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ORLICZ SPACES OF INTEGRABLE FUNCTIONS
WITH RESPECT TO VECTOR-VALUED MEASURES

MARIA J. RIVERA

ABSTRACT. This paper extend the theory of p-integrable
functions with respect to a vector measure studied in [6] for
p=1and in [10] for 1 < p < oo, introducing the same notion
in the context of the Orlicz spaces. Some topics of the third
section have been treated recently in [1] but with a different
point of view.

1. Introduction. After the appearance of Orlicz spaces, the theory
of L,-spaces has progressed in several directions. The special structure
of Orlicz spaces discovers an amount of new questions that are hidden
in the classical theory because of the special properties of L,-spaces.
Moreover, Orlicz spaces can be the first step to consider more abstracts
generalizations to the classical theory of Banach spaces. The vigorous
growth of the topic is a consequence of the interest of applications to
potential theory, interpolation and differential equations among others.

As in classical theory of scalar integration, the spaces of integrable
functions with respect to a vector measure has been constructed around
L,-spaces. This paper tries to introduce the integration with respect
to vector-valued measures in the setting of Orlicz spaces. As we can
see, this extension carries new problems, the solution of which is here
not as clear as in classical theory.

In the following, (€2, %, ) denotes a measure space, where ¥ is a o-
algebra and p a nonnegative measure. For definitions and properties
of Orlicz functions and the Orlicz spaces of measurable functions we
refer to [3, 7, 9]. A nondegenerated Orlicz function @ is a continuous,
nondecreasing and convex function defined in [0, oo[ such that ®(t) =0
if and only if t = 0 and lim;_,o, ®(¢) = co. The representation integral
of a convex function ® can be used to obtain interesting properties;
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for example, we use in some occasions in this paper that if 0 < a < 1
then ®(az) < a®(z), for every x > 0. In the paper ® will be a strictly
increasing Orlicz function. We recall that if f € Lg(u), then there is a
k > 0 such that ®(|f|/k) € Li(p). The space Lg(p) endowed with the
norm || f||L,u) = inf{k > 0: [, ®(|f|/k) dp < 1} is a Banach space.
A classical tool in the theory of Orlicz spaces of 1ntegrable functions
Lg(p) is the (maybe infinite) modular I(¢ ,)(f) := [, ®(]f]) dp.

For topics about vector measures, we refer to [2, 6]. For us F always
represents a countably additive vector measure F' : ¥ — X, where
X is a Banach space. From the Bartle-Dunford-Schwartz theorem,
the range of a countably additive vector measure defined in a o-
algebra with values in a Banach space X is a relatively weakly compact
subset of X, hence this range is a bounded set; then F' is a vector
measure with bounded semi-variation ||F|| (a bounded vector measure
in ¥). The fact that a countably additive vector measure can have
unbounded variation |F| is the main reason to use the semi-variation.
If 2’ € X', (¢'F) denotes the scalar measure such that for every A € X,
(2'F)(A) := (F(A), ).

In general the real Y-measurable function f is said to be F-integrable
if it satisfies

1) f is (2’ F)-integrable for every 2’ € X'.
2) For every B € ¥ there is an element in X usually denoted by
[ fdF such that for every o’ € X', (¢, [, fdF) = [ fd(2'F).

The space of F-integrable functions is denoted by L£(F'). The corre-
sponding space of classes of F-integrable functions under the identifi-
cation of functions which coincide ||F||-almost everywhere is denoted
by Li(F). In Ly (F') we define the norm

[Allzary == sup ([fllzierr)s
IBl(XI)

LS

where B,.(Y) represents the closed ball of radius r of a Banach space
Y. The space (L1(F), ||.||z,(r)) is a Banach space. Moreover, the norm

sy = sup | [ sar
Aex A

is equivalent to |||z, (7), with

ANz y < N flleacey < 20Ny -
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With respect to the Banach lattices theory we refer to [8, 11]. We
remark that L, (F) is a solid and order continuous Banach lattice, and
this fundamental fact is used in our work on many occasions.

2. Spaces of (?, F)-quasi-integrable functions. Let F be a
vector-valued measure defined in a measure space (2, X) with values in
a Banach space X, and let ® be an Orlicz function.

Definition 1. In the space of measurable functions we can define
the functional:

1 fll@,7) := sup{l|fll Lo (ar )y, ' € B1(X')}.

If ®(|z|) = |z|, we write ||.||(1,7) instead of ||.||z, (F)-

Definition 2. We say that a measurable function is (@, F')-quasi-
integrable if || f||(s,F) < oo.

The set of classes (under the identification of functions which coincide
| F'||-almost everywhere) of (®, F') quasi-integrable functions is denoted
by QLg(F). It is easy to see that the pair (QLg(F),|.|/(s,7)) is a
normed space.

Theorem 3. (QLy(F), ||.l[(s,7)) is a solid Banach lattice with weak
order unit.

Proof. Tt is clear that (QLy(F'), ||.||(s,7)) is a solid normed lattice with
respect to the usual order. Then we have to see that it is complete.

Suppose that (f,)s2; is a Cauchy sequence in (QLy(F), ||.||(s,r))-
Let n; be the smallest index n such that ||f, — ful(@,r < 1/2
for every m > n, and in general ng, k € N, is the smallest index
number n > ni—1 such that ||f, — finl/(@,r) < 1/2* for every m >
n. The series |fn,| + D pq [frysy — fni| is absolutely summable in
Ly(J2'F|) for every ' € X', and as Lg(|2'F|) is complete then
the function g := |fn,| + D pe; [fress — frel € La(|2'F|) for all
z' € By(X'), and also g € QLg(F). Moreover, the set B := {w :
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?(g(w)) = oo} = {w : g(w) = oo} satisfies that |2'F|(B) = 0 for
every ' € Bi(X'), hence |F||(B) = 0. For every w € Q\ B,
the series |fn, (W) + Y pey [freps (W) — fny(w)| converges; hence, the
series fr, (W) + D pr 1 (fres (W) — fr, (w)) also converges in Q\ B. We
define () i= fuy (@) + Sopon (s (@) — fu,(@)) if @ € ©\ B and
f(w) :=0if w € B. We have that f € QLg(F) and f = limy 00 fn,
pointwise in Q \ B. Furthermore, |f — fn,| < > o0 [fnoiy — fn,| in
Q \ B; hence, ||f - fnk“((b,F) < Z:o:k: ans+1 - fns (®,F)» and then
limg o0 | f = frill(@,7) = 0. Hence, (QLg(F),||.||(s,r)) is complete.
Moreover, it is easy to see that Xq is a weak order unit. O

Definition 4. In QLg(F) we can define the (maybe infinite)
functional:

Ia,r)(f) = S )I@Jz'm)(f)-
‘,L.I 1 7

We continue with some relations between [(4 ) and the norm
|-ll(®, ), which generalizes some well-known results in the Orlicz spaces

Lo (p)-

Remark 5. If f € QLg(F), there is k > 0 such that

I, 7)(f/k) = sup /Q<I>(|f|/k) d(|z'F[) <1

2’ €B1 (X')

because if not, for every n € N there is an z,, € By(X’) such that
Jo ®(|fl/n)d |:v F|) > 1, hence || f||L (jo, F|) > 7, which is impossible.

Corollary 6. f € QLo(F) if and only if there is a k > 0 such that
Lie,r)(f/k) < o0.

Then we define in QLg(F') the functional:

S(@,m)(f) :=inf{k > 0: Ig ) (f/k) < 1}.

Proposition 7. 6(s r)(f) = [|fll(e,r) for every f € QLa(F).
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Proof. 1t is clear that [|f|[( ) < 1 if and only if I(s r)(f) < 1. To
prove the desired result, we only recall that

6@,r)(f) =inf{k > 0: I r)(f/k) < 1}

= inf{k >0: % € BI(QL¢(F))}.

Then 5(

o,7)(f) is the Minkowski’s functional of B;(QLg(F)), hence
5(<I>,F)(f) =

Hf”(cb,F)- o
3. Spaces of (?, F)-integrable functions.

Definition 8. We say that a measurable function f (identifying
functions which coincide ||F'||-almost everywhere) is (®, F)-integrable
if there is an a > 0 such that ®(|f|/a) € L1 (F).

The set of classes of (®, F')-integrable functions is denoted by Le (F').
Proposition 9. Lg(F) C Ly (F).

Proof. For every support line of @, y = mxz—n, m > 0, n > 0, we know
that for every z > 0, ®(x) > ma — n. Then for every f € Lg(F') such
that ®(|f|/a) € L1(F) for some a > 0, as ®(|f|/a) > m/a|f| — nXq,
we have that |f| < a/m(®(|f|/a) + nXa) and a/m(®(|f|/a) + nXq) €
Ly(F). As Ly(F) is solid then f € Li(F). O

The fact that L;(F) is a solid normed space can be used to prove as
in the scalar case,

Corollary 10. (Lo (F), |||l(®,r)) is a solid normed lattice.

Then it is natural to ask if (Ls(F), ||.||(s,7)) is a Banach space. In
order to explain the problem, we put in consideration of the reader
the following arguments. Suppose that {f,}52, is a Cauchy sequence
in (Lo(F),|.|l(®,r)), hence there is f € QLq(F) such that f is
the [|.||(e,r)-limit of {fn};2,. The question is: Does f belong to
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Ls(F)? The fact that {f,}>2, is a Cauchy sequence, implies that
given 1 > ¢ > 0 there is an ny such that for every nj,ns > ny,

sup / <fn1 fn2|> (| IF|) <1
z'€B1(X')JQ

and as ® is convex, ®(|fn, — fno|) < €®(|fn, — fnol/€); hence, the norm
convergence implies the modular convergence, that is,

(1) sup / (| fun — fon(2'F)) < &

2’ €B1 (X')

Suppose for example that ®(|f,|) € Li(F) for every n € N. Then
it is reasonable to think that if f € Lg(F) then, for every A € %,
[4®(If]) dF € X is the limit in X of the sequence ([, ®(|fx|) dF)>
But in this case ([, ®(|fn|) dF)32, must be a Cauchy sequence in X
for every A € ¥; hence, given € > 0 it will be mg such that, for every
my, Mg > Mo,

(2) sup /Q|‘1>(\frm|)—‘1>(|fmz|)|d(lw'F\)<8

@' €B1 (X')

If we compare, the condition (2) is stronger than condition (1). More-
over, the condition (2) implies in some sense that we have certain con-
trol in the way the Orlicz function increases, and in this setting to
solve the problem of the completeness of Lqg(F) we consider the class
of Orlicz functions having the Ay property.

Definition 11. We say that an Orlicz function ® has the A, property
if ®(2¢t)/®(¢) is bounded for every ¢ > 0.

As in the corresponding spaces of Orlicz Lg(u) where p is a scalar
measure, it is easy to see that if ® satisfies the A, property and
f € Lg(F), then ®(k|f|) € Li(F), for every k > 0. Then (g )
is always finite in QLo (F). Moreover, in this case, the modular
convergence in QL (F) is equivalent to the norm convergence.

Proposition 12. Suppose that ® satisfies the Ay property, and let
X be a Banach space without copies of co. Then QLg(F) = Lo(F).
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Proof. Given an f € QLg(F), if Ay := {w € Q: ®(|f|(w)) < n},
then (®(|f]Xxa,))52, is a sequence of bounded functions (hence it is con-
tained in L (F')) which converges point-wise to ®(|f|). We recall that
o(|fxa,) = ®(|f)Xa, Define g1 := @(|f|X4,), gn := ®(|fIXa,) —
O(|f|Xa, ,)yn> 1. Clearly (9rn)52; C Lo(F), and for every z’ € X'
and every B € X, Zoo ([ gndF, ") = 307 | [pgnd(a'F) | <
D fBgnd(|x'F| fB (IfDd(|z'F|) < oo, for all o' € X'
Hence, from the Bessaga—Pelczynskl s characterization of the Banach
spaces without copies of ¢y, there 1s an Iz 21 dF E X such that

fB (If]) dF, z") = nflfBg" fB (If]) d(z'F). o

In order to study the completeness of Lg(F) without additional
assumptions about X, we have the following technical proposition.

Proposition 13. Suppose that ® satisfies the Ao property. Then
for every € > 0 there is a § > 0 such that if h and g are in the unit
ball of Le(F) and ||h — gll@,r) < 6, then sup,.cp, x Jo |2(|h]) —
o(lg))ld(|z'Fl) <e.

Proof. Let k > 0 be such that ®(2z) < k®(z), for every z € R.
Let g,u € Lg(F) be such that [|g|(e,ry < 1 and [Jul/er < 1/2.

Then, for every 2’ € B1(X'), I(s,2'r))(9) < 1, I(a,or))(29) < k and
I(,) )y (2u) < 1. Moreover,

1 1
I jorr)) (9 +u) = (g, z’Fl)( 29+ 5 >

| /\

1
§I(<I>,\z’F\)(2g) + 5 1@ o)) (2u)
1
< —(k+1).
< St
Fix g € Lg(F) such that [|g||(e,r) <1 and 2’ € B;(X'). We define

T(g,m’)(u) = I(@,\E’FD(Q + u) - I(@,\E’FD(g)a

for every u € Lo (F'). It is clear that if ||ul[(¢ 7y < 1/2 then |7 oy (u)] <
(k+3)/2.
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The map 7, ;) is convex in Lg(F). In fact, if 0 < a,b<1,a+b=1,
and u,v € Lg(F), as I(g |,/ ) is a convex function in Lg(F), we have

aT(g,ar) (1) + bT(g 1) (V)
= a(I(a,rr)) (9 + u) — L@, (9))
+b(I(a,1o 7)) (9 +v) = L3,z F)) (9))
=al(g | r)) (9 +u) +blg|er)(9+v) — L@ r)(9)
> L@, o)) (a(g +u) +b(g + ) = I orr)) (9)
= I(@,[ar ) (9 + at + b0) — L@, 1217y (9)
= T(g,2")(au + bv).

Given 0 < ¢ < 1, we take f € Lqg(F) such that ||f|(e,r) <
e/(3(k + 3)), or equivalently [|3(k + 3)/2¢f||(,7) < 1/2. Then, from
the convexity of 74 .1y, as 2¢/3(k + 3) < 1, we have

2¢ 3(k +3) % k+3 e
o) < m”””( 2¢ f) S3kt3 2 3
But also
0 =7(4,0)(0)
_ 1 2¢/3(k+3) [ 3(k+3)
o) (1 T3k ) T TE (2e/3(k + 3)) ( 2 f))
1
S T @3tk + 3)) o))
2¢/3(k +3) 3(k +3)
1+ (2¢/3(k +3)) @) ( T2 f)’

hence

2 3(k+3) 3
0= g () + g3y T < - Tf> < Tigen(f) + 3

Then 74 . (f) > —¢/3, hence |1, .)(f)| < /3. Then we have that

Wl m™

(@,1o' )y (h) — L(@,jer )y (9)] <
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for all 2’ € B1(X'), and for every pair of functions g and h in the unit
ball of Lg (F) such that ||k — g||(s,r) < €/3(k + 3). In consequence,

sup  |l(a, |0 r))(h) — L@, F))(9)]
o'€ By (X7)

Let A:={w e Q: |h(w)|] > |g(w)|}. Then

sup )Alé(hl)—@(gl)ld(lw'F)

@' €By (X’

< sup / (@(|h]) — (|g])) d(|2'F))
yJa

a'€By (X'

+ sup / (@(lgl) — @(|R])) d(|="F])
Q\4

@' €By (X')

= sw | [ @(ia) - B(lgia) (e F)|
z’€B1(X'") ' JQ
+ sup /(‘I’(\QIXQ\A)—<I’(|h|xQ\A))d(|x’F|)‘
eeB(x) /o
<e. O

Then we can extend this result to the result of [5, Lemma 5].

Corollary 14. Let ® be an Orlicz function with the As property.
Then I(e ry is uniformly continuous in the closed unit ball of La(F).

Proof. For every € > 0, there is a § > 0 such that ||f — g[/(s,7) <,

which implies [l 7)(f) — l@,r)(9)] < SUD,/ ¢, (x7) (@10 7)) (f) —

I 1o 7)) (9)| < € for every f, g in the unit ball of Lg(F). O

Proposition 15. Let ® be an Orlicz function with the Ao property.
Then Lg(F) is complete.
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Proof. It is an immediate consequence of Proposition 13 and the
comments we had previously to the introduction of the Ay property in
this setting, because if we take a Cauchy sequence in Lg(F') without
loss of generality we can suppose that it is contained in the unit ball of
ch (F) . O

Remark 16. We don’t know if the Ay property is necessary for the
completeness of Lg(F). Fortunately, if Lg(F) is not complete, the
completion of Lg(F) coincides with its closure in QLg(F), denoted
Ly (F).

If f € Lge(F), as the set of simple functions is dense in Ly (F), then
there is a Cauchy positive sequence (S,)52; of simple functions which
converges to ®(|f]) in the topology of Ly (F). Moreover, the convexity
of ® implies that ®(a)+®(b) < ®(a+b) (hence ®(la—b|) < |®(a)—2(b)])
and that ® 1(a) + @ 1(b) > ® !(a + b) (hence ® '(Ja — b]) >
|®1(a) — @ 1(b)|) for every a,b > 0. Then we have

Proposition 17. If ® satisfies the Ao property, the set of simple
functions is dense in Lg(F).

Proof. Let f € Le(F)™, and let (S,,)5°_; be a sequence of positive sim-
ple functions converging to ®(f) in Ly (F). Given £ > 0, suppose that
S, = ng) aj'X ar satisfies that sup,cp, (x/) Jo 12(f) = Snld(|2'F|) <

e.  The simple function R, := ng)@’l(a?)XA? satisfies that
®(Rn(w)) = Sn(w )- Then sup,cp, (x7) o |2(f) — @(Ry)|d(|2'F|) <
e But ®(f - Bul) < [2(7)  ®(Ra)| = [2(7)  Su. Then

SUP,rep, (x1) Jo @ f — R,|)d(|z'F|) < e. Moreover, let ny be such
that if n, m > ng, hence

k(n) k(m)
180 = Swllzary = D D laf —af | IFII(A} N A7) <&
i=1 j=1

Then,
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k(n) k(m)
Ig,p)(Rn — Rm) = o(|27 (o) — @7 (@) FII(A} N AT
i=1 j=1
k(n) k(m)
< (@7 (laf — af'D)IF(I(AF N AT") <,
i=1 j=1

hence (R,,)22; is a Cauchy sequence of simple functions in L (F') which
converges to f. Then The set of simple functions is dense in Lg(F)™.
The result follows because for every f € Lg(F), f = fT — f~. i

Remark 18. Reasoning as in Remark 5 and Proposition 7, if ® satisfies
the A, property then the functional [||.|||(e,r) in Le(F') is such that

[1£1ll@,F) := inf{k > 0 : [|@(|F1/F)l[,r) < 1}

is a norm in Lg(F).

Remark 19. Propositions 15 and 17 have been obtained in [1]
using Kothe function space arguments. Our results complete this
information with new facts, showing the role of the A, property and
giving an approximation to the problem using more specific Orlicz
theory techniques.

Proposition 20. Suppose that ® satisfies the Ay property. Then the
norm |||.|||(@,r) in Le(F') is equivalent to ||.||(s,F)-

Proof. For every f € Lg(F), f #0,

sup | / (1 f1/509,(£)) dF|

= @ f1/é@,m (F)I 1)
< [2(1£1/8¢p,) (Dl 1, )

— sw / B(|f1/80.r)(f)) d(|' F))

@' €BL(X') JQ
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< sup /Q S 1/ Flo.rm) d(la FI)

a'€By(X")

< sup /Qq’(lfl/\lfllL@(\z'm))d(lw'Fl):1,

z’eBl(X )

putting |f|/[[fllz, (e 1) = O 3f || fl| £, (jar )y = 0. Then
Son (1) =t {k> 0 sup | [ @(i71/mar <1}
Bex B
= inf{k > 0: | 2(1f1/6) o p) < 1}

> inf { >0 H%@(m/k)H(m <1}.

But as & satisfies the A, property, there is a 6 > 0 such that
D((140)z)/2 < ®(z) for every x > 0, see [9, Theorem 2.3.3]. Then

ot o010, )
(1,F)}

cufooo (8
= 1i6inf{s >0: H%fl)((l+5)|f|/s)

<1}

2

1

g fls > 05 12(f1/9)llr) < 1}
1

= Trslenf)

Then §(, 7y (f) > [|flll(@,7) = 1/(1 4 6)d(4,7)(f), and the result follows
from Proposition 7. u]

The representation of many of the more common Banach lattices as
suitable spaces of functions has been successful. We mention mainly
Kakutani’s representation of abstract L, and M-spaces by spaces of
functions L,(u) and C(K), respectively. Kakutani’s method has been
adapted to other situations, for example in the representation of the
order continuous Banach lattices with weak order unit, see [8, 1.b].

Theorem 21. Suppose that ® satisfies the Ay property. Then Leg(F)
is an order continuous Banach lattice with weak order unit.
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Proof. Let (f,)22, be an increasing positive sequence in Lg(F') such
that there is a g € Lg(F) with f,, < g. From [6, Corollary 11.4.2] as
(®(fn))22, is a monotone sequence in Ly (F') bounded by ®(g) € Ly (F),
then (®(f,))22, converges || F||-almost everywhere and in the L;(F)-
norm, to a function h € Ly (F). If we define f := ®~*(h), we have

wpyémmrwwuwn

@' €By (X’

- wp)A@%ﬁMﬁMWTD

z'€B1 (X'

> wptéﬂm—ﬂMWTU

z’€B1(X')

Then (f,)22; norm-converges to f in Lg(F). As a consequence from
the characterization of the order continuity in Banach lattices, see [11,
I1.5.12] or [8, Proposition 1.a.8] Lg(F') has order continuous norm.

Moreover, it is clear that Xq is a weak order unit in Lg(F). o

Using the result of [8, Theorem 1.b.14], we have the following repre-
sentation.

Corollary 22. Suppose that ® satisfies the Ay property. There is
a probability measure space (O, S,v), an ideal T of L1(v) and a lattice
norm vge(.) in I such that Lg(F) is order isometric to (Z,vg).

From the Bartle-Dunford-Schwartz theorem [2, Corollary 1.2.6], there
is a positive finite measure A\r on (2, %) such that Ap(A4) < ||F||(A)
for all A € ¥ and that Ar(A4) =0 implies ||F||(4) = 0.

Definition 23. A Kothe function space X with respect to the fi-
nite measure space (£2, X, A) is a Banach space of (A-almost everywhere
classes) of A-integrable real functions such that it contains the charac-
teristic functions of the sets of ¥, and if f is A—measurable and g € X
such that |f| < |g| then f € X with || f]| < ||g]l-

With the measure Ap and the former definition we have the following.
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Proposition 24. Suppose that ® satisfies the Aoy property. Then
Lg(F) is a Kéthe function space with respect to (Q, %, A\r).

Proof. If f is Ap-measurable and g € Lg(F) is such that |f| < |g], as
O(|f]) < ®(|g]) and Ly (F) is a Kothe space with respect to (2, 2, Ar),
then ®(|f|) € L1(F); hence, f € Lg(F). o

4. Ultraproducts. The results obtained in the previous sections
can be used to analyze some new aspects of the spaces Lg(F'), which
can be considered as extensions of the scalar case. An example is the
construction of ultraproducts, a well-known topic in Orlicz spaces of
measurable functions with respect to scalar measures. Our motivation
is that this extension is not a straightforward modification of known
things, because we have to start studying ultraproducts of vector-valued
measures.

Concerning ultraproducts of Banach spaces, the standard paper is
[4], and we refer to it for concrete definitions. We only set the notation
we will use. Let D be a nonempty index set and / an ultrafilter in
D. Given a family {Xy4, d € D} of Banach spaces, (Xq)y denotes
the corresponding ultraproduct Banach space. We recall that (X})y
is contained in ((Xg4)y)' as an isometric subspace, and that (Xg)y is
reflexive if and only if (Xq)u) = (X))u-

Let {A4,d € D} be a family of sets. We denote by (Ag)y the set of
all classes of Ilzcp A4, under the equivalence

(ad)deDR(bd)deD — {d €D:ag= bd} eu.

Let {(Q4,%4),d € D} be a family of measure spaces. We define the
Boolean algebra

Yu,0 :={(Ada)u,Ad € Xq,d € D},

and we denote by ¥, the o-algebra generated by > .

Let {X4,d € D} be a family of Banach spaces, and let {Fy,d € D}
be a family of countably additive vector-valued measures Fy; : ¥4 — X4
for all d € D, such that supycp ||Fal/(Qq) < o00.
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Definition 25. We define the ultraproduct vector measure Fj :
Yu,0 = (X4)u such that

Fo((Aa)u) := (Fa(Aa))u-

Obviously, the hypothesis supye p || Fal|(24) < oo implies that F has
finite semi-variation in 3 .

Theorem 26. If (X4)y does not contain copies of cg, then the
ultraproduct vector measure (Fa)u : Zyo — (Xq)u can be uniquely
extended to a countably additive measure F : Yy — (Xq)y-

Proof.

Step 1. First we will see that |(z})yFo| < (|2} Fa4|)y in Xy, for
every (z/)u € (X))u. Let A := (Aq)u be a subset of Xy, and let
{E',E?,... ,E"} C Sy be a partition of A in ¥y 9. Without lost of
generality, we can suppose that if E* = (E%)y, then EjN Eg = o if
i #j,4,5=1,...,n, for all d € D; hence, {E},... ,E7} C £ is a
partition of A, for every d € D. Then we have

> KF(E), (e} <Tim D (Fa(EY), )]

i=1

< lim (2 Fa|(Aa) = (|23 Fal)u(A).

Hence, (|(z3)uFol(A) < (|zgFal)u(A).

Step 2. For every z' € ((Xq)u)', |2’ Fy| is strongly additive in Xz, 9. In
fact, from the ultraproduct version of local duality, ((X4)y)’ is finitely
representable in (X))y, hence there are an index set .S and an untrafilter
S on S such that ((Xa)y)' is isometric to a subspace of (X(; ;))uxs,
where for every d € D, X4, = Xg, for all s € §. Moreover, this
subspace is norm-1 complemented. We denote by

I (Xa)u = (X(a,5)uxs
the canonical isometric embedding, and by

T (Xa)u)" — (X{a,)uxs
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the above-mentioned isometric mapping. If (z4)y € (X4)y and z’ €
((Xa)u)" with J(2') = (@(, ,))uxs, then

(wa)utr#') = (I((@aua), (@) = Jim (0.1, F{a):

where x4 ) = x4, for all s € S.

We can identify Fy with (F(g,s))uxs, where for every d € D, Fiy5) =
Fy, for all s € S. Hence using Step 1, [&'Fo| < ((|2{4 4 Fd,s)))uxs)-
The measure (|@(, ) Fla,s)|)uxs is strongly additive in Yo y/xs, because
it is the ultraproduct of strongly additive positive measures with
SUD(4,5)eDx S [T(a,6)Flds)| S SUP(a6)eDxs 1T(a6)ll 1F(d9)[(Qa,s)) <
oo, where for every d € D, Q(4.5) = Qg and (4 5) = Xg, for all s € S.
Then |2’ Fy| is strongly additive in ¥y 0.

Step 3. We will see that Fj is strongly additive in ¥y . Let
{A",n € N} be a disjoint sequence in ¥y . As |z'Fpy| is strongly
additive in Yy for every z' € ((Xq)y)', then Y |(z/, Fo(A™)) <
Yoo ' Fy|(A™) < oo. Hence, from the Bessaga-Pelczyniski’s char-
acterization of the Banach spaces without copies of ¢y, the series
Yoo Fo(A™) converges in (Xq)u.

Then from the Carathéodory-Hahn-Kluvanek extension theorem, see
[2, Theorem I-5-2], Fy, has a unique countably additive extension to
Yy ]

We denote this extension by F. Our aim is the study of the
relationships between L (F) and (Lo (Fy))y-

Theorem 27. Let ® be an Orlicz function with the Ay property.
Suppose that (Xq)y is reflezive. Then Lo(F) is isomorphic to a
subspace of (La(Fy))u via a positive isomorphism.

Proof. The space of the simple functions f = > 7" ¢, Xan, A" =
(A7)u € Xy for n = 1,...,m, is dense in Lg(F). We put fq :=
S X arn. Then we define the mapping between the subspace of
the simple functions of ¥y ¢ in Lg(F) and (Lg(F4))y such that

T(f) = (fd)l/{ = <ZCnXAg>u S (L@(Fd))u
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Suppose that f is positive. For every ' = () € (X}))u = (Xa)u)'
and for every B = (Bg)u € Xu0,

( /B a(f) dF, ') = /B &(f) d(x'F)
i@ F)(A" N B)

n=1

> ®(cn) (2 Fa) (A N Bd)>u

n=

/ i ®(cn)Xan d(m&Fd))

=

u

Then fB(P dF: fB @ d)dFd)u-

For every € > 0, as |||®(fa)|l|1,Fy) = suPaes, || [4 ®(fa) dF4||, for
every d € D, there is an Ay € ¥4 such that

@ (fa)lll1,Fa) < H/A ®(fq)dFy| + ¢

Then

1(@(Fa))ull (el 1 < H </A q)(fd)’dFd)MH e

o
(Ad)u

< el + &
hence, [|(2(fa))ullcczsma.iiny < N12CIa,r)- As
e/ ll@,m)llar <1,

‘+5

then
(@ fa/ Il o, el oy Ea e < 1s
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hence given ¢ > 0, there is a D € U such that for every d € D,
@ (fa/lfl@, 7))l (1,70 < 1+ €. Hence,

<1
(1,Fq)

||zl e

’

and also

1@ (fa/((L+ )l f @)1, 70) < 1-

Then
I(Faull(zaEali-le e < 1 ll@.r)-

But |®(f)|la,r) = SUPuen, (xaw)) Jo @(f)d(|2'F|). Then, given
e > 0, there is an 2’ € By (((X ) ) ), = (z!)u, such that

19(F) |1,y < / o(f) d(|2'F|) + ¢
< / S(f) d((|yFal)us) + €
(Qq)u

=Y ®(cn)(|xhFalJu(A™) + &

= () yrdan) +e

u

_ 1im/Q B(f.) (|, Fa) + <.

As 2’ € B1(((Xq)u)'), there is a Dy € U such that ||z} <1+ ¢ for
every d € Dy. Then /(1 +¢) € B1(X)) for every d € Dy. Using this
fact, we have

1907 ey < lign [ B2 d(laFl) + =
d
< (L + ) I(@(fa))ull((zaEa). 11 + &

Hence, [|2(f)/(1,r) < I(@(fa))ull((zs(Fa) 1))

Suppose that § = (3(e,r,) (fa)u = [[(faull(ze(Fa) lllla.rp))- Given
e > 0, there is a D € U such that (¢ r,)(fa) < 6 +¢. Then, for every
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d € D, [ ®(fa/(6 + €))ll,rs) < 1, hence |2(f/(d + €))lla,r)
and then 0(¢ 7)(f) < 0 +¢e. As ¢ is arbitrary, ds r)(f) <

11l 7y < N(Fa)ull(zoFa),l om0

For general step functions, the same result follows by putting f =
=5

Then T can be extended to Lg(F) and the extension 7 is injective;
hence, T(Lg(F)) is a subspace of (Lg(Fy))y which is isomorphic to
Lg(F). Moreover, for construction 7' is positive; then T satisfies the
same property. This concludes the proof. o

<
9,

Remark 28. From the former proof it is clear that if (Xg4)y is not
reflexive then Lq (F') is isomorphic to a subspace of (Lo (Fgs))uxs via
a positive isomorphism, where for every d € D, Fy s = Fy for every
seSs.
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