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FOUR PERIODIC SOLUTIONS OF
A GENERALIZED DELAYED
PREDATOR-PREY SYSTEM ON TIME SCALES

XIAOXING CHEN AND HAIJUN GUO

ABSTRACT. With the help of a continuation theorem
based on Gaines and Mawhin’s coincidence degree, easily
verifiable criteria are established for the existence of four
positive periodic solutions of a generalized delayed predator-
prey system on time scales.

1. Introduction. It is well known that a very basic and important
problem in the study of a population model with a periodic environment
is the global existence and stability of a positive periodic solution.
Many good results concerning the existence of at least one positive
periodic solution have already been obtained and collected in some
monographs (see, for example [6, 7, 10, 11, 18] and the references
cited therein). However, the existence results of multiple periodic
solutions for biological models are very scarce. Recently, Feng and
Chen [12] studied the following two-predator and one prey system with
nonmonotone functional response system:
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By using the coincidence degree theory developed by Gaines and
Mawhin [13], the existence of four periodic solutions for the delayed
predator-prey system is established.

A natural question is whether the discrete analogy of system (1.1)

k

z(k+1) = z(k)exp [a(k) — b(k) Z K(k — s)z(s)
k) f(R)2P(R) }
m2y2(k) + z2(k) n222(k) + 22(k) |’

(1.2)

N
(k) = ra(k)) (k= ma(k))
22k — (k) + 22— ma(k)) (’“)}

n2

z(k+1) = z(k) exp [

has four periodic solutions?

Recently, Bohner et al. [4] pointed out that it is unnecessary to explore
the existence of periodic solutions of some continuous and discrete
population models in separate ways. Omne can unify such studies in
the sense of dynamic equations on general time scales. So, the second
question is whether we can also unify the studies of multiple periodic
solutions of such two-predator and one prey systems with nonmonotone
functional response systems?

The theory of measure chains, which has recently received a lot of
attention, see [2-5, 8, 9, 15, 17, 19], was introduced by Hilger in
his Ph.D. thesis [14] in 1988 in order to unify continuous and discrete

analysis.
Motivated by the above works, we consider the following system on

time scales
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WA () = alt) — b(t) /_ TR = )em© As

T(t)62“2(t) f(t)€2u3(t)
(1.3) T m2e2u2(t) 4 e2ui(t)  p2e2us(t) 4 e2ui(t)’
’ r t eul(t—Tl(t))euz(t—Tl(t))
u(t) = e s i),
m2e2u2(t—T1(t)) J g2u1(t—71(t))
t)etr(t—=72(t)) gua(t—72(t))
St = /(1) — dy(1).

- n2e2us(t—72(t)) + e2u1(t—T2(t))

It is clear that (1.3) becomes (1.1) when T = R. When T = N,

let z(t) = exp{ui(t)}, y(t) = exp{uz(t)} and z(t) = exp{us(¢)}. Then
(1.3) becomes (1.2).

The main purpose of this paper is to study the existence of multiple
positive periodic solutions of (1.3). The main results reveal that when
we dealt with the existence of multiple positive periodic solutions of
such two-predator and one prey systems with nonmonotone functional
response systems it is also unnecessary to prove results for differential
equations and separately again for difference equations. One can unify
such problems in the frame of two-predator and one prey systems with
nonmonotone functional response systems on time scales.

2. Preliminaries. In this section, we give a short introduction to
time scales calculus and recall the continuation theorem from coinci-
dence degree theory.

First, we present some foundational definitions and results; for proofs
and further explanation and results, we refer to the paper by Hilger
[14].

Let T be a time scale, i.e., T is a nonempty closed subset of R.

Definition 2.1. We say that a time scale T is w periodic, if t € T
implies t + w € T.

Definition 2.2. Let T be a time scale. For ¢t € T, we define the
forward jump operator o : T — T by o(t) = inf{s € T : s > t}, and the
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backward jump operator p : T — T by p(t) = sup{s € T : s < t}, while
the graininess function u : T — [0,400) is defined by u(t) = o(t) — ¢.
If o(t) > t, we say that ¢ is right-scattered, while if p(t) < t we say
that t is left-scattered. Also, if t < sup T and o(t) = ¢, then ¢ is called
right-dense, and if ¢ > inf T and p(t) = ¢, then ¢ is called left-dense.

Definition 2.3. Assume f : T — R is a function, and let ¢ € T.
Then, we define f2(t) to be the number (provided it exists) with the
property that, for any given € > 0, there is a neighborhood U of ¢, i.e.,
U= (t—46,t+0)NT for some ¢ > 0, such that

(o) — £()] — FA(B)lo(t) — s]| < elo(t) — s for all s € U.

In this case, f2(t) is called the delta (or Hilger) derivative of f at t.
Moreover, f is said to be a delta or Hilger differentiable on T if f2(t)
exists for all t € T. A function F : T — R is called an antiderivative
of f: T — R provided F2(t) = f(t) for all t € T. Then we define

/Sf(t)At:F(s) — F(r) forr,s € T.

Definition 2.4. A function f : T — R is called rd-continuous
provided it is continuous at right-dense points in T and its left-sided
limits exist (finite) at left-dense points in T. The set of rd-continuous
functions f : T — R will be denoted by C,.4(T).

Lemma 2.1. Every rd-continuous function has an antiderivative.

Lemma 2.2. Ifa,be T, a,8 € R and f,g € Crq(T), then

(a) [ laf (t) + Bg(t)) At = a [} F(H)AL+ B [, g(t)At;

(b) if f(t) >0 for all a < t < b, then [ f(t)At > 0;

() if |f(®)] < g(t) on [a,b) := {t € T : a < t < b}, then
| FOAL < [ gt)At.

To facilitate the discussion below, we now introduce some notation
to be used throughout this paper. Let
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% = min {[0,00) N T}, I,=[k,k+wlNT,
]_ Krtw
M L . —
= t), = inf g(¢), =— A
g fggg() g = inf g(t) g w/ﬁ g(s)As

where g € C,4(T) is an w-periodic real function.

Next, for the reader’s convenience, we shall summarize in the follow-
ing a few concepts and results from [13] that will come into play later
on.

Let X and Z be normed vector spaces, L : DomL C X — Z a
linear mapping and N : X — Z a continuous mapping. The mapping
L will be called a Fredholm mapping of index zero, if dimKer L =
CodimImL < 4oo0 and ImL is closed in Z. If L is a Fredholm
mapping of index zero, there exist continuous projectors P : X — X
and Q : Z — Z such that InP =Ker L, In L = KerQ = Im (I — Q).
It follows that L|Dom L NKer P : (I — P)X — Im L is invertible. We
denote the inverse of that map by Kp. If Q is an open bounded subset of
X, the mapping N will be called L-compact on € if QN(2) is bounded
and Kp(I — Q)N : Q — X is compact. Since Im () is isomorphic to
Ker L, there exists an isomorphism J : Im @) — Ker L.

Lemma 2.3 (continuation theorem). Let L be a Fredholm mapping
of index zero, and let N be L-compact on 2. Suppose

(a) For each A € (0,1), every solution x of Lz = AN(z, ) is such
that = ¢ 0Q;

(b) @N(x,0) # 0 for each x € 0N NKer L and
deg {JQN(.,0),QNKer L,0} # 0.

Then the equation Lr = Nx has at least one solution lying in Dom LN
Q.

In the proof of our main result, we’ll use the following lemma which
can be found in [3, Lemma 1.4].

Lemma 2.4. Letti,to €1, andt € T. If g: T — R is w periodic,
then

Ktw

at) < gltr) + / 195 (s)|As

K
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and

Ktw

g(t) > g(t2) —/ |92 (s)|As.

K

3. Existence of positive periodic solutions. In this section,
we investigate the existence conditions of four periodic solutions for
system (1.3), where a, b, ¢, r, f, d1, da, 71, T2 € Cr4(T), are all positive
periodic functions with period w > 0, 71 (), 72(t) € T, for any t € T, m
and n are two positive real constant and K : [0,00) N T — [0,00) N T
is an w-periodic function such that [>° K(s)As = 1.

We make the following assumptions:
(A1) Fe? > 2me2«drd, et
(A2) fe? > 2ne2wd2gy et
(A3) a > 7/m? + f/n?,
where p; = Ina/b+ 2wa, ¢1 = In{1/b(a@ — (7/m?) — (f/n?))} — 2wa.

For convenience, we also introduce the following notation:

1 7 . -

l:l: — 2d_ 5 (7:6171+2wd1 + \/(F)2€2p1+4wd1 _ 4(d1)2m262‘11>;
1m
1 7 p1+2wd: )2 02p1 +4wd 7.)2n2 62

ui=2gn2<fe i\/(f)ep1 “’1—4(d2)n€‘“>;
2
1 7pd1—2wd: 72 p2p1 —4wd 7:)2m2e2

V=T (1‘6 +4/(7)2e2m 1 —4(dy)?>m eP1>;
2

pe= 57— (feql_mziz + \/(fL)262q174wJ1 — 4(,1‘2)2n262p1);
2N

___ @& = A2 _ A(d:)2m2 ) -

Ty = i (r:l: (7)2 — 4(d1)?m ),
a _ — -

Y+ = W(f £/ ()2 - 4(d2)2n2).

Lemma 3.1. Assume that (A1)—(A3) hold. Then
(3.1)
o<z <y_<yp<zp<ly;y uo <y- <p- <pg <ys <ug.
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Proof. 1t is clear that function fi(z,0) = = — Vz? — § is a decrease
function in z for any § > 0. Noting that (A3) implies eP* > a/b > e,

we have
1 a a\’ a\?2
= e — 4 (M2 =) —4(d:)2m2( =
T oam? (rb () <b) (d1)*m (b> )
1 a a\2 _
g W(fz— W(z) —4<d1>2m2e2q1>
1 a _
- F—_4(d 2.2 2q1
2d1m2f1<rb’ (di)"m’e >
— p1+2wd. 732, 2 2
LA A
1

2d_ 5 (f@leszJl _ \/(5)262p1+4wd71 _ 4(d_1)2m262q1>
1m

=1_.

Similarly, we can prove z_ < y_. It is obvious that v_ < 4. Noting
the fact that fo(z) = x + v22 — 6 is an increase function for any 6 > 0
and eP* > @/b > e®, we can obtain x, > 7. Similarly, we can prove
x4y < Iy Sol. <2 < v < 94 < x4 < l; hold. A parallel
relationship u_ < y_ < p— < p4 < y4 < uy can be obtained in a
similar way. O

Our main result is stated in the following theorem.

Theorem 3.1. Assume that (Al), (A2) and (A3) hold. Then system

(1.3) has at least four positive periodic solutions.
As a direct corollary of Theorem 3.1, we have the following theorems.

Theorem 3.2. Assume that (Al), (A2) and (A3) hold, where
g=1/w [ g(t)dt for any continuous w periodic function {g(z)}. Then
system (1.1) has at least four positive periodic solutions.

Theorem 3.3. Assume that (Al), (A2) and (A3) hold where
g=1/w Z‘,:;g g(k) for any w periodic sequence {g(k)}. Then system
(1.2) has at least four positive periodic solutions.
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Remark 3.1. Tt is clear that conditions (A1) and (A2) in Theorem 3.2
are weaker than conditions (H1) and (H2) of [12].

Proof of Theorem 3.1. In order to apply Lemma 2.3 (continuation
theorem) to (1.3), we first define

X=Z= {u = (u1,ug,u3)’ € C(T,R®) : u(t +w) = u(t), Vt € T}
and
lall = [1Cen (8), wa(t), ua ()" 1| = max fus (£)] + max fus(¢)] + max fus(£)]

for any u € X (or Z). Then X and Z are Banach spaces with the norm

|- ]]- Let
a(t) —b(t) [* K(t—s)em (&) As — _Ar(ez®
— 00 m262u2(t)+82u1(t)
)\f(t)62u3(t)
_ T nZeRus(D ferur(h
N(u,A) = ()1 (=71 () gua (1= 71 (1) ,
m2e2uz(t—71(1) fe2ur(t—71(8) d1 (t)’

f(t)e"l(t*"'z(t))eus(tf'rQ(t))
n2e2u3(t—72(1) Jg2ut (t—72(8) ds (t)

u € X,
— A A AN\T
LU—(UI,UQ,U?,) ’

Pu:(ﬂl,’ag,’ag)T, u € X;
Qz = (Zl,ZZ,Zg)T, z€ 7.
It follows that
Ker L = {(u1,u2,u3) € X : (u1(t), ua(t), us(t))
= (hy, ha, h3) € R, for t € T},
ImL={z€Z:z2=0}

is closed in Z,
dimKer L = 3 = codimIm L,

and P and @ are continuous projectors such that

ImP=KerL, KerQ=ImL=Im(]-Q).
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Therefore, L is a Fredholm mapping of index zero. Furthermore, the
generalized inverse (to L) Kp : Im L — Ker P N Dom L reads

K()/ As——// 5)AsAL.

Thus,

1 Kt+w 1 Ktw 1 Ktw T
QNu(—/ Fl(s)As,—/ Fg(s)As,—/ F3(8)A3> )
w K w K w K

[LF(s)As — 1)w [F7 [ Fi(s)AsAt
+(tfn—1/ f’”wtfn)At)Fl
[LFs(s)As — 1/w [F7 [! Fy(s)AsAt

Kp(I - Q)Nu = +(t_ﬁ_1/wf”+w( - )At)Fz
[EF(5)As — 1/w [ [* Fy(s)AsAt
R VY el H)At) F;

where

Fu(s) = a(s) — b(s) [ T K(s— t)em At

)\T‘(S)@Quz(s) )\f( ) 2u3(s)
- m?2e2uz(s) + e2u1(s) - n2e2us(s) + e2u1(s)

r(s)ev1(5—7i(s)) gua(s—71(t))
) - d(s)

’

= m2€2u2(sf7'1(t)) + €2u1(5*7'1(t))

f(s)eul(sf‘rz(s))eus(sfﬂ(s))

- dg(S).

- n2e2us(s—2(s)) + e2u1(s—72(s))

Obviously, QN and Kp(I — Q)N are continuous. It is not difficult

to show that Kp(I — Q)N (Q) is compact for any open bounded set
Q C X by using the Arzela-Ascoli theorem. Moreover, QN () is
clearly bounded. Thus, N is L-compact on Q with any open bounded
set Q C X.

Now we reach the position of searching for an appropriate open
bounded subset € for the application of the continuation theorem
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(Lemma 2.3). Corresponding to the operator equation Lu = ANu,
A € (0,1), we have

u1A()= [ ) — b(t / K(t "I(S)As
 e(pen e ]

m2e2u2(t) 4 2ui(t)  p2e2us(t) 4 e2ur(t)

(32) 'u,1 (t—71 t))euz(t T1(t))

A

|:m 62u2(t 71(t)) + e2u1(t—T1(t))
[ eu1(t—T2(t)) pus(t—T2(t))

n2e 2ug(t—72(t)) + e2u1(t T2(t))

- dl(t)],

A

dz(t)].

Assume that u(t) = (u1(¢), u2(t), us(t)) € X is a solution of (3.2) for a
certain A € (0,1). Integrating (3.1) from & to k + w, we obtain

n—l—w t _ w1y (s)
{a b(t) [_ K(t—s)e"®As
Ar(t)e2v2(t) Af(t)e2 s ®) _
7m282u2(t)+82u1(t) - n2e2u3(t) 4 e2u1(t) At = Oa

uy (t—71(t)) gua(t—71(t))
fﬁ-‘rw{ r(t)e*1(F-m1(0) gua(t—71(t —dl(t)}AtZO’

K m2e2u2(t—71()) 4 g2u1 (t—71 (%))

Ktw et1(t—72(t)) gug(t—72(t))
f+ { f(t)e*t 2 3 2 —dg(t)}AtZO.

n2e2u3(t—72(t)) 4 e2u1 (t—72(¢))

That is,

(3.3) /:er {b(t) /_; K(t —s)et®) As

2uz(t) 2u3(t)
Ar(t)e Af(t)e }At _ aw,

m2e2u2(t) + e2ui(t) n2e2us(t) + e2u1 (t)

K+w ¢ uy(t—71(t)) pu2(t—71(t)) _
(3.4) / { r(t)e < }At:dlw,

m2e2uz(t=T1(t)) L g2u1(t—T1(t))

Ktw u1(t—72(t)) pus(t—72(t)) _
(3.5) / { f(e c }At_dgw.

n2e2us(t—72(t)) 1 g2ui(t—72(t))
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From (3.2)—(3.5), we have

Kt+w
o) [ bl
a(t) — b(t) / K s)en®As
Ar(t)e?vz ®) Mf(t)e?us ®)

K+w
T m2e2ua(t) 4 2ui(t)  p2e2us(t) 4 e2ui(t)

< /:er a(t)At + /:er [b(t) /_too K(t—s)em®)As

Ar(t)e2u2(t) Af(t)e?us(®) A
m2e2uz(t) + e2u1 (t) n2e2us(t) + e2u1(t)

At

= 2aw;
similarly,
(3.7)
Atw Ktw w1 (t—71(t)) puz (t—71(t))
A _ r(t)e" e
/H Juy’ ()| At = )‘/H m2e2u2(t—m1(t)) 4 2ui(t—mi(t)) d (t)‘At
< 2&1(.0
and
(3.8)
Ktw Ktw wy (t—71(¢)) sus(t—72(t))
A B f(t)e™ €
/n jug' ()| At = A/ﬁ n2e2us(t—m2(t)) 4 g2ua(t—m1(t)) dat)| At
< QJQW.

We note that (uy(t),ua(t),us(t))’ € X. Then there exist &,n; € I,
such that

(3.9) zi(&) = ?é?fwi(t)a xi (i) = min xi(t), i=1,2,3.

Then, by (3.3) and (3.9), we have
Ktw t
aw > e"r(m) / b(t) / K(t — s)AsAt = be"r(M)y

Ktw t 7 fT
aw < 6“1(51)/ b(t)/ K(t - s)AsAt — — — =
K — 00 m

n2

_ 1ui(€ r f
= b -
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that is,

(3.10) ul(n1)<ln%, u1(§1)>ln%<a_L f>‘

m2  n?
The above inequalities, together with (3.6) and Lemma 1.4, lead to

(3.11)

Krtw

ur(t) < wui(é1) +/

K

[ (t)| At < ln% + 28w = p1.

(3.12)
Ktw

m@Zm@w/'|ﬁ®Mt

K

Zln%(a—L i) — 20w = q1.

m?2  n?
Equations (3.4) and (3.9) imply that

diw < FePrev2(82)y
W=

m2e2UQ (7]2) + 62(11 .
That is, ~
dy 2 _2usz(n2) 2
uz(€2) > In ——(m=e=42\12) 4 201 &,
r

ebP1
This, together with (3.7), gives

Ktw

m@Zw@w/’\@@Mt

K

>1n { —_dl (m262“2("2) + 62‘11)} —2dw.
repP1

In particular, we have

uz(m2) > In {i(erzw("Z) + 62‘“)} — 2dyw

reP1
or

(3.13) dym?e2v2(m) _ FePrT2diwguz(n2) 4 die® < 0.
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Noting that condition (A1) implies 7eP1+241¢ > 24, me | we have
(314) Inl_ < U2(772) < 1nl+.

From (3.7) and (3.14), it follows that
(3.15)
K+w

uz(t) < uz(ne) +/ lu (t)|At < Inly + 2wd; := Hyy, Yt € I,

K

From (3.5), we have a parallel argument to (3.13) which gives
dyn?e?us(ms) fep1+2cz2“’e”3("3) + dye’? < 0.

Noting that (A2) implies 7eP* 2529 > 2dyne? | we have

(3.16) Inu_ < ug(ng) <lnuy.

This, together with (3.8), leads to

Krtw

(3.17)  ws(t) < uz(nz) —|—/ s ()| At < Inuy + dyw := Hay.

1/, 7 F
1113(0/@?)}:}%1

On the other hand, (3.4) implies

From (3.10), we have

lui(t) < max{ ln% ,

Fedr gtz(n2) _
m2€2u2 (52) + ezpl < d17
that is,
J1m2e2u2 ({2) J1€2P1
(7% (7]2) <In ( edl + ot .
Thus,

Kt+w
us(t) < us(n2) +/ ud (1) At

K

Jl m2 ezu? (52) Jl 621’1
<In — -
redi red1

>+m@ Vt € I1,.
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In particular,

Uz (52) <In (Jlmizijz(&) J;:j?) + 2wci1
or

dym?e™> (&) _ peti—2wdigua(&2) 4 2017, > 0.
Thus,
(3.18) u2(&2) > Invyy or uz(€2) <In~vy_.

From (3.5), a parallel argument to (3.18) gives

(2.18) ’LL3(£3) > Ilnpy or ’U,3(53) <Ilnp_.

It is clear that Inly, Invy, Inpy, Inuy, Hsi, Hop and Ry are all
independent of A\. Choose a positive number C' such that C > |Ina/b|.
Let

Q1 = {(u1,u2,u3)T € X : lus(t)| < Ry + C,
us(t) € (0,0l ), up(t) € (e, Inpy)},

Qo = {(u1,uz,u3)T € X : lus(t)| < Ry + C,uz(t) € (Inl_,In~y_),
min{uz(t)} € (Inu_,lnuy), max{us(t)} € (Inpy, Hz1)},

Q3 = {(u1,u2,u3)’ € X : lus(t)| < Ry + C,min{usz(t)} € (Ini_,Inly),
max{uz(t)} € (Iny4, H21),us(t) € (Inu_,Inp_)},

Qq = {(u1,uz,u3)T € X : Jus(t)| < Ry + C,min{uy(t)} € (Inl_,Inl,),
max{us(t)} € (Inyy, He1), min{uz(t)} € (Inu_,Inuy),

max{uz(t)} € (Inp, Hz1)}

Then €2;, ¢ = 1,2, 3, 4, are bounded open subsets of X, and 2;N); = &,
i# 7,14, =1,2,3,4. So §; satisfies condition (a) in Lemma 1.3 for
i=1,2,34.

Now let us consider QN (0, u) with u = (u1,u2,u3)? € R®. Note that

a — be™t
Feultuz

QN(O, u) = m2e2uz 4 e2u1 -
f_‘eu1+u3

n262u3 + 62u1
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Because of (A1) and (A2), it is easy to solve that QN (0, (u1, uz,us)) =
0 has four distinct solutions

U, = (ln%,lnx_,lny_>, Us = <ln%,lnw_,lny+>,
a a
Us = (lng,lnx_,_,lny_), Uy = <lng,lnm+,lny+>,

and U; € Q;, i =1,2,3,4. Thus, when u € 9Q; NKer L = 09Q; N R3,
QN (0,u) # 0. Furthermore, in view of the assumptions in Theorem 3.1,
a direct calculation produces

deg{JQN, Q; N Ker L,O} — (,l)i+1 # 0.

Here J can be the identity mapping since Im P = Ker L. By now we
have proved that 2; verifies all the requirements of Lemma 3.3. Hence
Lz = Nz has four solutions u'(t) = (u(t),ub(t),us(t))), i = 1,2,3,4
in Dom L N §;, respectively. Obviously, ui(¢) and u/(t) are different,
i# j, 1,7 =1,2,3,4, i.e., equation (1.3) has at least four w-periodic
solutions. O
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