy 40 I(t) = I*. From the third equation of
(6), we can obtain

t

Q) = [Qo + [ 0I(r)exp[(d+ az+v2)(T —to)]dr

x exp [—(d + az + 72)(t — to)] -

By L’Hospital’s rule, we obtain

I I*
lim Q(t) = lim oI(t) = 0 =Q".
t——+o0 totood+as+v2 d4az+ 7o

Similarly, solving for R using the fourth equation in (6) and L’Hospital’s
rule, we obtain lim; ,,~ R(t) = R*. So the P* and (S*,I*,Q*, R¥)
is a global attractor. Combining with the P*’s local asymptotic
stability, the endemic equilibrium P* is globally asymptotically stable
in D. ]

Compared with the SIQS model, the SIQR model is a four-
dimensional system. To reflect the situations that the trajectories of
the system vary as time goes on comprehensively, the phase diagrams
of system (6) are illustrated in Figure 5 and Figure 6.
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FIGURE 5. The phase diagram of system (6) in phase space (5,1, Q) and (S,I, R)
where A = 2, p= 0.5, a1 = 0.1, d = 0.001, 1 = 0.1, 8 = 0.01, az = 0.05, § = 0.5,
~v2 = 0.2, and the endemic equilibrium is P*(34.4,2.8,5.59,1397.5).

In the SIQR model, the constants A, p, ai, d, 71, B, az, 0
and -2 are chosen the same as the former SIQS model to com-
pare with the two models. In system (6), we choose respectively
(1000, 0, 0,0), (700, 0,0,300), (600,200,0,200) and (500,200,200, 100)
as initial points, which can represent four different cases. They are that
initially there are no infectious people and no immunes in the region,
there are no infectious people but some immunes, there are infectious
individuals and none of them quarantined in the region, and there are
infectious individuals and some of them are quarantined. In Figures
5 and 6, we can find that the trajectories from different initial points
go to one point which is the endemic equilibrium, just as we found in
Figures 3 and 4.

In the same way, the period when the epidemic affects the change of
population in the region is divided into the following phases:

i) During the original time, the disease spreads rapidly in the region,
so the infectious population, which includes the normal infectious
population and the quarantined population, increases sharply, and
the susceptible population declines, while some infectious individuals
recover and get immunity from the epidemic.

ii) Along with the decrease of the infectious population and the
increase of the removed population, the speed of the epidemic’s spread
goes down. At this moment, a large number of infectious individuals
recover and enter the removed class R; hence, the infectious population
declines and the susceptible population ceases to decrease.
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Endemic Equilibrium
(48.8,1.95,1652.3)

1000

FIGURE 6. The phase diagram of system (6) in phase space (S, I, Q) and (S,I, R)
where A =2, p=0.5, a1 = 0.1, d = 0.001, v; = 0.1, 8 = 0.01, ap = 0.02, § = 0.8,
~v2 = 0.3, and the endemic equilibrium is P*(48.8,1.95,4.86,1652.3).

iii) In this section, the proportion of the removed people goes up, and
the number of the susceptible people and the infectious people goes to
stability, respectively, yet the proportion of them decreases.

iv) The increase of the removed individuals declines and goes to a
fixed value ultimately. From the figures, the epidemic can’t eliminate
ultimately; however, in this model the infectious individuals, which
account for less than 1 percent of the total population, are much less
than that in STQS model. Just as the difference between Figure 3 and
4, in Figures 5 and 6 we know that better quarantined therapy can lead
to more immune individuals and less infectious individuals.

4. Conclusion and discussion. This paper has considered the
SIQS model and the SIQR model with constant classed immigration
and simple mass action incidence rate. From all the constants, the
amount of infectious individuals of the SIQS model is larger than
the SIQR model, because in the latter one many recovered people
transfer into the immune. Whether the therapy or the medicine can
recover the patient drastically or not will determine the development
of the epidemic. In the paper, we can easily see that if 0 < p < 1
meant continuous entering of the infectious individuals, in theory it
cannot become extinct and will form an endemic in the region, however
effective the quarantined therapy is. Hence, the systems only have
unique equilibrium whether isolated measures are taken or not; in
other words, no matter whether the isolated measures are taken or
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not, and how effective the quarantined therapy is, the analysis of the
systems is definite. However, the quarantine does have its effect. It can
reduce the size of the epidemic by advancing the quarantine therapy,
which can reduce v and «a, and improve the quarantine ratio, which
can increase 0. In [5], we know if p = 0, the analysis of stability
of the two models have their basic reproduction number R; as well
as the threshold of the systems, respectively, and if Ry < 1, there is
the unique disease-free equilibrium which is globally asymptotically
stable, if Ry > 1 the disease-free equilibrium is unstable and the
epidemic equilibrium is globally asymptotically stable. That means
if the infectious immigration is forbidden to enter, the epidemic can be
eliminated in the region by better therapy, more effective quarantine
measure and etc. Therefore, controlling the entrance of the infectious
immigration is more important in the battle of epidemic prevention and
cure. In the paper, the two models use the simple mass action incidence
rate 58S, which is applied in the models with few people in the region.
However, if there is a great population in the region, the standard
mass action incidence rate SSI/N, or the quarantine-adjusted action
incidence rate 8SI/(N — Q) referred to the work of Hethcote in 2002
is more valuable, and the latter one has a Hopf bifurcation when p = 0.
The analysis of it is more complex than that in this paper. Assuming
that the new action incidence rate (N — Q)SI, where B(z) > 0,
8'(z) < 0, [B(x)a] > 0, and [#(«)]2+{[8(x)z]'}? < 0, which is applied
in the model with the quarantine. This action incidence rate combines
the simple mass action incidence rate and 3SI/(N — @), and it can be
used more universally in models with quarantine. If the action incidence
rate is used in the model of this paper, local stability can be obtained
easily, but global stability needs a more tactful method to solve.
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