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PERTURBATION RESULTS FOR LINEAR OPERATORS
AND APPLICATION TO THE TRANSPORT EQUATION

KHALID LATRACH AND J. MARTIN PAOLI

ABSTRACT. We prove that the components of the Fred-
holm domains of closed linear operators on Banach spaces
remain invariant under additive perturbations belonging to
broad classes of perturbing operators. Although our approach
is somewhat different than the standard one used to discuss
the stability of essential spectra of such operators, our results
provide a natural extension of many known ones in the liter-
ature and, in particular, of those obtained in the works [18,
19]. Of particular interest is the case of polynomially compact
operators which furnishes the convenient setting to describe
the essential spectra of multi-dimensional neutron transport
operators on L; spaces which is the topic of the last section.

1. Introduction. Let X and Y be two infinite dimensional complex
Banach spaces, and let C(X,Y), respectively £(X,Y), denote the set
of all closed, densely defined, respectively bounded, linear operators
from X into Y. The subset of all compact, respectively finite rank,
operators of £L(X,Y) is designated by K(X,Y), respectively Fo(X,Y).
If AeC(X,Y), we write N(A) C X and R(A) C Y for the null space
and range of A. We set o := dim N(A), 8 := codim R(A). The set of
upper semi-Fredholm operators is defined by

P, (X,)Y)={AeC(X,Y):a(A) < oo and R(A) is closed is in Y},
and the set of lower semi-Fredholm operators is defined by

P _(X,)Y)={Ae(C(X,Y):B8(A) <o (and R(A) is closed in Y)}.
Operators in ®4(X,Y) := ®,(X,Y) U ®_(X,Y) are called semi-

Fredholm operators from X on Y while ®(X,Y) = &,(X,Y) N
®_(X,Y) denotes the set of Fredholm operators from X on Y. For
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A € ®(X,Y), the index of A is defined by i(4) = a(A) — B(A).
If X =Y, then ‘C(XaX)a K(XaX)a ]_-O(XvX)a C(XaX)a (I>+(X’X)a
®, (X, X), and (X, X) are replaced, respectively, by £(X), K(X),
Fo(X), C(X), 24 (X), 24+ (X) and ®(X).

Let A € C(X); the spectrum of A will be denoted by o(A). The
resolvent set of A, p(A), is the complement of o(A) in the complex
plane. A complex number X isin @, 4,P 4,P14 or P4 if A — A is
in ®4(X),®_(X),®.(X) or ®(X) respectively. For the properties of
these sets, we refer to [5, 7, 13].

Recall that when dealing with operators in C(X) where X is a Banach
space, various notions of essential spectrum, generally non equivalent,
appear in the applications of spectral theory (see, for instance, [4, 8,
9, 13]). Most are enlargement of the continuous spectrum. In this
paper we deal with the most familiar of them. They may be ordered
as follows

063(A) = Uel(A) N JeZ(A) g 064(A) g JeS(A) g UeG(A)a

where 0.;(A) = C\p;(A) with p1(A) := @14, p2(A4) := P_4, p3(A) :=
D, pa(A) == D, ps(A) = {) € pa(A),i(\ — A) = 0} and po(A)
denotes the set of those A € p5(A) such that scalars near A are in
p(A). The subsets o.1(.) and oez(.) are the Gustafson and Weidmann
essential spectra [9]. o3(.) is the Kato essential spectrum [13]. oe4(.)
is the Fredholm essential (or simply essential) spectrum [9, 11, 22].
oes(.) is the Weyl essential spectrum [9, 23], and o.6(.) denotes the
Browder essential spectrum [9, 22]. Note that all these sets are closed
and if X is a Hilbert space and A is self-adjoint, then all these sets
coincide (see, for example, [11]).

One of the interesting problems in the study of essential spectra of
linear operators on Banach spaces is the invariance of the different
essential spectrums under (additive) perturbations. The mathematical
literature devoted to this subject is considerable, we refer, for example,
to the works [4, 9, 11, 15, 17, 18, 19, 22, 23] and the references
therein. Motivated by a fine description of the spectrum of the
transport operator, the behavior of essential spectra of operators in
C(X) subjected to additive perturbations on L, spaces was discussed
in [17]. The analysis uses the concept of strictly singular operators
which possess some nice properties on these spaces [25]. In [15] this
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analysis was extended to operators on Banach spaces which possess the
Dunford-Pettis property by means of weakly compact perturbations. In
fact, if X has the Dunford-Pettis property, the set of weakly compact
operators behaves like that of strictly singular ones on L, spaces [21].
In the work [18], the results obtained in [15, 17] were extended to
general Banach spaces by using the concept of Fredholm perturbations.
The case of relatively bounded perturbations was discussed in [19]. In
particular, it is proved that if A € C(X), the various essential spectra
of A remain unchanged under additive A-bounded perturbations J
(operators J such that D(A) C D(J) and the restriction of J to D(A)
belongs to L(D(A), X) where D(A) is equipped with the graph norm)
satisfying J(A — A)~! € J(X) where A € p(A4) and J(X) is any
proper closed two-sided ideal of £(X) contained in the ideal of Fredholm
perturbation.

Note that in applications, cf. [2, 4, 11, 13, 14, 16], J(A—A)~! does
not satisfy necessarily the condition J(A — A)~! € J(X) for any closed
ideal J(X) of L(X) contained in F(X). However, it may happen that
p(J(A — A) 1) € J(X) where p(.) is a nonzero complex polynomial
p(z) # z, cf. [15, 20]. So the approach used in [14, 16, 17] does not
apply, and the question concerning the stability of the essential spectra
of A under such perturbations seems to be open. A typical example,
which motivates this work, is provided by the multidimensional neutron
transport operator on L spaces, see Section 6. We know from Theorem
4.4 in [20] that, under reasonable hypotheses on the collision operator
K, (K(A—=T)™')* is compact with Re A > s(T") where s(T) denotes
the spectral bound of T' (for the notations, see Section 6). So, for
A€ p(T+K)Np(T), A—T—K) ' —(A—T)"! is not compact nor weakly
compact. This example lies outside the scope of the perturbation
results developed in [18, 19] and therefore the question concerning
the determination of the precise picture of the essential spectra of the
multi-dimensional neutron transport operator on L spaces remains an
open problem, cf. [14, Remark 4.3 ]. Our objective here is to establish
some results connected to this problem.

The remainder of this paper is organized as follows. In Section 2 we
state the main results of this paper. In Section 3 we establish some
perturbation results for both Fredholm and semi-Fredholm operators
(Theorem 3.1) and we discuss their incidence on the behavior of
essential spectra of operators belonging to C(X). Some auxiliary results
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required in the proofs of the results of the second section are established
in Section 4. The main result of this section is Theorem 4.1 which
provides, in a neighborhood of any point of the Fredholm domain,
a construction of particular Fredholm inverses which are uniformly
bounded. Section 5 is devoted to the proof of Theorem 2.1. Finally, in
the last section we apply Theorem 2.1 to describe the essential spectra
of multidimensional neutron transport operators on L; spaces.

2. Preliminaries and statement of results. An operator
F € £(X) is called a Fredholm perturbation if U + F € ®(X) when-
ever U € ®(X). F is called an upper, respectively lower, semi-
Fredholm perturbation if ' 4+ U € ®(X), respectively ® (X)), when-
ever U € &, (X), respectively & _(X). The sets of Fredholm, upper
semi-Fredholm and lower semi-Fredholm perturbations are denoted by
F(X), F4(X) and F_(X), respectively.

Let ®°(X), ®% (X) and ®° (X) denote the sets ®(X)NL(X), @ (X)N
L(X) and ®_(X) N L(X), respectively. If in the definition of the sets
F(X), F4(X) and F_(X) we replace ®(X), ®;(X) and ®_(X) by
®°(X), % (X) and ®°(X) we obtain the sets F°(X), F%(X) and
FP(X). These classes of operators were introduced and investigated
in [6]. In particular, F° (X), F°(X) and F°(X) are closed two-sided
ideals of £(X) [23].

The properties of the sets F_(X), F1(X) and F(X) were discussed
in [18, Section 2]. For our own use we recall that F(X) and F_(X)
are closed in £(X) and F(X) = F°(X). This shows, in particular,
that F(X) is a closed two-sided ideal of £(X). It is the largest closed
two-sided ideal contained in the set of Riesz operators [23, page 222].
Note that the question whether or not F (X), respectively F_(X), is
equal to ff_(X), respectively F° (X), seems to be open. It is worth
noticing that, in general, the ideal structure of L£(X) is extremely
complicated [1, Chapter 4]. Most of the results on ideal structure deal
with well-known closed ideals which have arisen from applied work
with operators. We can quote, for example, compact operators, weakly
compact operators W(X), strictly singular operators S(X) [7], strictly
cosingular operators CS(X) [21, 24] and Fredholm perturbations
F(X). On the other hand, Lemma 2.2 in [18] and Theorem 2.1
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in [7, page 117] imply that £(X) C S(X) C Fi(X) C F(X) and
K(X) C CS(X) C F_(X) C F(X).

Let A € C(X). It follows from the closedness of A that D(A) (the
domain of A) endowed with the graph norm ||.||4 (||z|la = ||z|| + || Az]|)
is a Banach space denoted by X4. Clearly, for x € D(A), we have
lAz|| < ||z|la, so A € L(X4,X). Let J be a linear operator on X. If
D(A) C D(J), then J will be called A-defined. If J is an A-defined
operator, we will denote by J the restriction of J to D(A). Moreover,
if J € L(Xa,X), we say that J is A-bounded. One checks easily that
if J is closed (or closable), see [13, Remark 1.5, page 191], then J is
A-bounded.

Let F € £(X). We write F € PJ(X) if there is a nonzero complex
polynomial p(.) such that the operator p(F') belongs to J(X). If
F € PJ(X), the nonzero polynomial p(.), of least degree and leading
coefficient 1 such that p(F) € J(X), will be called the minimal
polynomial of F. We denote by P7(X) the subset of PJ(X) defined
by

Psr(X):= {F € PJ(X) such that the minimal polynomial of F,

p(.), satisfies p(—1) # 0}.

Let J(X) denote an arbitrary nonzero closed two-sided ideal of L(X),
and assume that the following hypothesis holds

(H) J(X) € F(X).

Obviously, under the condition (H), Proposition 4 in [6, page 70|
implies that Fo(X) C J(X) C F(X).

The goal of this paper is to prove the following result.

Theorem 2.1. Let A € C(X), let J be an A-bounded operator on X,
and let U # @& be an open subset of ® 4. Let J(X) be a proper closed
two-sided ideal of L(X) satisfying (H) and assume that, for each A € U,
there exists a Fredholm inverse Ay of A — A such that JA) € P7(X).
Then

(®a)v = (Pa+s)v,
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where (P 4)y, respectively (P atj)u, denotes the union of all connected
components of ®4, respectively ® 4,5, meeting U. Moreover, if A €
((}A)U} then

(A=A =i(A—A—J).

As a straightforward consequence of Theorem 2.1, we have

Corollary 2.1. Assume that the hypotheses of Theorem 2.1 are
satisfied. If, further, ® 4 is connected, then ® 4 is a component of ® 4 s
and, for any A € ®4, we have i(A— A) =i(A— A —J).

It should be observed that, in general, the sets J(X) and P (X)
do not coincide (actually J(X) is strictly contained in P7(X)). In-
deed, if p(z) = (2 — Ay)™ --- (2 — A\g)™ is the minimal polynomial
of FF € P7(X), then the spectrum of F' consists of countably many
points with {Ay,..., Az} as only possible limit points and such that
all but possibly {\1,..., Az} are eigenvalues with finite dimensional
generalized eigenspaces. This together with the fact that the oper-
ators belonging to J(X) C F(X) satisfy the Riesz-Schauder theory
of compact operators, see [1], shows that F(X) # Ps(X). (Ev-
idently, if J(X) C F(X), then J(X) Cx Ps(X) # F(X) and
F(X) Cx Pr(X).) Thus Theorem 1. 1 (and Corollary 1.1) may be re-
garded as an extension of the results obtained in [18, Section 3] and [19,
Section 2] to wide classes of perturbing operators Pz (X) where J(X)
is an arbitrary closed two-sided ideal of £(X) satisfying the condition
(H).

We close this section by indicating, for some particular Banach spaces,
the largest classes of perturbing operators for which Theorem 2.1 holds
true. Indeed, note that even though the description of the ideal
structure of £(X) is a complex task, cf. [1], there exist some Banach
spaces for which £(X) has only one proper nonzero closed two-sided
ideal. Actually, following Calkin [1, 6], if X is a separable Hilbert
space, then K(X) is the unique proper closed two-sided ideal of £(X).
This result holds also true for the spaces l,, 1 < p < oo and ¢y [6,
10]. Hence, if X is one of these spaces, then K£(X) = F(X), and
therefore Pr(X) = Px(X). On the other hand, if X is isomorphic
to an L,-space or to C'(?) (the Banach space of continuous scalar-
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valued functions on 2 with the supremum norm where 2 is a compact
Hausdorff space), then S(X) = F(X), cf. [17, equations (2.9), (2.10)].
So, for these spaces we have Pz(X) = Ps(X). A Banach space
X is an h-space if each closed infinite-dimensional subspace of X
contains a complemented subspace isomorphic to X. Any Banach space
isomorphic to an h-space is an h-space; ¢, ¢y and I,, 1 < p < oo, are
h-spaces. Let X be an h-space, according to [26, Theorem 6.2], S(X)
is the greatest proper ideal of £(X), i.e., S(X) = F(X). So, for this
family of Banach spaces we have again Px(X) = Ps(X).

3. Some perturbation results. In this section we present some
perturbation results which are intended for use in our subsequent
purposes.

Lemma 3.1. If F € Py(X), then I + F € ®(X) and i(I + F) = 0.

Proof. Let p(.) be the minimal polynomial of F'. Since p(F) € J(X),
then oe6(p(F)) = {0}. But p(—1) # 0, then p(—1) ¢ o.6(p(F)). Next,
making use of the spectral mapping theorem of the Browder essential
spectrum [8] we conclude that —1 € pg(F'). This ends the proof. O

An operator A € C(X,Y) is said to have a left Fredholm inverse if
and only if there are maps R; € L£(Y,X) and K € K(X) such that
Ix + K extends R;A. Similarly, A has a right Fredholm inverse if and
only if there is a map R, € L(Y,X) such that R.(Y) C D(A) and
AR, — Iy € K(Y). The operators R; and R, are called left and right
Fredholm inverses of A, respectively. We shall refer to a map which is
both a left and a right Fredholm inverse of an operator A as a Fredholm
inverse of A. We know by the classical theory of Fredholm operators,
see, for example, [1, 5, 13], that A belongs to @, (X), ®_(X) or ®(X)
if it possesses a left, right or two-sided Fredholm inverse, respectively.

Lemma 3.2. Let A and B be two operators in L(X,Y). Then:

(i) If A € ®(X,Y) and there is a Fredholm inverse of A, R €
L(Y, X), such that RB € P7(X), then A+B € ®(X,Y) andi(A+B) =
i(A).
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(i) If A € ®,(X,Y) and there is a left Fredholm inverse of A,
R, € L(Y, X), such that BR, € P7(Y), then A+ Be &, (X,Y).

(i) If A € ®_(X,Y) and there is a right Fredholm inverse of A,
R, € L(Y, X), such that R,.B € Py(X), then A+ Be€ ®_(X,Y).

Proof. (i) R is a Fredholm inverse of A. Then there exists F € Fy(Y)
such that AR = Iy — F on Y. Now the operator A + B can be written
in the form

(3.1) A+ B=A+(AR+F)B=A(Ix + RB)+ FB.

Since RB € Ps(X), using Lemma 3.1 one sees that Ix + RB is a
Fredholm operator of index zero. Now applying Atkinson’s theorem,
we obtain

A(Ix + RB) € ®(X,Y) and i(A(Ix + RB)) = i(A)

Next, taking into account (3.1) and remembering that FB € Fy(X,Y),
we infer that A + B is also a Fredholm operator and i(A + B) = i(A).

(ii) If Ry is a left Fredholm inverse of A, then there exists F' € Fy(Y)
such that RjA = Ix — F on X. The operator A + B can be written in
the form

A+ B=A+B(RA+F)=(BR, +Iy)A+ BF.
Clearly, since BR; € P7(X), applying Lemma 3.1 we get (BR;+1Iy) €

®(Y). Now using the fact that A € ®,(X,Y), BF € K(X,Y) and
Corollaries 1.33 and 1.37 in [1], we infer that A+ B € &, (X,Y).

(iii) Assume that R, is a right Fredholm inverse of A. Then there
exists an F' € Fo(Y) such that AR, = Iy — F and consequently

A+ B=A+B(AR, + F) = A(Ix + R,B) + FB.

Now arguing as in (ii) we get A+ B € &_(X,Y). o

Let A and B be two operators in £(X,Y). We denote by F3,(Y, X)
the set of left or right Fredholm inverses Ry of A satisfying BR, €
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Ps(X) or RtB € Pgs(X) following that A € ®,(X,Y) or A €
o (X,Y).

Lemma 3.3. Let A and B be two operators in L(X,Y). If A €
@4 (X,Y) and Fiz(Y,X) # @, then A+ B € ®.(X,Y).

Proof. It follows from Lemma 3.2 (ii) and (iii). o
Now we are ready to prove

Theorem 3.1. Let A € C(X), and assume that J is an A-bounded
operator on X. Then the following statements hold.

(i) If A € ®(X) and there is a Fredholm inverse of A, R € L(X),
such that RJ € Py(X), then A+ J € ®(X) and i(A+ J) = i(A).

(ii) If A € ®,(X) and there is a left Fredholm inverse of A,
Ry € L(X) such that JR; € P7(X), then A+ J € &, (X).

(i) If A € ®_(X) and there is a right Fredholm inverse of A,
R, € L(X) such that R,J € Ps(X), then A+ J € &_(X).

(iv) If A€ ®4(X) and Fi,(X) # @, then A+ J € &.(X).

Proof. As noted in the last section, the closedness of A implies that
X 4 is a Banach space. Let A and J denote, respectively, the restrictions
of A and J to D(A). Clearly, A € L(X4,X) and J € L(X4,X).
Moreover, it is not difficult to see that

a(4) = a(4), B(A) =p5(A), R(A)=R(A),
(3.2) a(A+J)=a(A+J),
B(A+J)=pB(A+J)and R(A+J) = R(A+J).
Hence, if A belongs to ®(X), respectively @, (X), then Ae D(X4,X),
respectively @ (X4, X). Now the assertions (i) and (ii) follow from
(3.2) and Lemma 3.2 (i), (ii).
(iii) Let A € ®_(X). Then by (3.2) one sees that A € ®_(X,, X).

By hypothesis, there exists an F' € Fy(X) such that AR, = (I -F).
On the other hand,

[Bra]x, = [ Brzllx + | AR, 2| x < {1 BR[| + [|(T = F)I[} [|2[].
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This shows that R, € £(X,X,) and therefore R,J € £(X4). Now
writing A+ B = A(Ix, + R,J) + FJ we conclude the desired result.
The last statement is an immediate consequence of the items (ii) and
(iii). O

Corollary 3.1. Suppose that A and J are as in Theorem 3.1. Then
the following assertions hold.

(i) Assume that, for each A\ € ® 4, there exists a Fredholm inverse
Ay of A — A such that AyJ € Py (X), then

Py CPyy and i(A—A—-J)=i(A—A) for each A € D 4.

(ii) Assume that, for each A € P4, there exists a left Fredholm
inverse Ay of A — A such that JAy € P7(X). Then

Q4 CPraty).

(iii) Assume that, for each A € ®_4, there exists a right Fredholm
inverse Ay, of A — A such that Ay,J € P7(Xa). Then

S 4 CP_(ayn).

(iv) Assume that, for each A € ®4 4, the set F(l;_A)J(XA) # &. Then

D14 CPrary-
Proof. Apply Theorem 3.1 to the operators A — Aand A\ — A —J. O
Corollary 3.1 translates in terms of essential spectra as:
Corollary 3.2. Let A and J be as in Theorem 3.1. Then:

(i) Assume that for each X\ € @4, there exists a Fredholm inverse
Ay of A\ — A such that AyJ € Py(X). Then

064(14 + J) - (764(14) and UeS(A + J) - JeS(A)-
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(ii) Assume that for each A\ € ® 4, there exists a left Fredholm
inverse Ay of A\ — A such that JAy € P7(X). Then

Uel(A+ J) g Uel(A).

(ili) Assume that for each A\ € ®_,, there exists a right Fredholm
inverse Ay, of A — A such that Ay,J € P7(Xa). Then

062(A+ J) - 062(A)'

(iv) Assume that for each X € ®1 4, the set F(x_4);(Xa) # D. Then

Ueg(A + J) g 0'53(A).

We end this section by noticing that Theorem 3.1, respectively
Corollaries 3.1 and 3.2, extends Lemma 3.1, respectively Theorem 2.1,
in [19] to the family of perturbing operators P (X).

4. Auxiliary results. The goal of this section is to establish
Theorem 4.1 which contains one of the main steps in the proof of
Theorem 2.1. We begin with the following elementary statement which
must be surely well known. Its proof is omitted.

Lemma 4.1. Let A € C(X), and let X\ and p be two elements in
®(A). If Ay, respectively A,, denotes a Fredholm inverses of A\ — A,
respectively u — A, then

Ay — AH — (,u — /\)A)‘Ap S .7:0(X),
A)\AN — AHA,\ S .7:0(X)

A consequence of Lemma 4.1 is that, if A € ®4 and Ay and A are
two Fredholm inverses of A — A, then Ay — A} € Fy(X).
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Theorem 4.1. Let A € C(X). If \g € @4, then there exists € > 0
and M(Xo) > 0 such that B(Xo,¢€), the open ball with radius € centered
at Xg, is contained in ® 4. Moreover, for all A € B(\g,¢), there exists
Ay, a Fredholm inverse of A — A, such that ||Ax]| < M(Xo).

The proof of this theorem is based on a construction of particular
Fredholm inverses and requires some preparation.

Lemma 4.2. Assume that X = X; & X2 and X5 is finite dimen-
sional. If there exists T € L(X) such that Tx = x for all x € X4, then
T-1eF (X)

Proof. Since X, is complemented, then there exists a bounded
projection P from X onto X;. Thus, for all x € X, we have x =
Pz+(I—P)zsothat (IT'—I)z =T(I-P)x—(I—P)x = (T—I)(I—P)z.
Now the result follows from the boundedness of I — P and the fact that
dim X, < oo. O

Let A\g € ®4 and denote by Xj, respectively Yy, a complementary
subspace of N(\g — A), respectively R(A — A), in X. So Xj is of finite
codimension and Y} is of finite dimension. Note that X = N(A\g— A4) ®
Xo and N(Ag — A) C D(A). Hence, D(A) = N(Ao— A) ® (D(A) N Xy),
X =R(M—A)®Y, and D(A)N X, is dense in Xg. Since N(Ag— A) is
a closed subspace of X 4 of finite dimensional, then )?;) :=D(A)N X,
is closed in X 4. Let By, be the operator defined by

By, :XNO X Yy —)R(Ao—A)@YE),
(20, y0) — (Ao — A)zo + Yo-

It follows from the estimate ||(Ao — A)zo+yo|| < max (1, |Xo|)(||zollx, +
llyolly,) that the operator B), is bounded and ||B,,| < max(1,|Aol).

On the other hand, since X4 := N(X\g — A) ® Xy, then the operator

(Mo — 4) 5 : Xo = R(Ao — 4)

is bijective and therefore B}, is invertible. Next, putting

Ax, = Io Py By}
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where P}; denotes the projection from )’(Vo X Yy onto )’(Vo and I is the
embedding of )?B into X4.

Lemma 4.3. The operator Ay, is a Fredholm inverse of Ao — A.

Proof. If z € X, then B;OI()\O — A)z = (,0) and I Pz(x,O) =x.
Accordingly, Ax,(Ao — A)z = =z for all = € X’B. Since 35) is of finite
codimension in X4, then Lemma 4.2 gives Ay, (Ao — A) — I € Fo(X4).
If yo € R(Ag — A), then there exists a unique zy € 3(7) such that
yo = (Ao — A)zp, so B)Tolyg = (20,0) and A),y = xo and therefore
(Mo — A) Ax,yo = (Ao — A)zg = yo. Now applying Lemma 4.2 we infer
that (Ao—A)A,\O—IEJ:()(X). ]

Let A € @4, and let By be the operator defined by
BA3XT)X}/EJ_>R()‘_A)$%; (o, %0) = (A = A)zo + yo.

Lemma 4.4. For any X\ satisfying |A — Xo| < 1/||B;01H, the operator
B, is invertible and Ay = I PX~ B;l is a Fredholm inverse of A — A.
0

Proof. Let zy € Xo. Using the estimate IA = A)zg — (Ao — A)zo]| <
[A—Xo| l|zol|x,, we conclude that ||()\24)—(/\0—A)||£(X,XA) < |A—Xol.
On the other hand, for all (zg,y0) € Xo x Yo, we have

I(Bx = Bxo) (@0, 0)llx = [I(A = A)zo — (Ao — A)zo||x
<A = ol llzoll x4 + IX = ol llyoll v,
S |)\ - )‘0| ||(x07y0)“};><y0'

This proves that ||By— By,|| < |A—Xo|. Next, note that, for any A close
to Ao and (zo,y0) € )?B x Yy, we have (By — Bx,)(%0,y0) = (A — Xo)Zo-
Making use of the invertibility of B),, we obtain B;OIBA -1 =
(A — )\O)B;OI. So, if |A — A HB;OIH < 1, then the operator B)folB)\

is invertible and

(ByyBa)™h =D (=1)"(A =)™ (By)"
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Accordingly,
(4.1) Bt =) (-1 (A= )" (BRH"
n>0
Finally, applying Lemma 4.3, we conclude the desired result. ]

Proof of Theorem 4.1. Let X\ be such that [A — Xg| < 1/(2||B;01||).
It follows from Lemma 4.4 that B, is invertible and A is a Fredholm
inverse of A — A. On the other hand, using (4.1), we get

B N )
ENIEDS> (—) 1B = 2By

—1
2\ 2B,

This leads to ||A>\||L(
proof. o

x50 < 2HP}-(~;|| ||B;01|| which completes the

5. Proof of Theorem 2.1. Let J(X) be a nonzero closed
two-sided ideal of L£(X) satisfying the condition (#). We denote
by Q7(X) the Banach algebra £(X)/J(X) equipped with the norm
Q| := inf {||Q + H||, H € J(X)}, where Q stands for the residual
class in Q 7(X) which contains Q € £(X). As a matter of convenience,
let us recall the following result due to Yood, see [6, Theorem 3.2],
which we will use below.

Proposition 5.1. Let J(X) be a nonzero closed two-sided ideal of
L(X) satisfying (H). Then Q € L(X) is a Fredholm operator if and
only if Q is invertible in Q7 (X).

Let A € C(X) be such that ®4 # @. By Theorem 4.1 we can define
an application

C:@A—>QJ(X), )\—>7T(A)\),
where Ay € £(X) is a Fredholm inverse of A— A and 7(.) is the canonical

surjection from £(X) onto Q7(X). It is well known that 7(A)) does
not depend on the choice of the Fredholm inverse Ay, hence ¢(.) is well
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defined. In the same way, if J is an A-bounded operator, we can define
a function ¢y on ® 4 by

CJ:(PA—>QJ(X), A—)ﬂ'(JA)\)
Similarly, if ® 4,5 # &, we define the function 7y on ® 44 by
77J:¢A+J—>QJ(X), )\—>7T(J(A+J))\)

where (A + J)) is a Fredholm inverse of A — A — J.

Lemma 5.1. If A € C(X), then ((.) is analytic on ® 4. Moreover,
if J is A-bounded, then (;(.), respectively nj(.), is analytic on P4,
respectively ® 44 7.

Proof. Let A and Ag be two elements of ® 4. Since J is A-bounded,
then 7(JAx) — w(JAx,) = 7(J(Ax — Ay,)). By Lemma 4.1 we have
m(JAx) — m(JAx,) = (A = Xo)w(JAy,) 7(Ax) and therefore ||(s(A) —
CJ()\O)HJ = ‘)\ — )\0| HCJ()\O)HJ HC()\)HJ It follows from the definition
of ||.|| 7 that, for any Fredholm inverse Ay of A — A, we have ||((A\)||7 <
| Ax||z(x)- On the other hand, by Theorem 4.1, there exist ¢ > 0 and
M(Xg) > 0 such that, for any X satisfying |\ — Ag| < &, we have A € ® 4
and [[C(A)l|7 < M(Xo). Hence, [[(7(A) = Cr(Qo)lls < M(Ao) A -
Mol I€s(Ao)]]7 which implies the continuity of (;(.) on ®4. Similar
calculations show the continuity of {(.) on ®4. Consider now X\ € $y,
and let A be a complex number satisfying 0 < |h| < d(X,0c4(A)).
Writing (1/h)({s(A+ k) — (5(N) = —¢(A + h){s()\)) and using the
continuity of ¢(.), we find

H%[Q()\ ) = V] + CO+ h) g,(A))H — 40 ash—0.

Thus, (s is differentiable at any A in @4 and ¢;(A) = —(;(A)C(A) =
—m(JA))m(Ay). In the same way we prove also that ((.) is differen-
tiable on ®4 and ¢'(\) = —[C(\)]? = —[m(A4,)]2. The proof of the
analyticity of ns(.) follows the same lines as that of (;(.). o

Lemma 5.2. Let f be an entire function, and let U be an open
subset of ®4. If J is an A-bounded operator and f(JA)) € J(X)



970 KHALID LATRACH AND J. MARTIN PAOLI

for all X € U, then f(JAx) € J(X) for all X € (Pa)y where (Pa)y
denotes the union of all connected components of ®4 meeting U. In
particular, if ® 4 is connected, then f(JA)) € J(X) for every A € $ 4.

Proof. Let us first observe that m(f(JAx)) = f((s()\)). Further,
Lemma 5.1 shows that fo(; : ®4 — Qy(X) is analytic. Since
f(JAy) € J(X) for all X € U, then fo(; = 0 on U. Therefore,
the analytic continuation theorem implies that f oy = 0 on (®4)y,
e, f(JAN) € J(X) forall A € (P4)y- O

Define the functions ¢(.) and 9 (.) by

p:C\(1} = C\{-1},  p(z)=1
v:O\(-1) - C\{1},  ¥() =

Clearly ¢ and 1 are meromorphic functions and ¢! = (.

Proposition 5.2. Let U be an open subset of @4 N ®yy. Then
1 € @54, if and only if =1 € ®jya4y),- In this case we have
17 (A) = ¢(Cs(N)) and ¢;(A) = P(ns (X)) for all X € U.

Proof. Let A € U, and assume that 1 € ®;4,. Then, by Proposition
5.1, I —(s(\) in invertible in Q 7(X), so there exist Fy » € J(X) and a
Fredholm inverse (I—JAx)* of I—J Ay such that (I—JAy)*(I-JAy) =
I — Fy. Since Ay is a Fredholm inverse of A — A, applying again
Proposition 5.1 one sees

(I —JAN*TANA=A—J) = (I - JAN(J(I + Fy)) — JANJ)
= (I = JAN(I = JAN)J + F2\
=T+ Fo)J + Fa\
=J+ F; 5,

where Fy 5, Fz » and F3  belong to J(X). Since A € @44, if (A+J)x
is a Fredholm inverse of (A—A—J), then (I —JAy)*JAx(A—A—-J)(A+
J)x = J(A + J)x + Fy\ which writes in the form (I — JAy)*JAy =
J(A+ J)x + F5x where Fy » and Fj5 » belong to J(X). This implies
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71'[(] — JA)\)*JA)\] = W(J(A+ J))\) or (IQ(X) — TI'(JA)\))ilﬂ'(JA)\) =
m(J(A+ J)). Hence, we get

(5.1) n7(A) = o(Cr(N))-

Now the spectral mapping theorem gives o(n;(A)) = ¢(o(Cs(N))).
Since —1 ¢ ¢(C\{1}), then —1 € ®;44,),. The converse follows
the same lines as above; it suffices to replace in the computations
JAx by J(A + J)x. To complete the proof, let A € U be such
that 1 € ®;4,. It follows from (5.1) that n;(A) = ¢(¢s(N)). Since
—1¢ o(ns(N\)), applying the classical functional calculus in Q 7(X), we
find ¥(ns(A\)) = (¥ o ¢)({s(N)). Now the fact that (¢ o p)(2) = z in a
neighborhood of o(¢()\)), because 1 ¢ o(¢())), gives (5 (A) = ¥(ns(N)),
which ends the proof. i

Proposition 5.3. Let U be an open subset of 2aN® 44 ;. If for each
A € U there exist a Fredholm inverse Ay of A — A and a polynomial
p(.) # 0 such that p(—1) # 0 and p(JAy) € J(X), then there ezists a
polynomial q(.) # 0 satisfying q(1) # 0 and, for each X € U, there exists
a Fredholm inverse (A+J)x of \— A—J such that q((A+J)y) € T(X).

Proof. Let Zy be the set of zeros of p(.). We first note that, since
p(JA)\) € j(X), then 0'84(JA)\) = 0’65(JA)\) = O'eﬁ(JA)\) = Zy.
Moreover, it follows from Proposition 5.2 that (;(A) = ¥(ns(N)). Also,
according to the fact that p(JA)) € J(X) we have p(¢;(A\)) = 0
in A;(X) and, consequently, (p o ¥)(ns(A)) = 0 in Q;(X) for every
A € U. Note that (p o ¢)(2) = p(z/(1+z)) for z # —1, ie,
(p o 9)(z) = ¢q(2)/(1+ z)™ for a polynomial g(.) # 0 and a certain
integer n > 1. On the other hand, it follows from p(—1) # 0 that
—1 € ®;4,. Applying Proposition 5.2 we infer that 1 € ® ;44 ), and,
consequently, ¢(n;(A)) =0 in Q7 (X) for all A € U. This shows that
there exists a polynomial g(.) # 0 such that ¢(J(A + J))) € J(X) for
allx e U. O

Now we are ready to prove Theorem 2.1.
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Proof of Theorem 2.1. It follows from Lemma 5.2 and Corollary 3.1 (i)
that (B4)y C ®ayy and i(A — A — J) = i(A — A) for all X € (B 4)y.
In particular, U C ® 44 ;. Applying Proposition 5.3 we infer that there
exists a polynomial g(.) # 0 such that for each A € U there exists a
Fredholm inverse (A+J) of A\— A—J satisfying ¢(J(A+J)x) € T (X).
Now using Proposition 5.1 we conclude that ¢(J(A+ J)») € J(X) for
all A € (P44s)v (all connected components of ® 4. ; meeting U). Let
Q be a component of (®447)y, and let A € Q. Clearly the operator
A — A may be written in the form (I + J(A+ J)\)(A—A—-J)—JF
for some F' € J(X). Since ¢(—1) # 0, then Lemma 3.1 implies that
I+ JA+J)x € ®(X) and ¢(I + J(A+ J)r) = 0. Now, applying
Atkinson’s theorem (see, for example, [23, Theorem 5.7]) we conclude
that A — A is a Fredholm operator and i(A — A) = i(A — A — J).
This shows that Q C Q' where € is a connected component of ® 4.
Hence Q = Q' and consequently (®4)y = (®a+7)y. This achieves the
proof. o

6. Application to transport equations. In this section we will
apply Corollary 2.1 to collect information about essential spectra of
neutron transport operators on L; spaces. More precisely, we are
concerned with the following integro-differential operator

AY(2,6) = —0.V,b(z,0) — o(0)h(z,v) + /V (0,0 V(o) du(o')
=T+ K

where (z, v) € D x V. Here D is a smooth open subset of R™, dy(.)
is a positive Radon measure on R"™ satisfying du(0) = 0. We denote
by V the support of du(.), and we refer to V as the velocity space.
This operator describes the transport of particles (neutrons, photons,
molecules of gas, etc.) in the domain D. The function ¥ (z, v) represents
the number (or probability) density of gas particles having the position
z and the velocity v. The functions o(.,.) and «(.,.,.) are called,
respectively, the collision frequency and the scattering kernel, cf. [2, 12,
20]. We deal with abstract velocity measures du(.), hence our analysis
works for continuous models (Lebesgue measure on open subsets of
R"™), multigroup models (surface Lebesgue measures on spheres) as
well as discrete ones (finite sum of Dirac measures). Let I' denote the
set
' ={(z,v) € 9D x V, vy, <0},
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where v, stands for the outer unit normal vector at x € 9D. We
introduce the following partial Sobolev space

W = {¢ € X such that v.V, 9 € X'},

where
X :=L1(D x V; dedu(v)).

Recall that a very precise theory of traces is available for functions
belonging to kinetic spaces such as W, see, for example, [2]. However,
when dealing with vacuum boundary conditions, i.e., ¥r_ = 0, the
situation is very easy. (By v = 0 we means that, for all compact
K cT_, ¢jx =0.) Actually, by [2, Theorem 1, page 1085], functions
belonging to W possess traces in Li _(I'_; |v.v;|dydu(v)) where dy
stands for the Lebesgue measure on 9D. This suffices to define
rigorously the domain of the transport operator with vacuum boundary
conditions.

The streaming operator T is defined by

{T¢(I,U) = —U-Vzw(%v) - U(%U)?P(%U)
D(T) = {¢ € W such that yr_ = 0},

where the collision frequency satisfies o(.,.) € L*(D x V), and ¢r_
denotes the trace of ¢ on I'_. Set

A i=d - inf .
1 €ess (M)lgDXVa(x,v)

It is well known that
o(T) = {\ € C such that ReX < —\*}

(see, for instance, Corollary 12.11 in [12, page 272]). In fact, we can
easily show that o(7') is reduced to oC(T’), the continuous spectrum
of T, that is,

(6.1) o(T) = 0C(T) = {X € C such that ReXA < —\*}.

On the other hand, if A € ¢C(T), then R(A\ — T') (the range of A — T')
is not closed (otherwise A € p(T')). So, A € g¢; (T),i=1,...,6. This
implies that oC(T') C N%_; o.; (T). Thus, according to (6.1), we have

(6.2) oe (T) = {X € C such that ReA < —A\*} fori=1,2,...,6.
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The transport operator A is defined as a bounded perturbation of T,
i.e., A=T + K where K is a bounded operator on X’ given by

KiX X b= [ slae) vl ) dut),
\%

where the scattering kernel kK : D x V x V — R is assumed to be
measurable. So, D(A) = D(T). Note that the operator K is local in z
so it can be viewed as a mapping

K():xzeD— K(x) € L(L(V; du)).
We assume that K(.) is strongly measurable, i.e.,
z €D — K(x)f € Li(V; du) is measurable for any f € Ly (V; du)

and bounded, i.e., ess-sup,cp ||K(z)| 2z, (v;an)) < oo. Hence, K
defines a bounded operator on the space X according to the rule

peX — K(z)p(z) € X.
Thus,

1K ()| cex) < ess- sup 1K ()|l 2, (v dp))-

Next we will use the class of regular collision operators introduced in
[20].

Definition 6.1. Let K(Li(V; du)) be the subspace of compact
operators of L(L1(V; du)). A collision operator
K:zeD— K(z) € LIL1(V; du))

isregular if K (z) € K(L1(V; du)) almost everywhere, z € D — K(z) €
K(L1(V; du)) is measurable and

{K(z): x € D} is relatively compact in L(L1(V; dp)).

From now on we will assume that the measure du satisfies the
following geometrical property

as
(6.3) / du(z) / X5 (tz) dt — 0 as |B| — 0
ay <|z|<az 0
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for every oy < ap < 0o and a3 < 00, where | B] is the Lebesgue measure
of B C R™ and Xp(.) denotes its characteristic function.

We recall also the following result proved in [20, Theorem 4.4] which
is needed below.

Proposition 6.1. Let K be a reqular collision operator and assume
that the measure du satisfies (6.3), then K(A—T)~1K is weakly compact
on X.

Now we are ready to prove

Theorem 6.1. Let D be a bounded subset of R™ and let du(.) be a
positive Radon measure on R™. If K 1is a regular collistion operator and
du(.) satisfies the condition (6.3), then ®r is a connected component
of ®4. Moreover, for all X € ®1, we have i(A — A) = 0.

Obviously, Theorem 6.1 and equation (6.2) imply
Oea(A) C{A € C: ReA < —X}and 0.5(4) C{A € C: ReA < A"}

Since &7 = p(T), see (6.1), the last inclusion shows that o(A) N {\ €
C : Re) > —)*} consists of, at most, isolated eigenvalues with finite
algebraic multiplicity. So,

oe6(A) C{A € C: Red < A"}

Evidently this inclusion together with the inclusions between the vari-
ous essential spectra implies

oei(A) C{AeC:ReA< X}, i=1,...,6.

This shows, in particular, that the asymptotic spectrum of A consists
of, at most, isolated eigenvalues with finite algebraic multiplicities. In
practice, this is sufficient to describe the time asymptotic behavior of
the solution (when it exists) to the Cauchy problem associated to A.

Proof of Theorem 6.1. Clearly, it follows from equations (6.1) and
(6.2) that
Or=p(T)={Ae€C: ReX>-\"}.
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Since T generates a strongly continuous semi-group on X [2, 20], then it
follows from the semi-group theory that limge x— o0 [|[(A=7") || = 0. So
there exists 7 > —\* such that for Re A > 7 we have r,(K(A\-7)"1) < 1
(rs(.) denotes the spectral radius). Accordingly, the open half plane
U={\e€ C: Re) > 7} is contained in &7 NP4, so Pr NPy # .
On the other hand, Proposition 6.1 together with [3, Corollary 13,
page 510] shows that [K(A — T)~1]* is compact on X for all A € ®.
Since @7 is connected and &7 NP, g # &, applying Corollary 2.1 we
conclude that ®7 is a component of ® 4 and, for any A € ®1, we have
i(A — A) = 0. This concludes the proof. o

Notice that essential spectra of the one-dimensional transport oper-
ator with general boundary conditions on L, spaces with p € [1, 00)
were described in detail in [18]. It was shown that, if K is a regular
collision operator, then

oei(A)={AeC: ReA< —X\"}, i=1,...,6.

The possibility of such a result for the case p = 1 is due to the fact
that, in slab geometry, if K is regular, then (A — T)"'K is weakly
compact, cf. [17, Proposition 3.2 (i)]. Similar results were obtained
for the multi-dimensional transport operator with abstract boundary
conditions in bounded geometry on L, spaces with 1 < p < oo, i.e.,
oei(A) ={A € C: ReA < —X*} fori=1,...,6, [16]. Here again the
fact that (A—7) 'K is compact on L,(D x V), 1 < p < oo, for regular
collision operators plays a crucial role in the proofs. Unfortunately, the
operators (A —T) 'K and K(\ — T)~! are not compact nor weakly
compact on Lq(D x V). The analysis performed above is based on
analytic continuation arguments, so only partial results were obtained.
Therefore, the precise description of the various essential spectra of
Aon Li(D x V) seems to be a delicate matter and certainly requires
another approach rather than that used here and that used in the works
18, 19].
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