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ON EXTENDING THE INEQUALITIES
OF PAYNE, POLYA, AND WEINBERGER
USING SPHERICAL HARMONICS

MARK S. ASHBAUGH AND LOTFI HERMI

ABSTRACT. Using spherical harmonics, rearrangement
techniques, the Sobolev inequality, and Chiti’s reverse Holder
inequality, we obtain extensions of a classical result of Payne,
Pélya, and Weinberger bounding the gap between consecutive
eigenvalues of the Dirichlet Laplacian in terms of moments of
the preceding ones. The extensions yield domain-dependent
inequalities.

1. Introduction. In 1956, Payne, Pélya, and Weinberger [43],
see also [42] where the results were first announced, proved that for
a bounded domain 2 C R?, the eigenvalues {);}3°; of the Dirichlet
eigenvalue problem for the Laplacian,

—Au=Xu in Q,

1.1
(1.1) u=0 on 09,

satisfy the gap inequality

Z?Ll Ai

1.2 - <2
( ) >\m+1 >\m > m

for m=1,2,3,....

Here multiplicities are included and thus 0 < Ay < A2 < A3 < ...
Also, we take wi,us,us,... as a corresponding orthonormal basis of
real eigenfunctions (in L?(Q)).
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The result can easily be extended to cover bounded domains 2 C R",
see [48], and to the setting of the Laplace-Beltrami operator on a
compact hypersurface minimally immersed in R"*! [17] as

437" 0N\
(1.3) Amtl — Am < — Z’;l.
n m

In 1980, Hile and Protter [31] obtained this Payne, Pélya, and Wein-
berger (often abbreviated to PPW in what follows) inequality as a
corollary to their bound

i )\i m
(1.4) ; 2 -

m—+1 — \g
In 1991, using a similar method of proof to that in the original PPW
paper, Yang [49], see also [2, 3, 8], obtained

m

(1.5) > Ams1 = X)) (RAmi1 — (n+4)N;) <0,
i=1
which can be written as

m m

4
(1.6) Z(Amﬂ ~- )< - Z)\i()\m—i—l —\)
i=1 i=1
to isolate the dimensional constant 4/n appearing in these inequalities.

All the results mentioned above are proved using the Rayleigh-Ritz
principle for obtaining upper bounds for A,, 1, namely,

1.7 Amg1 < S—0——
( ) +1 fQ ¢2
provided ¢Lluy,us,...,u, (¢, and every other function considered

throughout this paper, is taken to be real-valued). The particular trial
functions ¢ chosen to prove these inequalities are based on the Cartesian
coordinates and lower eigenfunctions and assume the form

(1.8) ¢i = TRu; — Zaijuja

i=1
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where a;; = fQ zpu;u; with z, being a Cartesian coordinate (we
suppress the k-dependence of the a;;’s here). Summing (1.7) suitably
over all coordinates {z, }}:_, and making appropriate use of the Cauchy-
Schwarz inequality yields the above-mentioned results. More recently,
Harrell and Stubbe [29], using a new trace formula they discovered,
extended Yang’s inequality to

m

(19) YO —A

i=1

3|~3

Z m+1 )p—l for p Z 27
(see inequality (14) in [29, Theorem 9, page 1805]), and
m 4 m
(1.10) Y mr1 = A)P <= XA — )Pt for 0<p<2,
n
i=1 i=1

see inequality (11) in [29, Theorem 5, page 1801]. Their results are
reproved and extended to a larger class of operators in [11], using,
essentially, the Rayleigh-Ritz method described earlier. It is also shown
in [11] that (1.9) is weaker than Yang’s inequality (1.6) if p is restricted
to integer values p > 2. In the same paper, inequality (1.10) is shown
to be intermediate between the Yang and Hile-Protter inequalities (in
fact, it interpolates between them as well). One also notes the work
of Levitin and Parnovski [36] where a connection between Harrell and
Stubbe’s approach to Yang’s inequality (1.6) and sum rules of quantum
mechanics is made.

For a survey of results stemming from the original work of Payne,
Pélya, and Weinberger, see [2, 3, 7]. Based on (1.3), it is clear that

)\2—)\1<4

111 -
(1.11) N -

Payne, Pélya, and Weinberger conjectured in their work [42, 43] that
the best bound for the quantity (A2 — A1)/A; is that obtained for an
n-dimensional ball, viz.

)
Az — A1 < Jnj21

Av T jr2b/2—1,1

-1

(1.12)

Here j, 1, denotes the kth positive zero of the Bessel function J,(t) (we
follow the notation of Abramowitz and Stegun [1] here). This optimal
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bound was proved by Ashbaugh and Benguria in 1991, see [4, 5]. In
two dimensions, it is approximately equal to 1.539. Earlier, Brands
[15] (1964) had obtained the bound 1.687, while deVries [21] (1967)
had obtained 1.658, and Chiti [20] (1983) had obtained 1.586. In R™,
Chiti’s bound is given by

A2 — M < nj;/227171 Jﬁ/g(jn/zfm)
)\1 - 2 fol 7‘3Js/2_1(jn/271’17") d/r-

(1.13)

In (6], Ashbaugh and Benguria supplied the expression 6n/(2;2 J2-117T
n(n —4)) as the explicit evaluation of the Chiti bound. They also gave
the asymptotic expansion for their optimal bound

2°/3 12 _7/3
(1.8557571) —z + —5 + O(n /3.

(1.14) 7

—1==_

o
Jn/2,1 4
.2 n

W

Jnj2-1,1
For comparison, the asymptotics of the Chiti bound are given by

6n 4 4 25/3 16

1.15 = ———(1.8557571) —=+—+0(n~"/3).
(1.15) 2j3l/2_11+n(n74) n 3( )n5/3+n2+ (n™"%)
These bounds satisfy the inequality, see [6],
2 6n 4
(1.16) L < <=,
Inj2—11 2ns2-11 T nn—4) " n

(the latter half of this inequality was originally proved by Lee Lorch
[39]).

The earliest “algebraization” of the PPW argument goes back to
Harrell [25]. Hook [33] algebraized the original argument of Hile and
Protter (herein sometimes abbreviated as HP) from [31] and extended
it to various elliptic operators. Harrell and Michel [27, 28] produced a
projections-based argument from which the HP and Hook results follow.
Their method produced various HP-bounds for different manifolds
strengthening earlier results of Harrell [26].

In [7], Ashbaugh and Benguria gave a proof of the Hile-Protter
inequality which does not require the introduction of “free parameters”
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as in the earlier works of Hile-Protter and Hook. In [29], Harrell and
Stubbe gave a new proof of Yang’s inequalities based on commutator
algebra and a new trace formula they proved.

More recently, one of us, see [2, 3], produced an argument based in
part on the work of Yang [49] which avoids both “free parameters”
and commutators. It constitutes a unified approach to the PPW, HP,
and Yang inequalities. This proof was recently extended to produce
a commutator-based “parameter-free” version of the inequalities of
PPW, HP and Yang [10] and applied to strengthen known bounds for
various elliptic operators proved earlier by Hook, Harrell, and Harrell
and Michel. This latter material is presented in [12] where the authors
apply their “unified method” to various physical and geometric spectral
problems.

In this paper we will extend the PPW inequalities using spherical
harmonics. So far, as described above, the inequalities obtained by
various authors are universal: They are independent of the domain 2 C
R". The extensions we present here provide new, domain-dependent,
inequalities. Due to their different nature, there is no easy, direct,
or general way to compare our new bounds to the previously known
ones (which are domain-independent). These results are presented in
Section 5. Extensions of the Hile-Protter and Yang results to domain-
dependent inequalities are presented in [9]. In that paper we also
analyze the strength of these domain-dependent inequalities.

2. Spherical harmonics. Spherical harmonics are the extension of
Fourier series to dimensions n > 3. A natural way to think of them is
as restrictions of homogeneous harmonic polynomials in the Cartesian
coordinates to the unit (n — 1)-sphere of R™. Hence, they are functions
of the “angular” part of the coordinate system under consideration.
For details about this class of functions, see the Bateman Manuscript
Project [22], the books of Hochstadt [32], Miiller [40, 41], Sobolev
[45], or Axler, Bourdon, and Ramey [14], or Groemer’s article [24].

The chief purpose of this section is to simplify the expression
> {V(95) - Vu}?
s

where the sum is taken over an orthonormal basis of real spherical
harmonics of a fixed order ¢, g is a radial function in R", and both
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g and u are C' functions on R™ or on some open domain 2 C R™.
The result is stated in Theorem 2.3. It will be used in our extension in
Section 4.

Let x1, 2, ..., z, denote the Cartesian coordinates of a point z € R",
and ey, eq,...,e, be the standard basis of the Euclidean space. Also,
let r = |z| and £ be the unit vector such that = r £. In polar

coordinates, z is given by [22, 45|

x1 = rcosby,
To = rsin 6 cosbs,
x3 = rsin f sin #5 cos 03,
(2.1)
Typ_o =7sinfy---sinf,,_scosb,_o,
Tp_1 =rsinfy---sinf, 3zsinb, 5 cos ¢,

Tp =7sinfy ---sinf, 3sinb, o sin @,

where 0 < @ <mfork=1,2,...,n—2and 0 < ¢ < 27.

The gradient of a function f has the polar representation

(2.2)
V= gf + %3—9{9 + 7"5111013—(;; 2t
7 sin 01 . -l- sin@,,_3 Ojnf,g b2 + rsinf - - 1 -sin6,,_o 82(]5
:a_f + VSn Lf,
where 7, 91, . ,én,g,é are orthonormal vectors in the coordinate di-

rections (in obvious notation).
The Laplace operator assumes the polar representation [45]
(2.3)
Af =

10 ., 0f 1 ., Of

— —__° sin"2p,

T R +r2< =2y 5g, “° 96,
1 1 9 ., of

-2 Y g3y, YL

* sin? @ sin™ 3 6, 06 - 2 00, +



PPW USING SPHERICAL HARMONICS 1043

1 82f>

sin? 0 sin? @y - - - sin? 0,,_5 02

0*f n—10f 1
= —= — 4+ S Agn-1 f.
8r2+ T 8r+r2 s f
We define Agn-1 to be the spherical Laplace operator or spherical
Laplacian also referred to as the Laplace-Beltrami operator on S"~!
[41].

With this notation a spherical harmonic Sy(§) of order ¢ in n dimen-
sions satisfies

(2.4) Agn-15¢(&) + (£ +n —2)S5,(&) = 0.

The dimension of the space of spherical harmonics of order ¢ in n

dimensions is
n+f—-1 n+f¢—-3
N, = -
n—1 n—1
(with the second binomial coefficient interpreted as 0 if its lower

argument exceeds its upper). It is not hard to see that N, grows like
"2 as { — co.

Let @ C R", and let {S¥}1*, denote an orthonormal family of
real spherical harmonics of order ¢ and dimension n. Since these are
functions on S"~!, whenever working on €2, S} will mean S¥ (z/r) where
r=|z|.

We now quote a theorem from the theory of spherical harmonics
which will be used, in an essential way, to prove our main result in this
section.

Theorem 2.1 (Addition theorem for spherical harmonics).

(25) S SE©)SEm = M pye ),

Wn

where Py(t) is the Legendre polynomial of degree ¢ and dimension n,
wp = |S" 1| = (22"/2/T'(n/2)) and £,n € S™ L.

Proof. See [40] or [41]. o
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Remark. The Legendre polynomial of degree ¢ and dimension n,
Py(t), satisfies the differential equation

(1—t*)P(t) — (n — 1)tP/(t) + £(L +n — 2)Py(t) = 0.
For t = 1 we immediately obtain the identity

{(l+n—-2)

(2.6) P/(1) = =—=

since Py(1) =1 for all £ by definition.

We now prove a lemma which will be needed in the proofs of Theorems
2.3 and 2.4. Two alternate proofs of these sum rules for spherical
harmonics are provided in the paper [9].

Lemma 2.2. Let & be a point on the unit sphere S™ 1, and let o be
a unit tangent vector to S*~1 at €. Then,

N, kN 2 n—
1) > (52) =T Hn s

Oa w n—1
k=1 n

Proof. Let £(t) be the great circle on S™ ! parametrized by the
arclength starting at £ in the direction of a. Hence, § (0) = £ and
£(0) = a. Let

Ny

fltyt2) =) SE(E(tr)) S¢(E(t2))-

k=1

Then

Ne 1988\ 2 82 f
2 (3—of> ©) = 301, 00

k=1

On the other hand, £(¢1) - £(t2) = cos(t1 — ¢2), so by Theorem 2.1,

f(tl,tg) = ? Pg(COS(tl — tg))

n
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The statement of the lemma follows immediately from the last formula
and (2.6). o

Theorem 2.3. Let g,u € C*(Q), g = g(|z|) be radial and {SF}*,
an orthonormal family of real spherical harmonics of order £ on R™.
Then
(2.8)
ul 2 Ng o\ g*ll+n-2)1

2
w. r n—1
k:1 n

Remark. We opted to write the expression 1/r%|Vgn-1u|* separately
in order to emphasize the fact that this is the correct angular part of

the square of the gradient in spherical coordinates. Indeed, |Vul|? =
(Ou/0r)? + (1/72)|Vgn-1ul*.

Proof. We first notice that

3 (V(gSE) - V) = (9)2(u)? Y (SF)”

+ g g:T ZVS”*I (Sé:)z * VSnflu
k

r

2

| Q
hS

+ Z (VSH—ISF . VSn—lu)2
k

=3+ X2+ 3.

r

By Theorem 2.1,

Wn

2 (9')*(ur)*.

Moreover, Yo = 0 since Y ,(S5)? is constant. To compute X3, one
applies Lemma 2.2 with o = Vgn-1u/|Vgn-1u|. Indeed,

5k \?
Z (vs"_ls? : vS"—lu)2 = |Vsn—1u|2 Z (3—05> . O
k

k
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Remark. In two dimensions the result of Theorem 2.3 is easy to derive
directly. First, we note that the spherical harmonic expansion is just a
Fourier expansion. For £ > 1 the orthonormal family of real spherical
harmonics {SF}n¢, is replaced by {(cos£0/+/x), (sin £9/+/m)}. For any
function f, we have

_Of . 10f ;
Vf = ET + ;% 0.
Hence, for g = g(r)
(2.9) V(g costd) = (g' cos )7 — <€g siné@) g,
r
and
(2.10) V(gsintd) = (¢'sin6)7 + <E€ cosE@) 0.
r
For v € C!, and ¢ > 1, it follows that
(2.11)

2 . 2 o (Ou\? g2 [0u)\?
(V(gcostd)-Vu)™ + (V(gsinlh) - Vu)™ = (¢') <E> +¢ F(%) ,
or

Ny 2 2 2
By ou)? = e oz (9 29" (0u
(2.12) ;(V(QS}) Qu) = ((g) <8r> +/ r4(89> >,

as desired (since Ny = 2 for £ > 1 and wy = 27).

Theorem 2.4. Let g € C*(Q), g = g(|z|) be radial and {Sf}ivil an
orthonormal family of real spherical harmonics of order £ in R™. Then

(2.13) i IV(gSH)|” = %((g’)2 +L(t+n-2) i—j)

P .
roof. 3(95'5)
or
= g/(r)S}7 + L Vg1 S

V(gSy) =

1
T+ ;Vsn—l (gSéC)
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Hence,
2
g
IV(gSE)* = (9)*(SE)* + 251 Vs SE 2.
Summing over all spherical harmonics yields
Ne )
(2.14) D IV(gsHI” = (¢) —+—Z\Vs” T
k=1
To compute the sum on the righthand side, note that
n—1 2
oSk
VeasHOP = X (5o ) (©
j=1 N9

where a1, ... ,a,_1 is an orthonormal basis in the tangent space to the
unit sphere at £, and finish by applying Lemma 2.2. mi

3. Spherical harmonics extension. In their proof of the PPW
conjecture, Ashbaugh and Benguria [4, 5] used trial functions of the
form ¢; = P;u; for the second eigenvalue, where

fori=1,2,...,n

Using (1.7) with m = 1, they write

Jo IVP|?u?

Az — A1 <
fQqu%

Summing over all possible P;, they obtained a “radial functional” in g
(save for a mass factor of u?) for the gap Ay — A; of the form

Jo B
A2 — A
2 1_ng 2u1

where
n—1

B(r)=g'(r)* + g(r)*.

r2
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A center of mass argument guarantees the orthogonality conditions
/Piu% =0 for i=1,2,...,n
Q

required in the Rayleigh-Ritz principle. A particular choice of g(r)
(given in terms of Bessel functions natural to the n-ball) and special
properties of the radial functional under spherical rearrangement yields
the best upper bound for the ratio of the first two eigenvalues of the
fixed membrane problem. We note here that the function z;/r is a
spherical harmonic of order 1 in dimension n. We now generalize the
method of proof used in previous works by choosing trial functions for
Am+1 of the form

(3.1) bi = g(r)Sfu; — Zaijuj, for i=1,2,...,m.
j=1

Here {S} ,Icvi 1 denotes an orthonormal family of real spherical harmon-
ics of order £ on S" ! C R" and, in (3.1), S} means S} (z/r) for z € Q
where r = |z|. This is an orthonormal basis of real eigenfunctions of
order ¢, on S™~!, solutions of

(3.2) Agn-1v+L(l+n—2)v=0
for any fixed nonnegative integer /.

In our trial functions ¢; we have suppressed the indices ¢,k for

simplicity. Components along w1, us,...,u,, are projected away to
guarantee the condition ¢; L uj,us,... ,u,. Hence, the requirement
(3.3) a;j = / gSfuiuj dr for 1<1i,j7<m.

Q

As above, we have suppressed the ¢ and k dependencies of a;;.

Remark. When m = 1, the orthogonality condition is equivalent to
choosing the origin of the coordinate system at a “weighted” center of
mass of 2, (see for example [5], or the more recent [2]).

Clearly, a;; = aj; for 1 <14, j <m. Also,

m

(3.4) /Q ¢? = /Q 9SFuip; = /Q g*(S§)%uf = d,

i=1
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and
(3.5) —A¢; = )\igSfui — 2V(gSf) -Vu; — gS’e Za”)\ uj.

Therefore,

(3.6)
o N — ). 2 . ky . . _ kY, 4.
/Q bi(— D) = A /Q &2 /Q 6:V(gSE) - Vs + /Q A(gSE)uid.

Using the Rayleigh-Ritz inequality, we obtain

3D O =2 [ 6 < [ [-2950) - Vui - Al

By virtue of the increasing order of the \;’s, we get

(3.8) A — / $? < / bid,

where 1; = —2V(gSF) - Vu; — A(gS¥)u;. The Cauchy-Schwarz inequal-
ity yields

(3.9) Am+1 — / Yii < / i

Finally, we sum on ¢, 1 <7 < m, and over all possible “directions,” i.e.,
for 1 < k < Ny, to obtain

S S @
=T S bt

Here the dependence of ¢; and ¢; on ¢ and k has been restored (and
similarly for the a;;’s in the proof below).

(3.10) Ami1 — Am

Lemma 3.1. With notation as above,

sy 303 | wttott = N‘Z / ( (g))u?,

k=1i=1
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where w, = |S" | = 21"/2/(I'(n/2)) and

? n-10 ({l+n-2)
Blo) = ‘9<w+ o )9-
Proof. Let
N[ m
A=303 [ 20(esh) - Vu
k=1i=1"%
and
Ny m
B33 [ Alshut
k=1i=1"%
We will prove that
N m 1 m Ny
¢
(3.12) A= M—Z/ §A(gz)u?+ Z Zafj’?/ —A(gSy)usuj,
n =179 ij=1k=1 Q
and
N, m m Ny
¢
(3.13) B= w—Z/ﬂE(g)u? + Y Zaff/QA(gSf)uiuj.
=1 i,j=1k=1

The lemma then follows by summing these two identities.

Starting with the definition of A, we have

(3.14)
1
A= LZ}g/ﬂgV((gSf)z) -V(u?)+2%af§c/ﬂujV(gSf)-Vui
= o 2, V6 V)
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S
+> af (/ V(gSy) - Vui+/QuN(gS}“)-Vuj>

,]k:
- 5 [ e i+ 3l b [ Viash) - Vi)
- E:/ ~A(yg 1¢+%; (A—A@%Mww

where we have used the symmetry of afj’-“ in its lower indices and have
then interchanged ¢ and j in the second half of the last summation in
passing from the second to the third line. To go from the first to the
second line, we used the fact that, for £ € S*~1

N,

(3.15) D SE(e)? =

k=1

Ne
wr,”
see Theorem 2.1 above). To obtain the last line of (3.14), we have used

Green’s identity and the Dirichlet boundary conditions satisfied by the
u;’s.

The case of B is immediate. Starting with the definition, it follows
that

(3.16) B= Z/ ~A(gS§)(gSF)u? + > af /QA(gsf)uiuj.

1,5,k
We have
n—1 ll+n—2
(3.17) A(gSy) = <g +— g - ( . )g>5$-

Therefore, using (3.15) above,

2

1, Ut+n—2) \N
(3.18) E: A(gS;)gSE = g(d“knr g -2t b)—ﬁ

r Wn

With E(g) as defined above, the formula for B follows. o
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Inequality (3.9) and Lemma 3.1 allow us to write

szfg{ 2V (gS¥) - Vui — (gSk)ui}2

(B19)  Amir = dn S S ST (/DA WD) + E(@)

We now restrict our study to the case when g(r) = r*. This choice of
g(r) is dictated by later calculations which simplify the form of (3.19)
to workable formulas. It is expected that the best we can do using
this choice of g is to obtain results similar to those of Chiti [20]. The
freedom in Ashbaugh and Benguria [5] in the choice of g(r) (which
allows them to obtain best constants) is lost. Nevertheless, results in
this direction incorporate a whole range of methods not yet exploited in
the context of gap bounds and offer “generalizations” of [5] in certain
directions. The restriction on g(r) makes E(g) = 0, essentially because
A(r*Sk) = 0 since r*S¥ is a homogeneous harmonic polynomial (note
that —gA(gSF) = E(g)Sy). The following theorem is now proved.

Theorem 3.2. The gap between consecutive eigenvalues of the
Dirichlet Laplacian satisfies

4wn szfﬂ gS€ ')2
3.20 A A < — )
( ) e N, Zi fQ 1/2 ) uy

where wy, = |S" | = (27"/2/T'(n/2)) and g = r*.

We now need to simplify the expression in (3.20). This is immediately
provided by Theorem 2.3.

Theorem 3.3.

a0 S [y

3.21 A+l — Am
( ) + 2€+n72 Yoy Jo ¥

Remark. If ¢ = 1 we recover the PPW inequality (1.3). In this case
we use [, |Vu;|* = A; to simplify the numerator.
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Proof. Using Theorems 3.2 and 2.3, we obtain

(3.22) Ams1 — Am
421 1 Jo((d' au /37“)

<

T Xt ol 1/2 9*)ui
L /)t n - 2)/n — D(A/r*)|Vsnruif?)
izt Jo(1/2)A(g?)uf

Now, g(r) = r* and A(r™) = m(m + n — 2)r™=2 yield (1/2)A(g%) =
£(2¢ +n — 2)r*=2 and thus

(3.23) Am+t1— Am
< 4 EZI fQ (@27“%_2(87“/87“)2
> Z;il fQ E(QE +n— 2)7-28—2“?
+ (€ +n—2)/(n—1))r*2(1/r?)|Ven-ru;|?)
S S U2+ — 2)r22y?

Since £ > 1 and n > 2, we see that ({({+n—2)/(n—1)) < 2 and
(3.21) follows. O

Lemma 3.4. Let h be a C? function, and let u be an eigenfunction
of the Dirichlet Laplacian with corresponding eigenvalue X on Q@ C R™.
Then

(3.24) /Q B(r)|[Vul? = A /Q h(r)u? + /Q %(Ah)qﬂ

Proof. Start with Green’s identity

3.25 /Vu-Vv :/ dS /vAu
( ) Q N 3”

where 0/0n indicates differentiation in the direction of the exterior
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normal to 02. Substituting v = hu and rearranging, we have

/h(r)lvu\zz/ hua—udsf/huAu—/uVu-Vh
Q s On Q Q
:f/huAufl/V(uz)-Vh
Q 2 Ja
1 1 oh
— 2 - 2A = 29
A/Qhu+2/9u h 2/,99u8nds

1
:)\/hu2+—/u2Ah.
Q 2 Ja

In the above we have integrated by parts and have also used —Au = Au.
The Dirichlet boundary condition © = 0 on 0f2 allowed us to drop the
boundary terms. ]

(3.26)

Theorem 3.5. If{ > 2, then

(3.27) Ami1— Am
< 4¢ SN JorH T+ (0—1)(20+n —4) [, ?
>~ 2€+n— 2 Z:’;l fQ T2€72u12 .

Proof. We apply the previous lemma to the function h(r) = r?—2

appearing in the numerator of Theorem 3.3. u]

4. Rearrangement of functions. Let u be a measurable function
defined on Q C R™, and let u be its distribution function defined by
p(t) = |{z € Q : |u(z)| > t}|. The decreasing rearrangement of u is
the function u* defined by uw*(s) = inf{t > 0 : u(t) < s}. The function
u* defined by u*(z) = u*(Cy|z|"), where C,, = 7#™/%/T'(n/2 + 1), is
called the spherically-symmetric decreasing rearrangement of u. The
spherically-symmetric increasing rearrangement of u, denoted wu., is
defined similarly. While u* is defined on [0, |©2|], »* is defined on the
ball Q* centered at the origin and of the same volume as 2. The
functions |u|, u* and u* are equimeasurable. Also, if u € LP(2), then

12
(4.1) / |u|P dz :/ u*P ds :/ uw*? dz.
Q 0 *



PPW USING SPHERICAL HARMONICS 1055

Lemma 4.1. Let u be a measurable function defined in €2, and let «
be a fized positive number. Then

fnuz < fQ*U*Q

(4.2) < .
fQ |w‘au2 fQ* |m|au*2

Proof. Because of equimeasurability, (4.2) is equivalent to

(4.3) /mauzz/ 2|2,
Q Q*

This inequality follows from the following general facts about rearrange-
ment [5, 20]:

o If f and g are nonnegative functions, then
(4.4) / frg dzx > / fgdx > feg”™ dz.
Q* Q Q*

o If f(z) = f(|z|) is nonnegative and increasing then f,(r) > f(r) for
0 <r < r* =radius (Q*).

Hence,
(4.5) /|m\au22/ \m|gu*2z/ eou? o
Q Q* Q*

Lemma 4.2. Suppose u is an eigenfunction of the Dirichlet Lapla-
cian on  with eigenvalue \. Then u* is an absolutely continuous
function on [0, |Q|] and satisfies the inequality

*

du
4. —
(4.6) I

< )\n_20n_2/"s_2+2/”/ u*(t)dt a.e. on [0,|9Q]],
0
where Cy, = (7™/2/T(n/2 + 1)).

Proof. See [5, 46]. O
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For any fixed positive A, consider the ball By = {z € R" : |z| <
jn/g_m)\*l/z} where j,/2_1,1 is the first positive zero of the Bessel
function J,, /5_1(t).

The problem Az + pz = 0 in By with vanishing Dirichlet boundary
conditions on 0B), has its first eigenvalue equal to A. The corresponding
eigenfunction is given by z(z) = klz['~"/2J,, 5_1(AY/?|z]), where k is a
positive normalizing constant. This function is spherically decreasing
on By. To prove this, we set t = A\!/2|z| and p = n/2 — 1. With this
notation, z(z) = 2(t) = kt=PJ,(t), for 0 < t < j,1, with k& > 0, and

3!

'(t) = —kt PJ,41(t). We have the product representation

trrt = < t? )
4.7 J )= ————— 1—- )
(4.7) pr1(t) 2+ (p + 2) 1};[1 32k

valid for p > —2 and all t. Since jp1 < Jpt1,1, it is clear that
Jpt+1(t) > 0 for 0 < ¢ < j, 1 and hence that Z'(t) < 0 there, as desired.
Moreover, z satisfies

dz

(4.8) - = )\n_2C;2/"s_2+2/"/ z(s') ds'
ds 0

when viewed as a function of s = C,|z|™.

Lemma 4.3 (Chiti’s comparison theorem). Suppose u is an eigen-
function of the Dirichlet Laplacian on Q with eigenvalue A, and let the
function z be normalized so that fQ wlder = fB)\ 22dx. Then, view-
ing u* and z as functions of s = Cpr™ for s € [0,|B.]|], there exists
s1 € (0, |By|) such that

(4.9) Z*(s) for s €0, s1],

*(s) for s € [s1,|Bxl]-

Moreover, |B,| < |Q].
Proof. See [5, 18, 19, 20]. o

Remarks. In [5, 20], the result of this lemma was used with u as
the first eigenfunction of the Dirichlet Laplacian on Q. The fact that
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it applies to any eigenfunction was established earlier by Chiti [18,
19]. The second statement of the lemma is a consequence of the Faber-
Krahn inequality [23, 34, 35], see also [16].

Lemma 4.4. Suppose a > 0, and let u and z be defined as above.
Then

fQ* U'*Q fBA 22

Jou lxlow® = [, |22

(4.10)

Proof. Start with

1 12
(4.11) / |z|*u*? = coln / s¥/mu*? ds
* n 0

and

1 |BAl
(4.12) / |z|*2? = ; / 5¥/m22% ds.
Ba Cn'™ Jo

Lemma 4.3 yields

(4.13)

Cg/n</ |w‘a 2_/ |$au*2>
B Q*
| Bxl 12 )
:/ PRI ds—/ s*/my*? ds
0 0

S1 ‘B)J
:/ sa/n(ZZ_u*Q) d8+/ sa/n(ZZ_u*2) ds
0

S1
Y]] )
- / s*/my*? ds
| Bl
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Thus, [, |z|*u*® > [5, 17|%2%, and the proof is complete. O

Theorem 4.5. If u is an eigenfunction of the Dirichlet Laplacian
with corresponding eigenvalue A and « is a positive constant, then

fQ u’ < jr:/oéfl,l JS/z(jn/Zflyl)

< )\(1/2.
fQ |I‘au2 2 fol T'a+1J72L/271(jn/2,1’17“) dT‘

(4.14)

Proof. We combine Lemmas 4.1 and 4.4. Observing the fact that
dz = r® Ldo dr, where do represents the canonical measure on S™1,
we calculate
(4.15)

IBA 22 de d]n/Z—l,l/\/X Jsna rJZ/z_l(\/X r)dodr

I, al*2* dz foj"/%l‘l/ﬁ Jgn—s T'O‘HJT%/Z_I(\/X r) do dr
0jn/2—1,1/\/x TJS/Q—l(\/X ,r_) dr
g ey (VX dr

Substituting ¢ = v/ r yields

(4.16) '
J5, 2% dx Joe tJ2 () dt
fBA x| 22 dx - ijn/z—l,l ta+1J2/2_1(t) dt

Jo 1925 1(nja1a7) dr ( 2 >“

Jo 1812 15 (2 1a7) dr

)\a/2

Jnj2-1,1

The proof is completed by observing, as in [5], that

Jn/2-1,1 ) 1 o , ' 9
(4.17) /0 tJn/Z—l(t) dt = §Jn/2—1,1Jn/2—1(Jn/2—1,1) )
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and tJj,(t) = —tJpt1(t) + pJp(t). Hence,
(4.18)

In/2—1,1 9 1 o 9 .
/0 tJ, n/2— 1(t)dt = 5]n/271,1‘]n/2(-7n/2—1,1)’

and
(4.19)

1
1
/0 rJ? n/2— 1(Jn/2 117")d7"—§=]n/2(3n/2 1,1)s

which, along with (4.16), gives the bound (4.14). O

Corollary 4.6. If u is normalized we obtain
(4.20) / 2|72 > Cpah @72,
Q

where
fo rotl gz n/2— 1(]n/2 117")d

Jn/g(]n/Zfl,l)

Cra = 2-7-5/271,1

Remark. Chiti’s approach [20] (which was followed in [4, 5] to get
the best bound for the ratio of the first two eigenvalues) avoids the
Cauchy-Schwarz inequality used in passing from (3.8) to (3.9). The
trial functions for Ay used in [20] were z;u; for i = 1,2,...,n. The
origin was chosen so that it lay at the center of mass via the requirement
fQ z;uf = 0. This choice avoids the coefficients a;; used to project away
lower eigenfunctions in (1.8) or (3.1) and assures orthogonality. The
Rayleigh-Ritz principle yields

(.21) < oVl dr

fnm

Summing suitably gives

(422) A fQ i1V $1U1)|2daj M g l2Pud de 4 n [ uf de
. y < _ |
fn |z|2uf d J‘Q |z|?u2 dz
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or

fQ u? dx

4.23 Ao — A < n——t——.
2 PN ST Pl

Using Corollary 4.6 with o = 2 and A = X\; = A\(2) yields Chiti’s
bound (1.13).

5. New inequalities for the eigenvalues of the Dirichlet-
Laplacian. In this section we find explicit upper estimates for
fQ r2=242 and fQ r2~%42 in terms of the eigenvalue A and geomet-
ric properties of the region 2. These bounds will enable us to arrive at
general inequalities relating various moments of the first m eigenvalues
to the geometry of (2. We note that these two integrals are compatible
in the form in which they appear in (3.27) since A o (length) 2. In
general, we will deal with fQ r®u? where o is a fixed positive number
and u is an eigenfunction of the Dirichlet Laplacian associated with
the eigenvalue A. In prior work, see [5, 7, 20], such integrals have
been dealt with using rearrangement. However, this method is not use-
ful in handling the integrals in the numerator of the righthand side of
(3.27) since g(r) = r* is an increasing function and straightforward
rearrangement would provide lower rather than upper bounds for these
integrals. Rearrangement is, of course, useful in handling the integral
in the denominator of the righthand side of (3.27), and in this we follow
the prior work alluded to above.

In subsections 5.1, 5.2 and 5.3, we present three alternatives for
overcoming this difficulty. They provide explicit upper bounds for
Am+41 — A, in terms of various moments of the preceding eigenvalues
and various higher-order moments of the region €.

5.1 The Sobolev alternative (for n > 3). Applying Holder’s
inequality we get

1/p 1/q
(5.1) /r"‘u2 < </ ro‘p> </ u2q> ,
Q Q Q
with 1/p+1/g=1 and p,q > 1.

Theorem 5.1 (Sobolev’s inequality for gradients). For n > 3, let
f be a sufficiently smooth function which vanishes at infinity. Then
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f € LYR™) with g =2n/(n — 2) and the inequality

(52) (/ |f|q>2/q <o [1vit,

holds with

—-2/n
-2 -2 1
(5.3) 5, = "= Dgupern 10 =2) )22/"71'1“/"1"(—”; > .

Equality holds if and only if f is a multiple of ('uQ + |z — aP)_("_Q)ﬂ

with p > 0 and a € R™ arbitrary.
Proof. See [38]. o

Remarks. This is the Sobolev inequality in its sharp form. This
theorem appears in the works of Aubin [13], Lieb [37] and Talenti [46]
(see also [47]). The sharp bound and case of equality are due to Talenti
[46] (see also [38]). Note that in the expression for S, the factor |S™|?/™
(rather than the seemingly more natural |S*~1|2/") is not a misprint.

We let 2¢ = 2n/(n — 2) in (5.1) and use the theorem for the
eigenfunction u with eigenvalue A. This makes p =n/2 and

A 2/n
(5.4) /r"‘u2 < —(/ ro‘"/2>
Q Sn Q

since u is assumed to be a normalized Dirichlet eigenfunction of —A
on  and therefore [, [Vul* = \.

Let I, = fﬂ r®dz. If « = 2, I, is just the usual second moment of
Q. For a > 2, it constitutes a higher-order moment of the region Q. It
is easy to calculate in the case of a sphere. Combining Theorem 3.5,
Corollary 4.6 and estimate (5.4), we obtain the following theorem.
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Theorem 5.2. Forn > 3 and { > 2, the eigenvalues of the Dirichlet
Laplacian on a bounded domain Q0 C R™ satisfy the inequality

(55)  (Am+1 = Am) (i %)

4/
<
- (2€—|—n— 2)5,Ch 202

2/n 2/n <
<(e Iy Z/\2 (¢-1) 2€+n4)1(22)nz/\i),

i=1

with , )
5/2211f0 r2- 1J7’2L/2 1 (Jnja—1,17) dr

Jn/z(Jn/2—1,1)

Crao-2 =

and with S,, as given in Theorem 5.1.

5.2 Chiti alternative I. Starting with fQ rou?, we first apply the
Cauchy-Schwarz inequality and then couple it with a reverse Holder
inequality result due to Chiti [19]. This method leads to an alternative
to Theorem 5.2 with generally higher powers of the eigenvalues and
factors of lower (and potentially more accessible) geometric moments
of the region (2.

Theorem 5.3. (Chiti [19]). Let @ C R™ be a bounded domain. Let
A be an eigenvalue of the Dirichlet Laplacian and u a corresponding
etgenfunction. If p and q are real positive numbers such that ¢ > p > 0,
then

1/q 1/p
5o () sxerer g ( flur)

where

(5.7)
K(p,q,n) = (nCy)/41/P)
(0]n/2 L1 ,n— 1+q(1— n/Z)Jq/ 1(r)dr)1/‘1

X
(OJn/z L1 n—1+4p(1- n/2)JP/2 1(7.) dr)l/p
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= (nC,) (1/q— l/p) .n(1/q—1/p)

Jnj2-1,1
f pr—1+q(l-n/2) Jq/2 1(]n/2 11T‘)dr)1/q

X .
fo pr-itp(l-n/2) Jﬁ/z,l (]n/Z—l,lr)dr)l/p

Equality holds if and only if p = q or 0 is a sphere and X\ is the first
etgenvalue associated with the problem.

Proof. See [19]. O

By the Cauchy-Schwarz inequality, we have

658) [ rm)“( / u4>”2.

We apply Chiti’s reverse Hélder inequality with p = 2 and ¢ = 4 to
obtain

1/2
(5.9) /ro‘u2 < K(2,4,n)? (/ r2°‘> /4,
Q Q

Coupled with Theorem 3.5 and Corollary 4.6 we obtain the following
theorem.

Theorem 5.4. For all positive integers n, £ > 2, the eigenvalues
of the Dirichlet Laplacian on a bounded domain Q@ C R"™ satisfy the
inequality

moy A0 (2,4,n)?
(5.10)  (Am1 — <Z > (20+n—2)Cp o2

i=1

< ( iﬂZA””‘“ ~D@+n -4 istA”“)

where Cy, 00—2 and K(2,4,n) are as given above.

5.3 Chiti alternative II. An alternative to the use of the Cauchy-
Schwarz inequality in the previous section is to first apply Hélder’s
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inequality and then follow it by Chiti’s reverse Holder inequality and
send ¢ to co. In this subsection we apply this idea to develop further
eigenvalue inequalities. As a corollary, we derive inequalities relating
eigenvalue gaps to moments of the preceding eigenvalues and to the
volume and second moment of the domain 2; see Corollary 5.6.

Start with (5.1). We then apply Chiti’s reverse Hélder inequality to
obtain

1/q
(5.11) </ u2q> < K2%(2,2¢,n)A"(1/2-(1/20)
Q

The Bessel function J, () satisfies

t2k

—v _ _1\k
(5.12) t7 () = kZ:O( 1) 2+ EIT(1 4+ v + k)’

with the series on the right being convergent for all ¢. Since t7%J, ()
is a decreasing function, for 0 < t < j,; (see the argument following
Lemma 4.2 above), we obtain, by comparing with its value at ¢t = 0,

. 1
(5.13) tVI(t) < m,

from which we derive

- 1/(29)
(ncn)(lmq) 1/2 ((1/n)jﬁ/2,171>

2020 (nf2) ( [2 7 2, () dr)
(ans/2—1,1)1/(2q)

K(2,2q,n)

1/2
(5.14)

2n/2-11(n /2) (nCn ij"/Z_l’l TJ72L/271(1‘) dr)1/2 ‘
If we now take the limit as ¢ — oo, we find
1
(5.15) K(2,00,n) < - 73
27/2-10(n/2) (nCy [J"/*1 r 2y (1) dr)

In fact, the righthand side of (5.15) is the limit of K(2,2¢g,n) as ¢ — oo
(which is what denote by K(2,00,n)), so that (5.15) is actually an
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equality (just use the fact that the righthand side of (5.13) gives the
oo-norm of t~¥J,(t) for 0 < t < j,.1). In this case, we must take p =1
in (5.1), and we obtain

(5.16) /rauz < Kn)\””/ e,
Q Q

where, using (4.18), we have
2
nCn2"2L(n/2)%57 o1 197 2 (Gnj2-1,1)

Combining (5.16) with Theorem 3.5 and Corollary 4.6, we obtain the
following theorem.

(5.17) K, = K(2,00,n)* =

Theorem 5.5. For all positive integers n, £ > 2, the eigenvalues
of the Dirichlet Laplacian on a bounded domain @ C R™ satisfy the
inequality

o1
(5.18)  (Ams1 — Am) <Z W)
i=1 "'t
4K,
<
- (25 +n— 2)Cn72@_2

x <qu SN L (0-1)@20+n—4)Dae 4y A?”),

i=1 i=1

with Cp 20—2 and K, as defined above.

If ¢ = 2, I is the second moment of © and Iy = |?|. This implies the
following corollary.

Corollary 5.6. The eigenvalues of the Dirichlet Laplacian on a
bounded domain 2 C R™ satisfy

(519)  (Amt1 — Am) <§: ,\i>

i=1

8K, < o n/2+1 o n/2
< —— (LY X nj) > oA,
(n+2)Cr.2 i=1 i=1
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Remark. Theorem 5.5 could have been obtained using yet another
result due to Chiti [18]. In this work, it will serve as a means to double
check the constants we obtained in these calculations.

Theorem 5.7 (Chiti [18]). Let @ C R™ be a bounded domain. Let A
be an eigenvalue of the Dirichlet Laplacian on Q and u a corresponding

eigenfunction. Then
(5.20)

A n/4 217n/2 ) 1/2
esssup |u| < <—> - - </ u ) .
lu ™ D(n/2)Y25,9-1,19n)2(ns2-1,1) \Ja

Proof. Start with equation (5.6). Set p = 2 and send ¢ to infinity.
The result follows immediately. u]

Remark. A detailed proof, from first principles, is given in [18].

This theorem implies the inequality

(5 21) / ) )\n/? 227n I
. reu” < - . a-
Q /2 F(”/2)33/271,1J2/2(Jn/Q—lvl)

Noting that 7"/2 = (nC,I'(n/2))/2 and substituting in (5.21) yields
(5.16) with the same factor K.

5.4 Two-dimensional Sobolev alternative. One advantage of
following the works of Chiti is that we are able to obtain inequalities
relating moments of the domain  to the gap and certain sums over
eigenvalues which hold for all dimensions n > 2. This is not the case
for the Sobolev alternative, which applies only for n > 3. There is,
however, a different form of the Sobolev inequality for gradients in the
case n = 2.

Theorem 5.8 (Sobolev’s inequality for gradients in R?). Let
f € HY(R?) and 2 < q < oo, then

1
(5.22) 1£17 < S—(IIVfIIS +1£113),
2,q
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where

_ 1-2/q 2-4/q
1 [(g9—2 q
(5.23) S24 = <W> CENE

for ¢ > 2 and Sz 2 = 1, the limiting value as ¢ — 2.

Proof. See [38] where the constant S5 , should be adjusted as noted
here. O

Replacing the term ( [, u2q)1/q in (5.1) by setting f = w in this
theorem is not convenient since it gives an upper bound equal to
S, ; (A4 1) and there is no obvious way of comparing the energy term
A with 1, the normalization constant for ||u||2. In order to circumvent
this difficulty, we use the following modification of this theorem (which
is certainly also well known).

Theorem 5.9. Let f € H'(R?) and 2 < q < oo, then

2 1-2
(5.24) I£llq < Lq £/ 1911527,
with
3/2-2/q(, _ 1\—1+1/q
q (¢—-1)
(5.25) La = i (gmye-1a
and Ly = 1.

Proof. Assume q > 2. We start with the statement of Theorem 5.8,
and apply it to the function v = f(x/k) where k > 0 is a constant and
where, for simplicity, we set

C=5,,.

Therefore,

(5.26) loll < C(IIVol3 + [lv]I3).-
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A change of variable takes us back to f, since it is defined on all of R2,
now with

(5.27) I£1I2 < C (kY VFI3+ kY9 £13).

The righthand side is a function of k£ which takes its minimum at the
value

b V2 9/l
Va=2 |[fll2
This gives
(5:28)  ||flly < VC2 V1gM2(q - 2) AV £ £l

The desired inequality follows from substitution of the value of C in
this last statement. o

Remark. Talenti describes the ideas behind the method used in this
proof and many other Sobolev-type inequalities in [47].

Now, we apply Theorem 5.9 with 2¢g replacing ¢ and ¢ > 1 (so
that 2¢ > 2) to u, an eigenfunction of the Dirichlet Laplacian with
corresponding eigenvalue A, to obtain

1/q
(5.29) () = ulg, < .
Q

Using Holder’s inequality (5.1) with p = ¢’ = ¢/(¢ — 1) we arrive at
(5.30) /Q reu? < L3 TP A9,

Using Theorem 3.5 and Corollary 4.6 (with n = 2 in both), we thus
obtain a Sobolev version of Theorem 5.2 in two dimensions.

Theorem 5.10. For ¢ > 2, ¢ > 1, andp = ¢ = ¢q/(q— 1), the
eigenvalues of the Dirichlet Laplacian on a bounded domain Q@ C R?
satisfy the inequality

(5.31)

(Amt1 = Am) <Z %)
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2L%q i/p 2—(1/q) 271/p 1—(1/q)
= szez( 2=2)p Z)\ +2(0-1)7 (3 4)1’2)‘ )

with Cy2¢—2 and Loy as defined above.
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