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ANALYSIS OF AN SEIRS EPIDEMIC MODEL
WITH TIME DELAYS AND PULSE VACCINATION

SHUJING GAO, LANSUN CHEN AND ZHIDONG TENG

ABSTRACT. Pulse vaccination is an important strategy
for the elimination of infectious diseases. An SEIRS epidemic
model with time delays and pulse vaccination is formulated
in this paper. By the comparison theorem in impulsive dif-
ferential equations, we obtain that the infection-free periodic
solution is globally attractive if the pulse vaccination rate is
larger than 6*. Moreover, we show that the disease is uni-
formly persistent if the pulse vaccination rate is less than 6.
under appropriate conditions. The permanence of the model
is investigated analytically.

1. Introduction. Recently epidemic models have been studied
by many authors, especially the models with time delays. Cooke and
Driessche in literature [4] investigated an SEIRS model with two time
delays,

dS(t)/dt = bN(t) — bS(t) — (AS(£)I(t)/N(t))
+yI(t —7)e= T,
E(t) = [ (AS(u)I(w)/N(u))e bt du,
dI(t)/dt = (AS(t — w)I(t — w)/N(t —w))e
—(b+y+d)I(t),
R(t) = f:ﬁT ’yI(u)ef(ber)(t’“) du,

where S(t), E(t), I(t) and R(t) denote the population size that are
susceptible, exposed, infectious and recovered at time ¢, respectively, b
is the natural birth and death rate of the population, d is the disease-
related death rate, X is the average number of adequate contacts of an
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infectious individual per unit time, 7y is the recovery rate of infectious
individuals, w is the latent period of the disease and 7 is the immune
period of the population. All coefficients are positive constants. They
obtain sufficient conditions for global stability of disease free equilib-
rium of system (1.1). By neglecting the disease-related death rate in
the SEIRS model in [4], Wang [19] presented sufficient conditions for
local and global stability of endemic equilibrium.

Infectious diseases have tremendous influence on human life. Every
year millions of human beings suffer or die of various infectious diseases.
Controlling infectious diseases has been an increasingly complex issue
in recent years. Pulse vaccination is an effective and important way to
control the transmission of diseases. Some theoretical considerations,
practical advantages, and examples of the pulse vaccination strategy
are presented in [1, 5, 6, 13, 17, 18]. For example, some successes
against poliomyelitis and measles have been attributed to the repeated
pulse vaccination strategy [14]. As indicated in [8], models have clearly
shown the advantages of a mass campaign approach in rapidly achiev-
ing high measles population immunity and interrupting measles virus
circulation. Gao et al. [7] have developed a model and a pulse vacci-
nation strategy. It reveals an effective strategy for the elimination of
infectious diseases. The effectiveness of constant and pulse vaccination
policies are compared theoretically and numerically in [12].

In this paper, we assume that the impulsive vaccination is applied
every T (> 0) years, and 0, 0 < 6 < 1, denotes the proportion of
those vaccinated successfully. Incorporating with pulse vaccination and
neglecting disease-related death rate, model (1.1) yields equation (1.2)
where k € Z,, Z, denotes the set of positive integer. Of course,
N@) = S(t) + E(t) + I(t) + R(t) = N(to) for all ¢ > ty. Let
s =8/N,e=FE/N,i=1I/N and r = R/N denote the fractions of
the population that are susceptible, exposed, infectious and recovered,
respectively. Hence model (1.2) yields (1.3). Model (1.3) is subjected
to the restriction s(t) + e(t) +i(t) + r(t) = 1. Note that the variables
e and r do not appear in the first and third equations of system (1.3).
This allows us to attack (1.3) by studying subsystem (1.4).
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(1.2)
dS(t)/dt = bN(t) — bS(t) — (AS(£)I(t)/N(t)) + vI(t — T)e b7,
B(t) :/ (AS(W)I(u)/N(u))e *=*) du,
t—w
dI(t)/dt = (AS(t — w)I(t — w)/N(t — w))e™" — (b+~)I(t),
t
R(t) = / yI(w)e= Pt gy,
t—1
S(tT) = (1-0)S(t),
E(tT) = E(t),
t = kT,
I(t7) = I(1),
R(t%) = R(t) + 6S(¢),
ds(t)/dt = b—bs(t) — As(t)i(t) + vi(t — 7)e "7,
e(t) = / As(u)i(u)e Pt dy,
di(t)/dt = As(t — w)i(t —w)e™ " — (b +7)i(t),
t
(1.3) r(t) = / yi(u)e™" =) du,
t—T1
s(th) = (1 -0)s(t),
e(tT) = e(t)
t=kT.
i(th) = i(t),
r(t) =r(t) + 0s(t),
ds(t)/dt = b — bs(t) — As(t)i(t) + Bi(t — 1),
(1.4) di(t)/dt = Aas(t — w)i(t — w) — (b + 7)i(t),
dﬁ)_uopux}
t = kT,
i(th) = i),

where a = e~ g = ~ye~b7.
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Most of the research on epidemiologic models are established by
ODE, delayed ODE or impulsive ODE [5, 11, 19]. However, impulsive
equations with time delay have seldom been studied by authors. The
main purpose of this paper is to establish sufficient conditions that the
disease dies out. The second purpose of this paper is to investigate
the role of time delays in disease transmission and show that, under
appropriate conditions, the disease is uniformly persistent, that is, there
is a positive constant ¢ (independent of the choice of the solution) such
that i(t) > ¢ for all large t.

The organization of this paper is as follows: In the next section,
we introduce some notations, give some definitions, and state three
lemmas which will be essential to our proofs. In Section 3, the
global attractivity conditions for the infection-free periodic solution
is presented. Sufficient conditions for the permanence of model (1.4)
are obtained in Section 4. In the final section, we try to interpret our
mathematical results in terms of their ecological implications. We also
point out some future research directions.

2. Notations, definitions and preliminaries. In this section, we
introduce some notations and definitions and state three results which
will be useful in subsequent sections.

Set | = max{r, w}. Let C be the space of continuous functions on
[—!, 0] with uniform norm. The initial conditions for (1.4) are

(21) (¢1(<)a ¢2(<)) € C—I— = C([flv 0]7 Ri)v ¢z(0) > 07 i= ]-, 2.

Let Ry = [0, +), RY = {Z € R* : Z > 0}. Denote f =
(f1, f2)T as the map defined by the righthand side of the first and
second equations of system (1.4). The solution of system (1.4) is
a piecewise continuous function Z : Ry — R2, Z(t) is continuous
on (KT, (k+ 1)T]|, k € Z; and Z(kT") = limy .7+ Z(t) exists.
Obviously, the smooth properties of f guarantee the global existence
and uniqueness of solutions of system (1.4) (see [2, 10] for details on
fundamental properties of impulsive systems). Since ds(t)/dt|s=o > 0
and di(t)/dt = 0 whenever i(t) = 0, for ¢t # kT, k € Z.. Moreover,
s(kI't) = (1 — 0)s(kT), i(kT+) = i(kT) for k € Z,. Therefore, we
have the following lemma.
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Lemma 2.1. Suppose Z(t) is a solution of system (1.4) with initial
conditions (2.1). Then Z(t) > 0 for all t > 0.

Denote
Q={(s,i) €R?*|5>0,i>0, s+1i <1}

Using the fact that s(t)+e(t)+i(t)+r(t
is positively invariant with respect to (1.

) = 1, it is easy to show that
4) with initial conditions (2.1).

Definition 2.1. System (1.4) is said to be uniformly persistent if
there is an 7 > 0 (independent of the initial conditions) such that every
solution (s(t), #(t)) with initial conditions (2.1) of system (1.4) satisfies

liminf s(t) > 7, liminfi(¢) > 7.

t—o0 t—o0

Definition 2.2. System (1.4) is said to be permanent if there exists
a compact region Qg € int Q such that every solution of system (1.4)

with initial conditions (2.1) will eventually enter and remain in region
Q.

To prove our main results we give the following lemmas.

Lemma 2.2 [7]. Let us consider the following impulsive differential
equations

u(t) = a — bu(t) t# kT,
(22) { u(t*) = (1— 6)u(t) = kT,

where a > 0, b > 0, 0 < § < 1. Then there exists a unique positive
periodic solution of system (2.2)

e (t) = % + (u - %)M“’m, kT <t < (k+1)T,

which is globally asymptotically stable, where

a9 -e")

TR I (1= @)t
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Lemma 2.3 [9, 20]. Consider the following equation
z(t) = a1z(t — w) — agx(t),

where a1, az, w > 0; z(t) > 0 for —w < t < 0. We have:
(i) zf a; < as, then limt%oo Qj(t) = 0,

(11) Zf ay > az, then hmt_mo a’)(t) = +00.

The proofs of case (i) and case (ii) are given in Theorem 2.1 [9] and
Lemma 2.1 [20], respectively.

3. Global attractivity of infection-free periodic solution.
In this section, we begin the analysis (1.4) by first demonstrating
the existence of an infection-free periodic solution, in which infectious
individuals are entirely absent from the population permanently, i.e.,
i(t) = 0 for all t > 0. Under this condition, the growth of susceptible
individuals must satisfy:

{ds(t)/dt =b - bs(t) t# kT,

(3.1) s(tt) = (1—-0)s(t) t=kT.

We will show that the fraction of susceptible population s oscillates
with period 7', in synchronization with the periodic pulse vaccination.

By Lemma 2.2, we know that the periodic solution of system (3.1)

0
(3.2) B&e(t)=1- T-(1_6)e T et =R kT <t < (k+ )T,

is globally asymptotically stable.

In the section that follows we determine the global attractivity
conditions for the infection-free periodic solution (5.(t), 0) of system
(1.4).

Theorem 3.1. The infection-free periodic solution (3.(t), 0) of
system (1.4) is globally attractive provided that R* < 1, where

2 dall+ (B/)(1 =7
G+ = (=0
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Proof. Since R* < 1, we can choose £; > 0 sufficiently small such
that

69 a(UEEMN=CD LY

From the first equation of system (1.4), we have ds(t)/dt < (b+ ) —
bs(t). Then we consider the following comparison system with pulses

dz(t)/dt = (b+ B) — bx(t) t#EkT,
{ z(tt) = (1 - 0)z(t) t=kT.

(3.4)

In view of Lemma 2.2, we know that the unique periodic solution of
system (3.4),

% 4
= (14 ) [t~ =g )

KT <t < (k+1)T,

is globally asymptotically stable.

Let (s(t), i(t)) be the solution of system (1.4) with initial conditions
(2.1) and s(0%) = 5o > 0 and let z(t) be the solution of system (3.4)
with initial value z(0") = so. By the comparison theorem in impulsive
differential equations [2, 10], there exists an integer k; > 0 such that,
for t > k1T,

s(t) < Te(t) + e1;

thus,

A M
+e1=s ’

s(t) < <1+ %)%

kKT <t<(k+1T, t>kT+w.

(3.5)

Further, from the second equation of system (1.4), we know that (3.5)
implies

d;(tt) < AasMi(t —w) — (b+7)i(t), t>kT+w.

Consider the following comparison system

(3.6) di/i—gtt) =dasMy(t —w) — (b+7)y(t), t>kT+w.
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From (3.3), we have Aas™ < (b + 7). According to Lemma 2.3, we
have lim;_, o, y(t) = 0.

Let (s(t), i(t)) be the solution of system (1.4) with initial conditions
(2.1) and let i(¢) = ¢({) > 0, ¢ € [—~w, 0], and y(¢) be the solution
of system (3.6) with initial value y(¢) = ¢(¢), ¢ € [~w, 0]. By the
comparison theorem, we have limsup,_,. i(¢) < limsup,_,, y(t) = 0.
Incorporating into the positivity of i(t), we know that lim;_,, i(t) = 0.
Therefore, there exists an integer ko > k; (where koT > k1T + w) such
that i(t) < ey for all t > koT + 7.

For the first equation of system (1.4), we have

dzstt) >b— (Aey +b)s(t), fort>keT+ T,
and
P < (Ber+0) —bs(t), fort> kT 7.

Consider comparison impulsive differential equations for ¢ > koT + 7
and k > ko,

le(t)/dt =b- ()\81 + b)Zl(t) t # kT,
(37) Lo 2 e ot t= kT,
and

dzo(t)/dt = (Bey +b) — bza(t) t # kT,
(38) { 29(tT) = (1 — 6)22(t) t=kT.

By Lemma 2.2, we have that the unique periodic solution of system
(3.7),

b b
s e t - * —()\61+b)(t—kT)
Zre(t) /\51+b+<z1 /\51+b>e ’

ET <t < (k+1)T, k> ko,

and the unique periodic solution of system (3.8)

- +0b " +b\
Spe(t) = /351b n (z2 - ﬂ&b >e b(t—kT),

ET <t < (k+1)T, k > ko,
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are globally asymptotically stable, where

. b (1-0)(1— e QatdT)
1T Xer+b 1 (1) Qe )T

and

. Ber+b(1-0)(1 — e~
2T Ty I (1-6)e T

According to the comparison theorem in impulsive differential equa-
tions, there exists an integer ks > ko such that

(3.9) Z1.(t) —e1 < s(t) < Z2e(t) +e1, KT <t<(k+1)T, k> ks.

Because ¢; is sufficiently small, it follows from (3.9) that

: 4 ~b(t—kT)
T <(k+1)T
Se(t) =1 1-(1- G)e—bTe , KT <t<(k )

is globally attractive. Therefore, the infection-free solution (5.(t), 0)

is globally attractive. The proof is complete. O
Denote
0 = (bi—o‘v 1+§> 1>(ebT1),
= n (4 S (o~ )

and

oL A (/)1 - e
b ) (1= (1= 0)e )

According to Theorem 3.1 we can easily obtain the following results.

Corollary 3.1. The infection-free periodic solution (3.(t), 0) is
globally attractive provided that Aa(1 4+ (8/b)) < b+ 7.
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Corollary 3.2. Assume that Aa(l + (8/b)) > b+ . Then the
infection-free periodic solution (3.(t), 0) is globally attractive provided
that 0 > 0* or T < T,.

Corollary 3.3. For system (1.4), we have:
(i) Assume that A\(1+ (8/b))(1 — e *T) < (b+v)(1 — (1 — 0)e~*T).
Then the infection-free periodic solution (3.(t), 0) is globally attractive.
(ii) Assume that A(1+ (8/b))(1 — e 1) > (b+~)(1 — (1 — 0)e~bT).
Then the infection-free periodic solution (8.(t), 0) is globally attractive
provided that w > w*.

Theorem 3.1 determines the global attractivity of (1.4) in Q for the
case R* < 1. Its epidemiological implication is that the infectious
population vanishes in time so the disease dies out. Corollary 3.3
implies that the disease will disappear if the latent period of the disease
is large enough.

4. Permanence. In this section we say the disease is endemic if
the infectious population persists above a certain positive level for a
sufficiently long time.

Denote

R 2 b(1—0) o _ Aa(1-0)(1 - )

b+p (b+7)(L— (1~ 0)e*T)’

and

ba(l — ) (1 — e T)

b
(b+7)(1—(1—8)eT) X

<%

Theorem 4.1. Suppose R, > 1. Then there is a positive constant q
such that each positive solution (s(t), i(t)) of system (1.4) satisfies

i(t) > q, fort large enough.
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Proof. Note that the second equation of (1.4) can be rewritten as
(4.1)
di(t)
dt

= Aas(t)i(t) — (b+v)i(t) — Aa(s(t)i(t) — s(t — w)i(t —w))

=i(t)[Aas(t) — (b+7)] — )\a% / s(u)i(u) du.

t—w

Let us consider any positive solution (s(t), i(t)) of system (1.4).
According to this solution, we define

Vt) = i(t) + M /t  su)iu) du.

According to (4.1), we calculate the derivative of V' along the solutions
of (1.4)

(4.2) ——= =i®)[Aas(t) — (b+7)] = (b+ v)i(¢) (b/}i-a’ys(t) — 1) .

Since R, > 1, we easily see that ¢* > 0, and there exists a sufficiently
small € > 0 such that

1— 1— —(b+Xi")T
(4.3) Aa b_(=6U-e ™ 7)),
b+ \b+ Nt 1— (1 0)eGrainT

We claim that, for any ¢y > 0, it is impossible that i(t) < ¢* for all
t > to. Suppose that the claim is not valid. Then there is a ty > 0 such
that i(¢t) < ¢* for all ¢ > ty. It follows from the first equation of (1.4)
that, for t > to,

ds(t)

T > NSt b bs(t) = b— (b4 X)s(1).

Consider the following comparison impulsive system for ¢ > t,

{ du(t)/dt = b— (b+ \i*)u(t) t+# kT,

(44) u(tt) = (1 — 0)u(t) t=kT.

By Lemma 2.2, we obtain that

b b "
~ — x v —(b+Xi*)(t—kT) T < T
Ue(t) b+)\i*+(u b—i—)\i*)e , kT <t <(k+1T,
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is the unique positive periodic solution of (4.4), which is globally
asymptotically stable, where

R e
YT 1 (1 g)e-@AT

By use of the comparison theorem in impulsive differential equations,
we know that there exists t; (> to+w) such that the following inequality
holds true for ¢ > t;

s(t) > u(t) —e.

Thus,

(4.5) s(t)y >u* —e£ g fort>t.

From (4.3) we have (Aa/(b+ 7))o > 1. By (4.2) and (4.5), we have

v (t)

A
. —_— ) — > t.
(4.6) 7t > (b+’7)l(t)(b+70 1> fort >t

Set
m= min i(t).
te[tl, t1+w]
We will show that i(t) > m for all ¢ > ¢;. Suppose the contrary.
Then there is a Ty > 0 such that i(t) > m for t; <t < t; + w + T,
i(t1 + w + Tp) = m and (di(t; + w + Tp)/dt) < 0. However, the second
equation of system (1.4) and (4.5) imply that

dl(tl + w + To)
dt

> (i 73] ~(5+9))m> o) (2

o— 1> m > 0.
This is a contradiction. Thus, i(t) > m for all ¢ > ¢;. As a consequence,
(4.6) leads to

av(t Ao
%>(b+7)(b+701>m for t > ¢y,

which implies that, as ¢ — o0, V(¢) — oo. This contradicts V(¢) <
1+ Aaw. Hence, the claim is proved.
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By the claim, we are left to consider two cases. First, i(t) > ¢* for all
large t. Second, i(t) oscillates about ¢* for all large ¢. Define

,L'*
q = min {5, ql} and q £ i*e” (Ot

We hope to show that i(t) > ¢ for all large t. The conclusion is evident
in the first case. For the second case, let t* > 0 and £ > 0 satisfy

i(t*) = i(t* + &) =%,

and
i(t) <i* fort* <t<t"+¢,

where t* is sufficiently large such that

s(t)y>o fort" <t<t"+¢.

i(t) is uniformly continuous since the positive solutions of (1.4) are
ultimately bounded and i(t) is not affected by impulses. Hence, there
isap, (0 < p <w, and p is independent of the choice of ¢*) such that
i(t) > (i*/2) for t* <t < t* + p.

If £ < p, there is nothing to prove. Let us consider the case p < €.
There two subcases to consider:

(i) If p < € < w, since (di(t)/dt) > —(b+ v)i(t) and i(¢t*) = i*, it is
obvious that i(t) > ¢ for t* <t < t* +¢£.

(ii) If € > w, since (di(t)/dt) > —(b+)i(t) and i(t*) = ¢*, we obtain
i(t) > q for t € [t*,t* +w]. Then, proceeding exactly as in the proof for
the above claim, we see that i(t) > ¢ for ¢ € [t* + w, t* + &]. Since this
kind of interval [t*,t* + ¢] is chosen in an arbitrary way (we only need
t* to be large), we conclude that i(t) > ¢ for all large ¢ in the second
case.

In view of our above discussions, the choices of ¢ is independent of
the positive solution, and we have proved that any positive solution
of (1.4) satisfies i(t) > ¢ for all large ¢. The proof of Theorem 4.1 is
complete. ]



1398 SHUJING GAO, LANSUN CHEN AND ZHIDONG TENG

Denote
g _ Qa—(b+7)( 1)
o xa(eT —1)+b+y
1 6(b+ )
T*=-In|1
M T =0 = (61 7)
and
1 1-0)(1—e T
b= Ly AO=H)( =)

b b+ - (1))
From Theorem 4.1, we also easily obtain the following results.

Corollary 4.1. Assume that Ao > b+ v. Then the disease is
uniformly persistent provided that 6 < 0,.

Corollary 4.2. Assume that Aa(1 —0) > b+~. Then the disease is
uniformly persistent provided that T > T*.

Corollary 4.3. Assume that A\(1 — 0)(1 — e *T) > (b + v)(1 —
(1 — 0)e=*T). Then the disease is uniformly persistent provided that
W < Wy

Theorem 4.2. System (1.4) is permanent provided that R, > 1.

Proof. Denote (s(t), i(t)) to be any solution of system (1.4). From
the first equation of system (1.4), we have

dil—(tt) >b— (b+ N\)s(t).

By similar arguments to those in the proof of Theorem 3.1, we have
that

(4.9) lim s(t) > p,

t—o0
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values of S() and (9

(a) (b)
FIGURE 1. Two figures show the movement paths of S and I as functions of time ¢.
(a) 6 = 0.8, R* = 0.9843 < 1. The disease dies out. (b) § = 0.1, R, = 1.0151 > 1.
The disease is permanent. Other parameters are b = 0.1, A = 0.3, w = 1, 7 = 1,
T =4,~v=0.1.

where p = (b/b4+ \)((1 —0)(1 — e~ CFTNT) /1 — (1 — §)e~C+NT) — g
(€0 > 0 is sufficiently small).

Welet Qo = {(s, i) |[p<s, ¢ <i, s+i < 1}. From Theorem 4.1 and
inequality (4.9), we know that the set Q is a global attractor in 2, and
of course, every solution of system (1.4) with initial conditions (2.1)
will eventually enter and remain in the region )y. Therefore, system
(1.4) is permanent. The proof of Theorem 4.2 is complete. u]

Theorem 4.1 determines the permanence of (1.4) in 2 for the case
R, > 1. Its epidemiological implication is that the infectious popula-
tion will persist. Corollaries 4.1, 4.2 and 4.3 imply that: under appro-
priate conditions, a small vaccination rate or a long period of pulsing
or a short latent period of the disease is a sufficient condition for the
permanence of the disease, that is, the disease will become endemic.

5. Discussion. We have analyzed the SEIRS epidemic model with
pulse vaccination and two time delays. We have shown that R* < 1
implies that the disease will fade out, whereas R, > 1 implies that the
disease will be uniformly persistent. Therefore, we can define R* as the
maximal basic reproductive number and R* can be written as

1

R*=Tx ——,
b+~
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: ////////4////////,

1 . . . . . . 0 .
orf | o] /
s0
2 o0ef £
H Fos

(a) (b)
FIGURE 2. Two figures show the movement paths of S and I as functions of
time ¢. Parameters are b = 0.2, A = 0.7, w = 1, 7 =1, T = 4, v = 0.3.
(a) @ = 0.8, R* = 1.5452 > 1, R, = 0.1387 < 1. The disease dies out. (b) 6 = 0.1,
R* =2.3612 > 1, R, = 0.9538 < 1. The disease is permanent.

where I' 2 \a((1 4 (8/0))(1 — e *T))/(1 — (1 — §)e ), T is the max-
imal number of new infective produced by a typical infective individual
per unit time, 1/(b+ ) is the average time that the infectious indi-
viduals stay in the infection class. Similarly, we can define R, as the
minimum basic reproductive number. There is a gap between R, and
R*. The reason for this gap is that the thresholds are given in con-
crete terms in this paper. Obviously, from the second and forth equa-
tions of system (1.3), we know that the infection-free periodic solution
(8.(t), 0, 0, 0) of system (1.3) is globally attractive if R, < 1, whereas
the system (1.3) is permanent if R, > 1.

Let b=01,A2=03,w=1,7=1,T=4,~v=0.1. If § = 0.8, then
R* = 0.9843. According to Theorem 3.1, we know that the disease
will disappear. From Figure 1(a), we can also observe the disease
will die out. If we choose # = 0.1, then R, = 1.0151. According to
Theorem 4.1, we know that the disease will be permanent, see Figure
1(b). Furthermore, let b=02, A =0.7, w=1,7=1,T =4, vy =0.3.
If # = 0.8, then R* = 1.5452 > 1, R, = 0.1387 < 1. If § = 0.1, then
R* = 2.3612 > 1, R, = 0.9538 < 1. Our results cannot solve the two
cases. Numerical simulations show that the disease will disappear, see
Figure 2(a), or be permanent, see Figure 2(b). This, of course, shows
that our results have much room for improvement.

Epidemic models with time delays have received much attention since
delays can often be caused by some complicated dynamical behaviors.
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Delays in many models can destabilize an equilibrium and thus lead to
periodic solutions by Hopf bifurcation [3, 20]. It is well known that
periodic forcing can drive SIR or SEIR models into behavior which
looks chaotic [15, 16].

The impulsive model with two time delays (1.4) will be analyzed, in
particular paying attention to the following points:

e The global asymptotic stability for SEIRS model with pulse vacci-
nation and two time delays.

e The behavior of the model when an insufficient level of people
undergo the vaccination: bifurcation and chaotic solutions.

e Whether periodic or pulse vaccination does a better job than
constant vaccination at the same average value.
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