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STRUCTURALLY STABLE QUADRATIC FOLIATIONS

XAVIER JARQUE, JAUME LLIBRE AND DOUGLAS S. SHAFER

ABSTRACT. We characterize the elements of F,,, the set
of polynomial vector fields on the plane of degree at most n
without finite singular points, that are structurally stable with
respect to perturbations within F, for n < 2. We do so with
respect to each of the two natural definitions of stability in
this setting.

1. Introduction and statement of the main results. Although
the characterization of C" vector fields on compact two-dimensional
manifolds that are structurally stable goes back to Peixoto [11], the
characterization of all structurally stable planar polynomial vector
fields of degree n (under perturbation by polynomial vector fields of
degree at most n) is still an open problem since it is not known if
the “natural” hyperbolicity condition on the limit cycles is needed for
stability.

Moreover, even in the case of general families for which we know a
characterization theorem in terms of singular points, periodic orbits
and saddle connections, it is difficult to give an explicit classification
of all structurally stable phase portraits. An exception to this can be
found in [2], in which is given the classification of all structurally stable
phase portraits for the quadratic family modulo limit cycles. We note,
however, that the mathematical object that is structurally stable is not
the phase portrait but the specific vector field that realizes it.

One family of polynomial vector fields that is a natural candidate for a
complete characterization theorem, and a categorization of structurally
stable phase portraits, is what we will refer to as the set of planar
polynomial foliations, or simply, foliations, that is, planar polynomial
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vector fields without singular points (or, equivalently, having all their
singularities at infinity), whose phase portrait is a foliation of R?. For
of course within this class of systems there are no cycles in the phase
portraits, automatically eliminating the problem of limit cycles. New
difficulties, however, particularly for obtaining necessary conditions for
structural stability, are introduced by the fact that the set of allowable
perturbations is so small. (If we allow general polynomial perturbation
of degree at most n, or even smooth perturbation, characterization
theorems follow immediately as corollaries of theorems in [14, 15,
16].) In an earlier work [7] we were able to obtain separate lists of
necessary conditions and of sufficient conditions for structural stability
(restricting to perturbation within the set of polynomial foliations of
degree at most n) when the topological equivalences involved take place
on the so-called Poincaré sphere, see Section 2; they are reproduced in
Theorem 3.1 below. In this paper we obtain full characterization of
structural stability of polynomial foliations of degrees 1 and 2, both
on the Poincaré sphere and on the plane, together with a complete
catalogue of phase portraits of stable systems.

To describe the results and their context more precisely, we introduce
some notation and terminology and give an outline of the two notions
of structural stability of polynomial vector fields. A more detailed
discussion is given in the next section. Let P,, denote the set of vector
fields (P, Q) on R? whose components are polynomial functions of z
and y of degree at most n, and let F,, denote the set of foliations in P,,.
For X € P, we let m(X) denote the corresponding Poincaré vector
field on S2. The tangential eigenvalue at a singularity p of 7(X) is the
eigenvalue of dr(X)(p) whose eigenspace contains the line tangent to
the invariant equator E of S2.

There are two natural but inequivalent notions of structural stability
of an element of F,, with respect to perturbation within F,,. Briefly,
X €F,, is S%-structurally stable if and only if for any Y in a sufficiently
small neighborhood of X in F,,, 7(Y) is topologically equivalent to
n(X). X € F, is R%-structurally stable if the topological equivalence
is between X and Y themselves. As will become clear, the distinction
is already relevant for X € F;.

The precise statement of our first main result, whose proof is given
near the end of Section 3, is the following. To avoid circumlocutions,
throughout this paper we will refer to Fy as the set of quadratic folia-
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tions, even though some of its elements are linear and some constant.
Similarly, F; will be called the set of linear foliations.

1.1. Theorem. An element X of Fy is S%-structurally stable with
respect to perturbation within the set Fo of all quadratic foliations if
and only if it satisfies the following two conditions:

(1) The tangential eigenvalue at each singularity of w(X) is nonzero.

(2) All separatriz connections of w(X) lie in the equator E of the
Poincaré sphere S2.

The set of S%-structurally stable elements of Fy is dense in Fo. More-
over, any requirement that the equivalence homeomorphism be near idg:
s redundant.

All possible topological types for 7(X) when X € Fy are shown in
[4, Figure 1], which we reproduce as our Figure 2 in Appendix A.
We will refer to an element X of Fy as being “of Type k” if 7w(+£X)
is homeomorphic to the phase portrait in Figure 2 (k), which is also
Figure 1 (k) of [4]. If X is constant, it is Type 8 (which is also the
type of some quadratic elements of Fs); if X is linear it is Type 22
or Type 23 (which are not realized by any quadratic element of Fy).
By combining Theorem 1.1 with the classification theorem given in [4],
we obtain the following classification of all structurally stable phase
portraits.

1.2. Corollary. An element X of Fy is S%-structurally stable with
respect to perturbation within Fo if and only if X is of Type 1,3,4 or 8
(and if of Type 8, the unique infinite singular point must have a nonzero
tangential eigenvalue).

Noting that the S2-structurally stable elements of Fy have either the
maximal or minimal number (counting multiplicity) of singularities at
infinity, from the elementary theory of equations we may also express
the S2-structural stability theorem as follows.

1.3. Corollary. Let X be an element of Fo and, using the notation
of (2.1), set A = ag2, B = a1,1 —bo2, C = az0 —b1,1, D = —bayp



492 X. JARQUE, J. LLIBRE AND D.S. SHAFER

and A = 18ABCD — 4B3D + B2C? — 4AC? — 27A%2D?. Then X is
S2-structurally stable with respect to perturbation in Fo if and only if
either

(i) A <0 or

(ii) A > 0 and there are no saddle connections of w(X) not lying in
E.

The two corollaries are proved at the end of Section 3.

In [7] we conjectured that conditions (1) and (2) in Theorem 1.1,
which were proved in [7], to be sufficient for S?-structural stability for
every degree n, are necessary as well. Theorem 1.1 and Proposition 3.2,
which characterize S2-structural stability in the linear case, confirm the
truth of the conjecture for n < 2.

For n > 2, the question of R2-structural stability is exceedingly
difficult, because dramatic change in the phase portrait of 7(X) is
compatible with complete lack of change in the phase portrait of X.
The only known result for general degree n is Theorem 10 of [7],
reproduced as Theorem 4.1 below. However, making extensive use of
the work done in [4], we can give a characterization (and classification)
theorem in this setting for low degree. Not surprisingly, all linear
foliations are R2-structurally stable with respect to perturbation within
F; (Proposition 4.2). The theorem for n = 2 is easier to state in terms
of instability. The normal forms referred to in the theorem are those
of Lemma A.2.

1.4. Theorem. An element X of Fy is R2-structurally unstable
with respect to perturbation within the set Fo of all quadratic foliations
if and only if it meets one of the following conditions:

(1) deg X < 2 (hence is Type 8 if constant and Type 22 or 23 if
linear);

(2) X is Type 6 and has the normal form & = 2%, § = d + ax — xy;

(3) X is Type 8 and the linear part at the unique singularity of m(X)
has two zero eigenvalues but is not identically zero;

(4) X is Type 8, the linear part at the unique singularity of w(X) is
identically zero, and the normal form of [4] for X is either
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(@) i ==x,9=1+2a2, or

(b) & =1,y =22 or

(c) =0, y =d+ az + 2%, where a* — 4dl < 0;
(5) X is Type 10, 12, 13, 14, or 19.

The set of R2-structurally stable elements of Fo is dense in Fo. More-
over, any requirement that the equivalence homeomorphism be near
idgr2 s redundant.

The proof, given in Section 4, uses the classification theorem of phase
portraits of quadratic foliations, given in [4], and the Neumann theorem
[10] which insures that the relevant orbits in this context are the so-
called inseparable leaves.

This paper is organized as follows. Section 2 introduces the notation
and definitions. Section 3 is devoted to S2-structural stability. Sec-
tion 4 deals with R2-structural stability. Finally, in the Appendix, we
review the main parts of [4] used in Section 4. In particular, we include
the statement and proof of a normal form theorem from [4] (Lemma
A.2, which is Lemma 2 of [4]), which are essential for the proof of
Theorem 1.1.

2. Background. Any element X = (P,Q) of P, is completely
determined by the (n + 1)(n + 2) coefficients of P and @, hence may
be identified with a point of R(*t)("+2)  The topology induced on
P,, from the usual topology on R(™*1("+2) by this identification is the
coefficient topology. F,, is given the topology induced from P,. We
place the compact-open topology on the set H of homeomorphisms of
R? (see [8] for a discussion), and the uniform C° topology on the set
J of homeomorphisms of S2.

For X € F,, the orbits of X form a foliation of R%. An individual orbit
of the foliation X is called a leaf of the foliation. It escapes to infinity
(leaves every compact subset of R?) in forward and backward time, and
divides the plane into two connected unbounded components. The only
distinguished orbits of X, that is, the only orbits that a topological
equivalence must respect, are the so-called inseparable leaves. Two
distinct leaves L, and Ly are said to be inseparable if for any arcs T3
and 7%, to which X is nowhere tangent and such that L; has nonempty
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intersection with T;, ¢ = 1,2, there is a third leaf L, distinct from L,
and Lo, that intersects both T} and T5 (cf. [6, 9]). An individual leaf is
then said to be an inseparable leaf of the foliation if it and some other,
distinct leaf (which need not be unique) form a pair of inseparable
leaves. For economy of expression we will refer to the inseparable leaves
as being possessed by X itself, rather than always referring to them as
lying in the phase portrait of X.

For X € P,, the associated Poincaré vector field 7(X) is the unique
analytic extension to the whole sphere of the vector field induced on S?
by central projection (after parallel translation of the plane to the north
pole) and scaling by the (n — 1)st power of the height function. The
open upper hemisphere of S2?, which in this context will be referred
to as the Poincaré sphere, will be called the finite part of the plane,
corresponding to R?; we will let E denote the equator of the sphere,
which is always invariant for 7(X), and always contains at least one
pair of singularities when X € F,,. We confine attention to the flow
of 7(X) within the closed upper hemisphere, which is referred to as
the Poincaré disk. Complete details and simple coordinate expressions
using central projection appear for example in [5]. Note that 7(X)
depends not only on X but also on the set P,, in which it is regarded
as lying. Specifically, if m := deg X < n, then E is always critical for
m(X) when X is regarded as an element of P,,, even though generically
E contains but finitely many singularities of 7(X) when X is viewed
as an element of P,,.

We say that X € F, is R2-structurally stable (with respect to
perturbation in F,,) if for any neighborhood M of idgz in H there
exists a neighborhood N of X in F, such that every X' in N is
topologically equivalent to X by an equivalence homeomorphism h
lying in M. We say that X € F,, is S%-structurally stable (with respect
to perturbation in F,,) if for any neighborhood M’ of idg2 in J there
exists a neighborhood N of X in F,, such that every n(X’) in N is
topologically equivalent to m(X) by an equivalence homeomorphism h
lying in M’. (The requirement that the equivalence homeomorphism lie
in a preassigned neighborhood of the identity is explicitly included in
the definitions since it typically is not superfluous when the underlying
manifold is noncompact.)

By the term separatriz structure of w(X), X € F,,, we will mean the
union of the separatrices of m(X) as a flow on S2. The absence of fi-
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nite singularities and polynomial nature of X allow this considerably
simplified version of the usual definition, and preserve the truth of the
theorems of Markus [9] and Neumann [10] in our restricted setting: if
X, Y €F, and there is a homeomorphism of S? carrying the separatrix
structure of 7(X) to that of 7(Y'), then m(X) and 7(Y") are topologi-
cally equivalent. The detailed constructions in [8, 14| show that, when
there are only finitely many singularities and separatrices, the singular-
ities are locally structurally stable, and finite portions of separatrices
vary continuously with parameters, which will always be the case in
this paper, then the equivalence homeomorphism guaranteed by the
theorems of Markus, Neumann, and Peixoto [9, 10, 12] can always be
chosen to be arbitrarily close to idg2, provided the perturbation Y is
sufficiently close to X.

Although every inseparable leaf in the foliation of R? formed by
the orbits of X must be a separatrix of m(X), the converse is not
true. Thus while S2-structural stability has the simplifying advantage
that the underlying manifold is compact, it has the drawback that it
requires that the equivalence homeomorphism respect separatrices of
7(X), which need not all be distinguished orbits in R?.

When we need an explicit expression for X € P,,, we will write it as
(2.1)

X(ac,y) = (P(xay)aQ(xay)) = ( Z ai,jxiij Z biy]'xiyj>-

0<i+j<n 0<i+j<n

Letting U; and U, be the hemispheres of S? corresponding to = > 0
and y > 0, respectively, the coordinate expressions for 7(X) restricted
to E are as follows:

In U]_Z
(2.2)
F(s) =bpo+ (bp_1,1 — ano0)s+ (br_22 — an71,1)82 + -

+ (bon — a1 n—1)s" — ao,nsnﬂ-

G(S) =aon + (al,n—l — bO,n)S + (a27n_2 — bl,n—1)52 4+ ..
+ (@n,0 — bp=1,1)s" — bpos™ .
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Also, in Us:

(2.4) dﬂ'(X)(0,0) — (b"—Ll — Qn,0 bn—1,0)
0 —0n,0

and in Us:

(25) dﬂ'(X)(O, O) — A1,n—1 — bO,n ag,n—1 '
0 _bO,n

Letting V; and V5 be the hemispheres of S? corresponding to < 0 and
y < 0, respectively, the coordinate expressions are the same as those
displayed, but multiplied by (—1)""1.

By the tangential eigenvalue at a singularity A of m(X), we will mean
the eigenvalue of dm(X)(A) with eigendirection tangent to the m(X)-
invariant set E, i.e., the upper lefthand entry b;; — a2 of the matrix
(2.4) when A is located at (0,0) € Uy. The radial eigenvalue is the
remaining eigenvalue of dm(X)(A).

Finally, we recall that if an isolated singularity A of a smooth vector
field on a 2-manifold is elementary, i.e., at least one eigenvalue of
the linear part at A is nonzero, and has a characteristic direction of
approach, then A is a node, saddle, or saddle-node (see, for example ,
[1, Section 21, Theorem 65]), and the index (+1, —1, or 0, respectively)
distinguishes the topological type of A.

3. Structural stability and genericity theorems on S2. As
mentioned in the introduction, in [7] we dealt with the general case of
degree n. Although we use a number of the results from that work, in
order to reduce the overlap we only state without proof the key result
concerning S2-structural stability in that paper.

3.1. Theorem. Suppose X € F,, the set of polynomial foliations of
degree at most n.

(1) X is S2-structurally stable with respect to perturbation within F,,
if it satisfies the following two conditions:

(a) The tangential eigenvalue at each singularity of m(X) is nonzero.

(b) All separatriz connections of w(X) lie in the equator E of the
Poincaré sphere S2.
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(2) X is S2-structurally stable with respect to perturbation within F,,
only if it satisfies the following two conditions:

(a) m(X) has a finite number of singularities, and at any singularity
at which the tangential eigenvalue is zero the radial eigenvalue is also
zero.

(b) All separatriz connections of w(X) either lie in the equator E of
the Poincaré sphere S2, or join two nonelementary singularities.

The main obstruction to giving necessary and sufficient conditions
for structural stability is determining whether an arbitrarily small
perturbation of a given planar polynomial foliation is also a planar
polynomial foliation. In particular, the only general perturbation of
X = (P,Q) € F,, which we know (without further conditions on P and
@ themselves) to remain in F,,, and which we will use repeatedly, is X’
given by

(3.1) v=(g)=2(5)=(3 %))

for M close to the identity matrix. If a singularity is highly degenerate,
it is difficult to be sure that the singularity can be made to bifurcate
in E in such a way that no finite singularity is produced, particularly
when there may be other degenerate singularities present. However,
this problem can be solved when the degree is low.

It is apparent that a constant foliation is both S2- and R2-structurally
stable with respect to perturbation within the set of constant foliations.
Although the linear case is also quite simple, we will state and prove
the relevant result, in part because the corresponding result for R2-
structurally stability is not the same, Proposition 4.2.

3.2. Proposition. An element X of Fi is S%-structurally stable
with respect to perturbation within F1 if and only if it has exactly two
singularity pairs at infinity; the set of S%-structurally stable elements
of F1 is dense in F1. Moreover, any requirement that the equivalence
homeomorphism be near idg2 is redundant.

Proof. If X € F; is constant then by the fact that E is critical for
m(X) (since X is being regarded as an element of P;) and by Lemma 5
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in [7] (which states that there is an element Y of Fy arbitrarily close
to X but such that 7(Y) has only finitely many singularities) X is
S2-structurally unstable, even if the equivalence homeomorphism A is
allowed to be far from idg2. For nonconstant X € Fy, it is readily
verified that, by a series of affine coordinate transformations and a time
rescaling, the corresponding system of ordinary differential equations
takes either the form

(I) =y, g = 1, or the form

(Il)m:]-ay:y
In the former case there is a single singularity pair +A at infinity, at
which 7(X) has exactly one elliptic sector and exactly one hyperbolic
sector, whose separatrices lie in E; the local type is that of [1, Section
22, Figure 239], and globally 7(X) is like Figure 2 (22) in Appendix A.
Both eigenvalues of dmr(X)(+A) are zero. In the latter case £7(X) has
an antipodal pair of hyperbolic sinks and an antipodal pair of saddle-

nodes with nonzero tangential eigenvalues; globally 7(X) is like Figure
2 (23) in Appendix A.

If X is of Form (I), then the arbitrarily close vector field Y corre-
sponding to & = ex + y, y = 1 is also in F; but has two singularity
pairs at infinity, so that 7(X) and (YY) are inequivalent. This shows
that the systems of Form (I) are never S2-structurally stable, even
when h may be far from idgz, and that the set of systems of Form (II)
is dense.

Suppose X is of Form (II), with hyperbolic nodes at +A € E and
saddle-nodes at =B € E. Of course the hyperbolic nodes persist
uniquely under perturbation of X. Since F' (defined by (2.2)) has a
zero of multiplicity one at each saddle-node, under perturbation in F;
the singularities at =B persist as a unique nearby singularity pair £B’.
By (2.4) the tangential eigenvalue at B’ is nonzero, so it is a node,
saddle, or saddle-node, and since it still has index zero we conclude
that it is still a saddle-node. Thus, every system Y € F; near X is of
Form (II) so that 7(Y") has the same separatrix structure as 7(X), hence
is topologically equivalent to w(X), and is so by a homeomorphism lying
in any pre-assigned neighborhood of idg> in J. O

Note that Proposition 3.2 says precisely that condition (1) of Theo-
rem 3.1 is necessary as well as sufficient for S2-structural stability when
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n = 1. Theorem 1.1 says that the same is true for n = 2. First we
state and prove a lemma and a genericity theorem that will be needed
in the proof of Theorem 1.1.

3.1. Lemma. Let X € Fa, and suppose m(X) has an isolated
singularity A at which the tangential eigenvalue is zero. Then for any
neighborhood M of X in Fy and any neighborhood U of A in S? there
exists Y € M such that w(Y) has a singularity at A for which the
tangential eigenvalue is nonzero, and a second, distinct singularity B
mU.

Proof. Suppose X and A are as described in the hypothesis. Then
deg X > 0. We give the proof for deg X = 2. The proof for deg X = 1is
similar; simply make perturbations analogous to those made in Case (i)
below (Case (ii) does not occur). By a rotation of coordinates place A at
(0, 0) € U1. Then, by (22) and (24), with n = 2, b270 = b171 —a20 = 0.
We separate the proof into two cases.

Case (i). (a20,01,1) # (0,0). When as9 # 0, we choose M =

((1) 1$E> in (3.1) to form Y so that Fy (s) = cazgs+---; whenas g =0,

i ?) in (3.1) to form Y so that Fy(s) =cai1s+---.

Either way the singularity at A persists and has nonzero tangential
eigenvalue. If the first nonzero derivative at s = 0 of Fx is of even order,
then the fact that Fy (0) # 0 gives existence of a second singularity in
U for || sufficiently small. If it is of odd order, the fact that Fy (0) can
be chosen of either sign gives existence of a second singularity.

we choose M = (

Case (ii). (a2,0,a1,1) = (0,0). Then by (2.4), b11 = 0 (in addition
to bap = 0). First suppose bpa = 0, so that ag2 # 0, else X is
not quadratic. As a preliminary perturbation, choose M = (i 2)
in (3.1). None of the quadratic coefficients change except by 2, which
becomes eap2. Thus, m(X)' still has a singularity A = (0,0) € U,
at which the linear part still has the form M = (g 1‘) that it had
originally, but now by2 # 0. Relabel the new system X. Thus, we
have reduced the problem to a consideration of X € F, satisfying
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az0 = a1 = b270 = b171 = 0 but b072 7é 0. Either ap,2 = 0 already,
or there is a second singularity B which by a shear transformation of

coordinates in R?, namely, (Z) = (é 11’) (g), b= —ap,2/bo,2, we can

move to (0,0) € Us,, without moving A from (0,0) € U;. Thus, we
may assume that all quadratic coeflicients are zero except bg 2, which
by a time rescaling we can make equal to 1. If (a1,0,a0,1) # (0,0) a
translation of coordinates in R? if necessary makes ap,0 = 0, so that
we have reduced to

P(z,y) =
(3.2a) (z,y) ao,0 ,
Q(z,y) =bo,o + b1z +bo1y +y
or to
P(z,y) = +
(3.2b) (z,y) a1,0T + @p,1Y

Q(z,y) = boo + bioz + bo 1y + y*.

In either case F(s) = s?, so that A = (0,0) € U is sure to be
locally unstable if we can make FY,(0) # 0, i.e., sgn(Fy,(0)) is no longer
important to the argument. In case (3.2a), if ago # 0 we may change
b1,1 to any € # 0, while if ag,0 = 0 we may change as o to any —e # 0,
either way obtaining Fy(s) = es + s%. In case (3.2b), if ag; = 0,
then there is always a choice of sgn(e) so that changing aso to —¢ is
admissible, again yielding Fy(s) = es 4+ s%. If ap; # 0 in (3.2b), the
choice Y = (P, Q) = (P,Q + exy) once more yields Fy (s) = es + 52,
so the proof is complete once we show that Y is indeed a foliation. To
see that it is, we regard P(z,y) and Q(z,y) as polynomial functions
of y, parametrized by = € R, and for any choice of € compute, see for
example [3],

~

R.(z) = Resultant (P[z], Q[x])

2 2
= ag 1bo,0 + ao,1(a0,1b1,0 — a10bo,1)T + a1 o(a10 — €ap1)z”.

It is apparent that for all choices of z and ¢ the resultant is a meaningful
expression and deg P and deg @) are unchanged. By hypothesis either
Ro(z) has no zeros at all, or at any of its zeros the corresponding
common zero of Plx] and Q[z] is complex. Since the degree of R.(z)
does not increase as ¢ is changed from 0, the same result continues to
hold for P[z] and Q[z]. o
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3.4. Theorem. Let I' C Fy denote those X such that every
singularity of m(X) has a nonzero tangential eigenvalue, and there are
no separatriz connections outside the equator E of the Poincaré sphere.
Then T is a dense open subset of F.

Proof. Lemma 5 in [7] states in this context that the set I’ consisting
of those X in Fy for which 7(X) has finitely many singularities is dense
in Fy; it is clearly open. Note that if X € Fy has deg X < 2, then E
is critical for 7(X) when X is treated as an element of Fj, so that
X &1

Let X € I' be such that 7(X) has a singularity A at which the
tangential eigenvalue is zero. Since F' is a cubic polynomial function
whose derivative at any singularity is the tangential eigenvalue there,
m(X) has exactly one such singularity A and additionally a single
remote singularity, which is simple. (If 7(X) had a singularity at
(0,0) € Us, then a shear transformation of coordinates in R? exists
to move it into Uy, making the statements about F' true.) Placing A
at (0,0) € Uy and perturbing X to the Y given by Lemma 3.3, Fy
has three simple zeros. Thus, the set I of elements X in I such that
every singularity of 7(X) has a nonzero tangential eigenvalue is dense
in I'”, hence in Fs; it is clearly open in I'”’, hence in F3. Lemma 8 of
[7] states that if X € F,, is such that dn(X) has a nonzero tangential
eigenvalue at every singularity of 7(X), then X can be approximated
arbitrarily closely by an element Y in F, such that m(Y) has no
separatrix connections not contained in the equator E of S2. Thus,
I is dense in I, hence in F5. It is certainly open in I/, hence is open
in Fo, and the theorem follows. ]

Proof of Theorem 1.1. Sufficiency follows from part (1) of Theo-
rem 3.1, which was proved under the condition that the equivalence
homeomorphism be close to idgz in J.

We will prove the necessity of conditions (1) and (2) for S2-structural
stability even when the equivalence homeomorphism between 7(X)
and m(Y) for nearby Y € F3 is not required to be close to idg;
this will automatically prove the necessity of these conditions for
SZ-structural stability as we have defined it (restricted h). Hence,
suppose X € F5 is S?-structurally stable (h unrestricted) with respect
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to perturbation within Fs. Then, by the same reasoning as at the
beginning of the proof of Proposition 3.2, deg X = 2. Moreover, 7(X)
possesses every topological property possessed by the Poincaré vector
fields corresponding to the elements of the dense subset I'" described
in Theorem 3.4. Thus, m(X) has only finitely many singularities, at
each of which the direction of flow in E changes, and there are no
separatrix connections not wholly contained in E. We must show that
the tangential eigenvalue at every singularity of m(X) is nonzero.

Suppose to the contrary that m(X) has a singularity A at which the
tangential eigenvalue is zero. The reversal of the flow of 7(X)|E at
A implies that the multiplicity of the zero at A of the function F' of
(2.2) is three, so that A and — A are the only singularities of 7(X). But,
applying Lemma 3.3, we obtain Y € F5 that is arbitrarily close to X but
such that 7(Y") has at least one more singularity pair than 7(X). Thus,
m(Y") is not topologically equivalent to m(X) by any homeomorphism
of S%, whether close to idg> or not, contradicting the S2-structural
stability of X. The structurally stable elements of Fo must therefore
satisfy condition (1).

The density statement is now a direct corollary of Theorem 3.4. i

Proof of Corollary 1.2. From an examination of Figure 2, the following
conclusions follow immediately from the geometry of certain phase
portraits:

(i) if X is a system of Type 2, then m(X) has a saddle connection,
hence X is S%-structurally unstable;

(ii) if X is a system of Type 5, 6, 7, or 9, then (X)) has a singularity
with tangential eigenvalue zero, hence X is S2-structurally unstable;

(iii) if X is a system of Type k, 10 < k£ < 21, then 7(X) has a
nonelementary singularity, hence X is S?-structurally unstable;

(iv) if X is a system of Type 22 or 23, then X is linear, hence
when X is regarded as an element of Fs, the set in which perturbation
takes place, m(X) has a singularity at every point of E, hence X is
S2-structurally unstable;

(v) if X is a system of Type 1, 3, or 4, then 7(X) has no separa-
trix connections, and since there are three singularity pairs, each zero
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of F(s) and G(s) in (2.2) and (2.3) is simple, hence the tangential
eigenvalue at each singularity is nonzero, so X is S?-structurally stable.

Systems of Type 8 remain to be considered. If X is constant, then
it is S2-structurally unstable for the same reason that linear systems
in Fy are. Otherwise, X is S%-structurally stable if and only if the
tangential eigenvalue at the unique singularity is nonzero. O

Proof of Corollary 1.3. By (2.2) and (2.3), —F(s) = As® + Bs? +
Cs+ D and G(s) = Ds® 4+ Cs?+ Bs+ A, and A is the discriminant of
F and G scaled by 1/A* or 1/D*, respectively. It follows easily from
the elementary theory of equations, for example, as in [3, subsection
8.4], that 7(X) has a unique, simple singularity pair on E if A < 0, a
multiple singularity pair if A = 0, and three simple singularity pairs
on E if A > 0. Simplicity of the unique singularity pair when A < 0
eliminates Types 11, 12, 13, and 22, and separates out from all Type 8
systems those that are stable. A > 0 picks out systems of Type 1, 2,
3, or 4. Moreover, in the unstable situation, deg X < 2 and A is also
zero. Corollary 1.3 follows from these facts and Corollary 1.2. o

Using the tables in the appendix it is easy to identify all S2-
structurally stable elements of Fo in normal form, except for the ques-
tion of the existence of a separatrix connection, which distinguishes
Types 1 and 2.

Types 1 through 4 are distinguished by the existence of three singu-
larity pairs in E: forms 1.1, 1.4, and so on through form IX.1. As to
Type 8, we first identify all normal forms having a single singularity
pair in E; then automatically eliminate the types other than Type 8
that have a single singularity pair in E (Types 11, 12, 13, and 22) when
we impose the condition that the tangential eigenvalue be nonzero; for
example, in Table A.1 we reduce from 1.2, 1.7, and 1.13 to 1.2 and 1.7
when we impose n # 1, the condition for a nonzero tangential eigen-
value at (0,0) € Uy for normal form family I.

Thus, the S?-structurally stable families are: Types 1, 3, and 4:
L1, 1.4, 1.6, 1.9; 1.1, 114, IL.6, I1.9; (III-IX).1 (and the nonalgebraic
condition on the coefficients that there be no separatrix connection not
lying in E).

Type 8: 1.2, L.7; 11.2, IL7; (III-1X).2; X.1.
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4. Structural stability and genericity theorems on R2. As
we pointed out above, there is no analogue of Theorem 3.1 (arbitrary
degree) for R2-stability. The one result in this direction, proved in [7],
is the following.

TABLE 1. R2-unstable elements of Fa and their perturbations, deg X < 2.

Normal Form of X | Type of X | Perturbation Y | Type of Y
=1 8 z=1 8
y=0 i = ex?
=y 22 =y 10
y=1 y=1+exy
z=1 23 z=1 13
Y=y y=y+ez’

4.1. Theorem. Suppose X € F,, has no inseparable leaves and that
there exists a neighborhood U of X in F,, such that if Y is in U, then
Y has no inseparable leaves. Then X is R?-structurally stable in F,,.

This result allows us to quickly dispose of linear foliations. Note the
contrast with the situation for S2-structural stability, Proposition 3.2.

4.2. Proposition. FEvery element of Fy is R2-structurally stable
with respect to perturbation within F1, whether the equivalence homeo-
morphism s restricted to be near idgrz or not.

Proof. No element of F; has an inseparable leaf, so R2-structural
stability follows immediately from Theorem 4.1. O

The rest of this section is devoted to proving Theorem 1.4 using
the results of [4]. Essential to our proof is the fact that [4] shows
not only what phase portraits are possible, but how they are realized
(for example, it is implicit in [4] that Type 9 occurs if and only if
one singularity pair at infinity is hyperbolic and the other has nonzero
linear part with both eigenvalues zero). Remember that we will refer
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to an element X of Fy as being “of Type k” if m(+X) is homeomorphic
to the phase portrait in Figure 2 (k).

Proof of Theorem 1.4. The first column of Table 1 lists the normal
form for each system X described by part (1) of the theorem. In each
case the perturbation Y listed in the third column is equivalent to
X, in R2, but appears as an element of Table 2, hence is unstable.
(The transformation z = z;, y = ey; places the system Y in line
one (respectively, three) in the form of the X in line four (respectively,
eight) of Table 2.) If X is as described in part (5) of the theorem, that is,
if it is of Type 10, 12, 13, 14, or 19, then it has one specific normal form
(from Lemma A.2), and each system with the corresponding normal
form is of that same type. Table 2 lists the normal form for each of
these five types, together with the nearby element Y of Fy that either
has distinct type, or that appears elsewhere in the table along with a
small perturbation of distinct type. Thus, these five types need not be
considered further. By contrast, Types 6 and 8 each occur for more
than one normal form. The first five lines of Table 2 show in order the
normal form that corresponds to each of the unstable situations listed
in points (2), (3), (4a), (4b), and (4c) of the theorem. Verification that
the perturbations in either table actually lie in Fo and have the types
indicated are left to the reader. Identification of type is often facilitated
by following the scheme for reduction to normal form outlined in the
proof of Lemma A.2 in Appendix A. In every case the inequivalence
arises from a change in the number of inseparable leaves.

Because for every system X listed in Table 1 or Table 2 the arbitrarily
close perturbation Y is either R2-structurally stable, or is approached
arbitrarily closely by an R2-structurally stable system Y’, the R2-
structurally stable systems are dense in Fs. Note further that, because
every unstable system is approached arbitrarily closely by a system with
a different number of inseparable leaves, and the number of inseparable
leaves is a topological invariant, the systems in Tables 1 and 2 are R2-
structurally unstable even if the equivalence homeomorphism is not
required to lie in a pre-assigned neighborhood of idgr:=.

We now show that all remaining elements of Fp are R2-structurally
stable. To do so, we first note that if for some neighborhood U of
X € Fq, every element Y of U has the same number of inseparable
leaves as does X, then X is R2-structurally stable. For given such
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X and U, if X has no inseparable leaves, then it is R2-structurally
stable by Theorem 4.1. If X has exactly two inseparable leaves, then
it and any Y € U are of Type 3 or 18. In this case we consider
the vector fields o(X) and o(Y) induced on S? minus one point by
stereographic projection, as outlined, say, in [13]; there is a topological
equivalence between (X ) and o(Y") which for Y sufficiently near X can
be chosen so as to induce a near-identity equivalence between X and Y.
Finally, if the phase portrait of X contains three inseparable leaves (the
maximum possible), then it and Y € U are both Type 19. Thus, for YV
sufficiently close to X, the equivalence homeomorphism that therefore
exists between 7(X) and 7(Y) on S? can be chosen sufficiently near
idg2 so as to induce a near-identity equivalence between X and Y on
R2. All systems not appearing in Tables 1 and 2 will thus be shown
to be R2-structurally stable when the equivalence homeomorphism A
is required to lie in a pre-assigned neighborhood of idg2, hence they
are R2-structurally stable when A is not so restricted. This fact,
together with the last sentence in the previous paragraph, shows that
any requirement that the equivalence homeomorphism be required to
lie in a pre-assigned neighborhood of idg2 is redundant.

Henceforth we will let X denote the original element of Fy and X' a
nearby element of Fy. By the discussion in the previous paragraph, we
need only show that if X’ is sufficiently near X in F3, then X’ has the
same number of inseparable leaves as X.

With [4] we will say that an isolated singularity of 7w(X) is of type:
(i) E if the singularity is hyperbolic;

(ii) S if exactly one eigenvalue of the linear part is zero;

(iii) H if both eigenvalues are zero but the linear part is not zero; and

(iv) T if the linear part is zero.

An expression like (E, E, S) will mean that m(X) has three singularity
pairs, of the types indicated.

Types 1-4. 7(X) has three singularity pairs, at each of which the
tangential eigenvalue is nonzero. Lemma 7 of [7] asserts that in such
a situation, under sufficiently small perturbation of X within Fs, each
singularity persists uniquely as a singularity of the same topological
type. Type 2 can change to Type 1, while in the remaining cases the



STRUCTURALLY STABLE QUADRATIC FOLIATIONS

507

separatrix structure on S? is fixed under sufficiently small perturbations
of X within Fy; the number of inseparable leaves is unchanged under

small perturbation (2 for Type 2, 0 for Types 1, 3, and 4).

TABLE 2. R2-unstable elements of F2 and their perturbations, deg X = 2.

Normal Form of X Type | Perturbation Y Type | Note
of X of Y
& =a? 6 |&=a? 19
y=d+azrx—zy, d#0 y=d+azr—(1+¢e)zy
€>0
T=y 8 =y 3
iy =d+azx + by + lz? 9 =d+ azx + by + lz? — 21y?
a? —4dl <0
=z 8 t=c+a+ex? +c2ay 3
g=1+ax2 Jy=1+a2+¢cxy
t=1 8 =1+ (9/4)ey 3
i = a2 i = —2ey + 2 + exy — 2e%y?
&t=0 8 | &=-¢e(d/l)+ex?+ (e2/l)xy 3
y:d+az+la¢2 ;'y:d+aa:+la:2+6zy
a? —4dl <0
t=—-lr+y,y=d+ax t=—lrz+y
+by + mazy, Im #£ 0, 10 | ¢ =d+ azx + by + may + ey? 3 (2)
(a+bl)2 —4dlm <0 sgn(e) = —sgn(ml) if I #0
orm#0,l=a=0,d#0 sgn(e) = —sgn(d) if I =0
T=x 12 |z== 14 (1)
g=—-1+a2 g=—-1+22 +exy
T=14+ny
z=1 13 |y =y+a?+exy— (5/16)c2y? 3
i =y+ x> n < —(9/16)e2, e >0
4n+5¢ — 5e2 < 0
T =x+ey+ nry
T=c 14 y=1+uzy 3
y=14uzy n<0,e<0
N2 +4e <0
t=1+4+uzy 19 T =1+uzxy 2

= (1/m)y? m < —1

y=exy+ (1/m)y? e >0

(1) Y is R2-equivalent to X but is R2-unstable.

(2) Normal form of X derived from the normal form of [4] ¢ =y, y = d+az + by +

lz? + mazy by the shear transformation z1 = z, y1 = (I/m)z + y.
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Type 5. Since there are three singularity pairs on E, counting
multiplicity, the nodes are type E or S, hence persist uniquely as nodes
of the same stability under perturbation. The saddle-nodes are of type
S, since they cannot be of type E and according to [4] configurations
(E,T), (E,H), (S,T), and (S, H) yield types other than Type 5. If the
saddle-nodes disappear completely, then the new system is Type 8. If
the saddle-nodes split into two singularity pairs, the new singularities
are saddles and nodes, so X’ has Type 1. If the saddle-nodes persist
uniquely, since only one eigenvalue was zero originally, the same is true
of the new singularities, so by an index argument they remain saddle-
nodes; continuous dependence of the separatrices on parameters implies
that X’ is not of Type 6 or 7, hence is of Type 5. Thus, in all cases
any X' sufficiently near X in F» has, like X, no inseparable leaves.

Type 6. By [4] the configuration of singularity pairs is (E,S),
(S,S), or (E,T). The first two situations correspond to structurally
stable X, exactly as for Type 5; the type can change to Types 1, 5,
7, or 8 under small perturbation, none with any inseparable leaves.
Suppose then that the original situation was (E,T). When the T-
singularity pair disappears or splits, the same analysis applies, but
when it persists uniquely, the new nearby singularities need not be
saddle-nodes. (Indeed, this is the mechanism for instability in the first
line of Table 2.) A priori we know only that 7(X)p has a sink/source
pair plus one additional pair of singularities, hence is of Type 5, 6, 7, 9,
15, 18, or 19. In the first five situations, if they occur, X’ still has no
inseparable leaves. Type 18 is in fact impossible: erect at the saddle-
node of the original Type 6 system X transverse sections ¥; and X5 to
each separatrix that lies outside E, and a transverse section X to the
separatrix that lies within E. For any point A € X;, i = 1, 2, such that
0T (A) or 0™ (A) intersects ¥ before leaving a small neighborhood of the
singularity, under sufficiently small perturbation 0¥, (A) or oy, (A) has
the same behavior, so the new singularity has a hyperbolic sector on
each side of E, ruling out Type 18.

The normal form for a Type 6 element of Fo with an (E, T') singularity
configuration is [4, pages 777 ff]

& =22, ¥y =d+ ax + mzy
d#0, —-1l<m<]l.
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(Type 6 also occurs when m = —1 but is the unstable system in line 1
of Table 2.) To show that no element of Fy near X is of Type 19,
we start with this normal form, perturb, and show that in reduction
to normal form to determine the type of X’ (following the sequence
of coordinate changes in the proof of Lemma A.2) we cannot arrive at
Type 19. There is no loss of generality in maintaining the location of
the singularity at (0,0) € Uz, which means maintaining ag2 = 0. The
perturbation is of Type 19 only if it has configuration (E,T'), hence
only if the singularity at (0,0) € Us is still of Type T, hence by (2.5)
only if for X’ we have

(41) agp,1 = a1l = b072 = 0,
so that X' is

T = Qo,0 + Q1,02 + (1 + 06270)5172
¥ = (d+ Boo) + (a+ Br,0)T + Bo,1y + B0z’ + (m + Br,1)zy.

Now apply the transformation that places the foliation satisfying these
conditions into normal form. In the proof of Lemma A.2 we have m; =
by = 0and [y # 0, so we form k := a? —4d;l;, = a%70—4(1+a270)a070. If
k is nonzero, we will obtain normal form V or VI, neither of which yields
Type 19, hence we must also choose ag ¢ = a%70/[4(1+a0’0)]. Applying
the final change of coordinates that the yields normal form VII of
Lemma A.2, the coefficient of x1y; in ¢1 is = (m+ S1,1)/(1 + az,).
Since —1 < m < 1 and ag, and b1, are close to zero, —1 <m < 1, so
X' is still of Type 6, not Type 19.

Type 7. Under small perturbation within Fy the source/sink pair
persist uniquely as a source/sink pair, while the saddle-nodes either
disappear, split, or persist uniquely as nearby saddle-nodes. As in the
case of Type 6, just discussed, the only difficulty is in ruling out the
possibility that X’ be Type 19. We follow exactly the same procedure
as in Type 6: in a perturbation of X we may again choose ag2 = 0,
and must choose ag,1, a1,1, and by 2 satisfying (4.1), so that any nearby
X' that can be of Type 19 must have the form

T = (*1 + 0070) =+ Q10T =+ (]. =+ Oé270)$2
9= (d+ Bop) + (a+Bio)x+ Bory + (I + Bao)z® + 112y
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We must again compute k£ and find that it has value k := a% —4d;l; =
af o —4(1 4 az0)(—1+ ag) ~ 4 > 0, so the normal form is form V,
hence X' is not of Type 19.

Type 8. The single singularity pair can be of type (E), (S), (H),
or (T). Proof of stability in the first two cases is straightforward,
although normal hyperbolicity must be used for situation (S) when the
tangential eigenvalue is the one that is zero. Situation (H) is always
unstable: this is the second line in Table 2. Situation (T') occurs for
the standard forms (VL5), (VIL5), (VIIL6), (IX.6), and (X.3) in the
tables in Appendix A. The last three are unstable and correspond
to lines 3-5 of Table 2. To establish stability in the remaining two
cases, we make a general perturbation of the standard form (without
loss of generality maintaining a2 = 0), and follow the series of
coordinate changes described in the proof of Lemma A.2 to reduce
the perturbation to normal form. Tedious but direct computation on a
symbolic manipulator such as Maple shows that one can never obtain
Types 3, 18, or 19 (the types having inseparable leaves).

Type 9. The configuration of singularity pairs is (E,H), so the
source/sink pair persist uniquely as a nearby source/sink pair under
small perturbation. If the saddle-node pair disappear, then X' is
Type 8. If the saddle-nodes split, then each new singularity has a
nonzero tangential eigenvalue, hence is a node, saddle, or a saddle-
node. The index implies that we have either

(i) a pair of nodes and a pair of saddles, so that X' is Type 1 or
(less likely) Type 2, or

(ii) two pairs of saddle-nodes, so that X’ is Type 4; in any case, X’
is equivalent to X. If the saddle-node pair persist uniquely, then each
singularity is of index zero and has nonzero linear part; it is Type S or
H. If Type S, then X' has configuration (FE, S) with a source/sink pair
and a saddle-node pair, hence is of Type 5, 6, or 7, hence equivalent to
X. If Type H, then Theorem 11 of [4] indicates that it is of Type 9,
again equivalent to X.

Type 11. When X is placed in standard form the singularity, located
at (0,0) € Us, is of Type (T); quadrants II and III are hyperbolic



STRUCTURALLY STABLE QUADRATIC FOLIATIONS 511

sectors, quadrants I and IV are elliptic sectors, and the separatrices lie
in the coordinate axes. For X’ sufficiently near X, m(X’) has one, two
or three singularities near (0,0) in Us. By erecting transverse sections
to the separatrices as was done in the discussion of X of Type 6, we
find that the left-most singularity has a pair of hyperbolic sectors that
lie on opposite sides of E. This implies immediately that if 7(X’) has
exactly one singularity near (0,0) € Us, then X' is of Type 11, since no
other phase portrait in the catalogue in Figure 2 in Appendix A has a
unique singularity pair with hyperbolic sectors so situated.

If 7(X’) has three singularities near (0,0), each is elementary, and
by an index argument and the discussion immediately above 7(X"’) has
a saddle and two nodes in U, hence X' is of Type 1 or (less likely)
Type 2.

If 7(X') has exactly two singularities near (0,0), then G(s) in (2.3)
changes sign at exactly one of them. If the sign change occurs at
the left singularity, which is thus elementary and has the hyperbolic
sectors on each side of E, then that singularity must be a saddle. The
only compatible phase portraits in the catalogue are Types 16 and 17,
which have no inseparable leaves. If the sign change occurs at the right
singularity, then the phase portrait of 7(X")

(i) has two singularity pairs,
ii) has one singularity pair at which there are two or more hyperbolic
g y y
sectors, at least one on each side of E, and

(iii) has a node, saddle, or saddle-node at the remaining singularity
pair (which are elementary). Of the phase portraits meeting these
three conditions (Types 5, 6, 7, 9, 15, and 19), all but Type 19 have no
inseparable leaves. To show that X’ cannot be of Type 19, we begin
with the standard form for X of Type 11,

&=z’
g=—-1+2"+zy
and make a general perturbation, without loss of generality maintaining

ag2 = 0. As in previous cases, X’ can be of Type 19 only if we require
conditions (4.1), so that X’ has the form

T = @o,0 + 1,0 + (]. + 04270)£E2
§= (=14 Boo) + Brox + Loy + (1 + B20)z” + (L + Br1)zy.
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Since in the terminology of the proof of Lemma A.2 m; = b; = 0 but
Iy # 0 we compute k = a3 — 4d,l; = O‘io —4dapp(l+ azp). X' is of
Type 19 only if £ = 0. With this requirement we make the coordinate
change #1 =  + a1,0/(2(1 + a2,0)), y1 = vy, t1 = ¢ and find that the
coefficient m of z1y; in g1 is m = 1 4 B1,1, which is not strictly less
than —1, which is the condition that X’ be of Type 19, cf. [4, pages
TT7-778].

Type 15. The configuration of singularity pairs is (E,T') or (S,T), so
the source/sink pair persist uniquely as a nearby source/sink pair under
small perturbation. If, under small perturbation the nonelementary
singularity disappears, then X’ is of Type 8, hence equivalent to X.
If it splits into two nearby singularities, then they are either a pair of
saddle-nodes or a saddle and a node; in either case it is easy to see that
X' has no inseparable leaves. If the nonelementary singularity persists
uniquely, then as in previous cases the only possible inequivalent phase
portrait is Type 19. As before, we begin with the normal form for X,
make an arbitrary small perturbation, and show that Type 19 cannot
occur. X can be reduced to three standard forms in the tables in
Appendix A: VI.4, which reduces to the case m < 1; IX.5, which
reduces, cf. [4], to £ = 1, § = d' F zy; and X.2. The treatment of
the first two situations is exactly as in the corresponding discussion of
Type 11 immediately above. The X.2 normal form is

=0

g = d+ ax + by + lz® + may + ny?
with several side conditions, including n # 0. The configuration of
singularity pairs is (E,T); the hyperbolic singularity is located at
(0,0) and the degenerate singularity at ((—m/2n),0) in Uy. Thus,
as a preliminary step, we interchange x and y, then apply the shear
transformation z1 = 2nx 4+ my, y1 = y to move the degenerate

singularity to (0,0) in Us. Reverting to the names z and y for the
coordinates, X is now

1
¢:2dn+bm+§m2
y=0.

We can now proceed exactly as in the previous cases, and as before find
that no nearby system is of Type 19.
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Type 16. The configuration of singularity pairs is (E,T) or (S,T),
so the saddle pair persist uniquely as a nearby saddle pair under small
perturbation. The nonelementary singularity pair have index +2, hence
either split or persist as a unique nearby pair. In the former case, the
nearby singularities are elementary and have indices summing to +2,
hence are each nodes; X' is of Type 1 or Type 2. In the latter case,
the only phase portraits having a pair of saddles and a pair of index
+2 singularities are Types 16 and 17.

Type 17. The configuration of singularity pairs is (E,T) or (S,T),
and the same discussion as given for Type 16 applies, with the only
difference that when the degenerate singularity persists uniquely, no
nearby system can be of Type 16, since the separatrices in the finite
part of the plane would have to make a discontinuous jump to connect.

Type 18. The configuration of singularity pairs is (F,T). Under
small perturbation the hyperbolic source/sink pair persists uniquely as
a source/sink pair. Near the degenerate singularity, erect a transverse
section X to the stable separatrix that lies in the finite part of the
plane, and other transverse sections to the remaining separatrices. Near
the degenerate singularity erect a transverse section X to the stable
separatrix that lies in the finite part of the plane, transverse sections
Y, and X, at the unstable separatrices, and transverse section X3 at
the remaining stable separatrix. Let A denote the unique point of
intersection of X with the local stable set, and let K denote a closed
proper subinterval of ¥ containing A. For X' close enough to X, the
sets K; := {B € K | 0%,(B)NY # @}, i = 1,2, are relatively open in
K, hence there is a point A’ in K \ (K; UK3). Since 0%, (A')NZ;3 = @,
the degenerate singularity does not disappear under perturbation. If
it persists uniquely, then a study of the flow from section to section
shows that it has three hyperbolic sectors on the same side of E, which
implies that X’ is also Type 18.

If the degenerate singularity splits into two singularities, they are
elementary, and each has a hyperbolic sector. Since their indices sum
to 0, they are both saddle-nodes, and it is clear that X' is Type 3.
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Type 20. By Lemma A.3, X can be placed in the form

(4.2) T=1+zy
y=y"

Let X' be a small perturbation of X. If E is critical for 7(X’),
then X’ is equivalent to X. Otherwise, there is a suitable rotation
of coordinates Ry in R? (not necessarily small) which places any
singularity of m(RpX’) at (0,0) € U,. X is unstable only if there is a
system of Type 3, 18, or 19 lying in any neighborhood of X, which holds
if and only if for every # there is a system Ry X' of like type lying in any
neighborhood of RyX. To investigate the situation, conceptually we
perturb X to X’ and then rotate to place the singularity of m(R¢X') at
(0,0) € Us, but it is equivalent, and simpler computationally, to rotate
X with arbitrary 6 to Ry X, then make small changes in the coefficients
of RgX to create Ry X' (specifying X' only implicitly). From (4.2), we
obtain

(4.3) i =C - Sz*+ Czxy
y=S8— Szy+ Cy®

for RpX, where S = sin(f) and C = cos(#). A general perturbation of
Ry X in R'2 is given by
(4.4)

&= (C+ago) + 10z + o1y + (=8 + azg)z® + (C + a1 1 )zy

§ = (S + Bo,0) +P1,02+Bo,1y + B0z’ + (=S + Br1)zy+(C + Bo,2)y*

where S and C' have been chosen so that a2 = 0.

To show that the system RypX' given by (4.4) cannot be of Type 3,
we recall that any system of Type 3 has three distinct pairs of infinite
singular points; one of them is a hyperbolic node, and the other two
are saddle-nodes, hence have radial eigenvalue zero. We may choose 6
so that the hyperbolic node is located at (0,0) € Us.

When (5 ¢ # 0, the saddle-nodes, call them sy and s_, have coordi-
nates in Uy of the form (s,t) = (u 4+ v,0) and (s,t) = (u — v,0). The
radial eigenvalues are

)\:t = (75 + 04270)(11, + U) + (C + 0171).
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Since v # 0, else s; and s_ are not distinct, A} and A_ are both
zero only if S = a9 and C = —ay,1, which is impossible since
log,0f + |a1,1| < 1.

When (59 = 0, then one of the saddle-nodes lies at (0,0) € Uy, and
similar considerations lead to the same contradiction. Thus, there is
no foliation X’ of Type 3 near X.

To show that the system RygX' of (4.4) cannot be of Type 18 or 19,
we recall that such system has a T-singularity, which by proper choice
of 6 can be placed at (0,0) € Usz. The linear part being identically zero
there gives the following conditions:

a1,1 = /30,2 =-C
Qp,1 = 0.
Notice that the first condition means that 6 = 7/2, hence S ~ 1 (one

can check that the case S ~ —1 can be reduced to this case). System
(4.4) becomes

(4.5)
I' = (C + a070) + 0(170£E + (75 + 0(270)I2,

§ = (S + o) + Broz + Loy + B2.0z” + (=S + Br.1)zy,
which yields the coordinate expression for 7(RpX') in Uy of

(4.6)
§ = (01270 — ,8171)82 + (01170 — ,8071)825 + (C + ao,o)tz
— B2,08> — B1,05°t — (S + Bo,o)st?
t=—(=S+B1)st — BO,lt2 - 52,082t - 51,08752 - (S+ ﬁo,o)tg-

We may assume that B2 ¢ is nonzero. For when £ = 0, if (i) a2, —
B1,1 = 0 then the line at infinity is critical for 7(R¢X"), so X' has the
same topological type as X, while if (ii) ag,0— /1,1 # 0, then the second
singularity of m(RpX') lies at (0,0) € U;, and a similar argument to
the case we consider applies. Assuming that 8¢ # 0, we must have
a2 — P11 # 0 as well, else m1(RpX') has only one singularity pair at
infinity, and cannot be Type 18 or 19.

Directions of approach to the singularity of m(RyX') at (0,0) € Uy
are given by the zeros of the characteristic polynomial

H(S,t) =t [(—S + 04270)82 + a1 08t + (C + aO,O)t2] s
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where —S+ay 9 < 0since S ~ 1. We distinguish three cases, depending
on the zeros of the polynomial H.

If the equation H = 0 has no other solutions than ¢ = 0 there
will be only one simple characteristic direction to the origin of U,
and consequently, by going back through the blow-up, its local phase
portrait cannot be as in Type 18 or 19 (¢ = 0 cannot be a double or
triple characteristic direction because —S + as9 # 0). We note that
a simple characteristic direction implies that after the corresponding
blow-up the singular point is at worst an S-singularity.

Now we assume that H = 0 has two distinct solutions (each different
from t = 0), i.e., that the origin of U, has three simple characteristic
directions (one of them is ¢ = 0). In this case, since H(s,t)/t is the
homogenization of & in (4.5), & has two real zeros denoted by Ay. If we
now compute 7 along the lines £ = A, the condition that RyX’ have
no finite singular points is that

(S + Bo,) + Brors + 52,0)\1 + (Bog + AL (=S + B1,1))y #0

for any y. If either of A, and A_ is zero, then By 1 = 0, which in turn
forces the other of Ay and A_ to be zero (since S =~ 1), contradicting
Ay # A_. Thus AfA_ (=S + f1,1) # 0, which implies that both
Bogp = Ay + (=S + f1,1) and Bor = A~ + (=S + B1,1), which again
is impossible if AL # A_.

The remaining case is that H = 0 have a double solution away from
t = 0, that is, that the origin of Uy have one simple characteristic
direction t = 0 and one double characteristic direction. We may assume
that oy 0(c+ ao,0) # 0. If not, the double characteristic direction is
s = 0 and we have to introduce a preliminary linear transformation (as
is done below) in order to control both characteristic directions s = 0
and ¢t = 0 at the same time, but the end result is identical.

Since H = 0 has a solution different from ¢ = 0, we know that in (4.5)
& has one (double) zero along © = —a1,0/(2(—S + a2,))- Therefore,
substituting this expression into ¢ in (4.5) we get two further conditions
in order for Ry X' to be a foliation:

Bot = a1,0(=S + B1,1)
0,1 2(75 + 0270)

(S 4+ Boo) — 2

(4.7)
a1,081,0 0‘%,05270

(*S + Oé270) 4(75’ + 06270)2

£ 0.

N
Il



STRUCTURALLY STABLE QUADRATIC FOLIATIONS 517

To resolve the singularity at (0,0) € Us of the system Z := m(RyX') we
perform a series of directional blow-ups. We start with z = s, u = t/s,
followed by a rescaling by 1/z. The resulting system Z has a hyperbolic
singularity at (0,0), with linear part given by the matrix

az0 — P11 0
0 —(=s+azp)

and a T-singularity at (z,pu) = (0,u0), po = —2(—s + a29)/c10.
Translate the latter singularity to the origin of a new coordinate system
by means of the transformation w = 2z, n = p — po. Directions of
approach are given by zeros of the characteristic polynomial

1 aio
H = — 4 —5)2 —_ —25
(w,n) o7, wr) [ (a0 — ) wr + 2(am0 — 5) laz,0 + P11 ]77],

where we have used the first condition in (4.7). In order to handle
all characteristic directions simultaneously, we make the linear trans-
formation v = w — n, v = 7, followed by the single blow-up U = u,
V = v/u, in turn followed by a rescaling by 1/U. The singular points
on the line U = 0 for the resulting system are (0,0), (0, —1), and (0, A),
where

)= _8(0&270 — 5)31/

141
and
vy = (a2,0+0B1,1 —25)04?04-2(0!2,0 —5)52,0030 —4(a2,0—5)*B1001,0
+8(az,0 — 5)*(Boo + S).

The linear parts at these singular points are given by the matrices

[—(4(—8 +as0)’v/ai ) 0 ]
0 (4(—s + az0)’v/aiy) |’
|:—(O[1’0/2) 0 :|
0 (a1,0(—=25 4+ @20 + B1,1)/2(—5 + az2,0))

and

—(a170(—s + a270)3u/u1) 0
—(e1,0(=25 + 2,0 + B1,1)(—s + a2,0)?v/v1) |
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2,

(b)

FIGURE 1. Going back through the blow-ups when the origin of Uz has a
double characteristic direction A > 0. Case (a), respectively (b), corresponds to
az,0 — B1,1 > 0, respectively az,0 — 1,1 > 0. If A < 0 the picture is similar.

respectively. Thus, the singular points (0,0) and (0, —1) are saddle
points while (0,\) is a node. In Figure 1 we show that, going back
through the blow-ups, we never get the local phase portrait at the
origin of Us corresponding to Type 18 or 19.

Type 21. By Lemma A.3, X can be placed in the form

T =uxy

4.8
“9 y=1+by+y%

where [b] < 2.
We repeat the discussion in the first paragraph of the previous case,
Type 20, this time obtaining

&= -8 +bS%x — bCSy — Sz* + Cxy

(4.9) . ) )
y=C—-bCSx+bCy — Szy+ Cy
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for Ry X and

&= (=S +ago)+ (bS* + aig)z + (=bCS + ap1)y
+ (=S + az0)2” + (C+ a1,1)zy
¥ =(C+ Bop) + (=bCS + o)z + (bC? + Bo1)y
+ Ba,02” + (=8 + B1,1)zy + (C + Bo,2)y?
for Ry X', where |b] < 2, S =sin(d), C = cos(f), and 6 has been chosen
so that there is no term y? in the horizontal component of RgX'.

The proof that Ry X’ cannot be of Type 3, 18, or 19 is similar to the
corresponding proof in the previous case (X of Type 20), so we will
only outline the argument. That Ry X' cannot have Type 3 is so much
like the previous case that it will not be discussed further.

The condition that RgX’ have a T-singularity at (0,0) € Us (the
analogue of (4.7)) is now

(4.10)

a1,1 = -C
(4.11) Boz =—-C
Qo1 = bCS.

Thus again 6 &~ /2 and consequently S ~ 1. System (4.10) becomes

= (-S+a)+ (bS? + ajg)r + (=S + a270)m2
(4.12) § = (C+ Bo,o) + (=bCS + Bro)z + (bC* + Bo1)y
+ Bo0z” + (=5 + B11)zy,
which yields the coordinate expression for m(RyX') in Uy of
4.13
( 3 :) (az,0 — B1,1)8” + (b(S® — C) + a1 — Bo,1)st + (=S + ag o)t
— Bags® + (bCS — Brg)s*t — (C + Bo,o)st?
t = —(=S+ B11)st — (bC* + Bo.1)t?
— Baos*t + (bC'S — By o)st* — (C + Bo,o)t>.
The discussion in the paragraph following (4.6) applies verbatim, so

that we may assume that (2 o(a20 — 51,1) # 0.

The origin in the local chart U; is a linearly zero singular point for
which directions of approach are determined by zeros of the character-
istic polynomial

H(S,t) =t [(—S + 01270)82 + (b52 + 0[170)St + (—S + ao,o)tz] .
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If H = 0 admits only ¢t = 0 as a solution then the same argument
as before (for Type 20) shows that it is not possible to have the local
phase portraits corresponding to Figures 18 and 19 at the origin of Us.

If H = 0 has two distinct solutions each different from ¢ = 0, then an
argument analogous to the one given before (for Type 20) shows that
the condition that Rg X' be a foliation leads to a contradiction.

The only remaining case is that H = 0 have a unique double
zero in addition to and distinct from ¢ = 0. This is the case that
the discriminant of H(s,t)/t be zero and that & vanish along z =
—(bS?+a1,0)/(2(—S+as2y)). Evaluating g along this line, the condition
that Ry X' be a foliation leads to two further conditions

. (b5% + a1,0)(—=S + B1,1)

— —C%
BO,I 2(_5 I a270)
(bS? + a1 0)(=bCS + B10) (=S + @0,0)B2.0
= (C - : : : :
v ( +,80,0) 2(—S+a270) + (_S+a2,0)

To resolve the singularity at (0,0) € Us of the system Z := m(RyX') we
perform a series of directional blow-ups, beginning with z = s, u = t/s,
followed by a rescaling by 1/z. The resulting system Z has a hyperbolic
singularity at (0,0), with linear part given by the matrix

az0 — P11 0
0 —(—8 + 04270) ’

and a T-singularity at (z,4) = (0,u0), po = /S — a2,0/4/S — @0,0-
Directions of approach to the second singularity are determined by the
characteristic polynomial

H(s,t)
- [_ (20— S5) s (a2 — Bi1 — 25)y/ (0,0 — S)(az0 — S)t

(0,0 — S) (a20—S)

which has three simple zeros. We proceed as in the previous case
(Type 20): translate the degenerate singularity to the origin, apply
a suitable linear transformation so that all directions of approach can
be handled in one blow-up, and perform a directional blow-up followed
by a rescaling, to obtain a system with three simple singular points.
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Two of the singular points are saddles and one is a node. Figure 1
finishes the proof. O

We conclude this section by stating a corollary of Theorems 1.1, 1.4
and A.1l on the maximum number of inseparable leaves in structurally
stable quadratic foliations. A general result for S2-structurally stable
degree n foliations with respect to perturbation within P,, can be found
in [7].

4.3. Corollary. The mazimum number of inseparable leaves for a
quadratic S?- or R?-structurally stable foliation X within P,, is 2.

APPENDIX

A. Chordal quadratic systems: A review. We state here a few
key results from [4] which are crucial to the proof of Theorem 1.4, and
reproduce an important figure and tables from that paper.

A.1. Theorem [4]. For any X in F3, the phase portrait of
m(£X) is homeomorphic to one of the separatriz configurations shown

in Figure 2. Furthermore, every separatriz configuration in Figure 2 is
realized by w(X) for some X in Fy.

The proof of Theorem A.1 relies in part on the following normal form
classification from [4] which reduces the study of quadratic foliations
to ten families. We include the proof, to which reference is made in our
proof of Theorem 1.4.

A.2. Lemma [4]. For any X in Fy there is an affine change of
variables and change of scale placing X into one of the following ten
normal forms:

o i

& =y+ a2 T =y,
111 v
( ){Z)ZQ(I,y) ( ){'
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@@..

FIGURE 2. The separatrix configurations on the Poincaré disk of elements of Fg,
up to the direction of flow; E is critical in Types 20 and 21.

&= —1+a?, =1+ a2,
\% VI
( ){ZJZQ(w,y) ( ){ZJZQ(w,y)
(Vi) { 7 =Q(z,y) (Vim { ¥ =Q(z,y)
o {0 NER
( ){Q—Q(x,y) (){y—Q(:L“,y)

where Q(z,y) = d + az + by + lz? + maxy + ny>.
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Proof. We write X as

T=dy+arx+by+ liz? + mixy

(A1) i = Q).

where without loss of generality we have assumed that a singularity of
m(X) is located at the origin of Us.

If m; # 0, we apply the translation z; = = + by /my, y1 = y and
system (A.1) becomes (always reverting to the labels z and y)

& =d|, +adx+ 2% +may

¥ =Q(z,y),
which under the change of variables z; = z, y3 = da} + llz + myy
becomes
i=d) +zy
y=Q(z,y)

If di = 0, this is (II) while if d} # 0 we make the change of variables
z1 = x/dq, y1 = y to obtain (I).

If my = 0 and by # 0, we make the change of variables z; = x,
y1 = d1 + a1z + byy, which transforms system (A.1) into

:i::y—i—llxz
¥ =Q(z,y).

If Iy = 0 this is (IV), while if [; # 0 the change of variables z; = =z,
y1 = y/l; and time rescaling ¢; = [yt transforms system (A.1l) into
(II1).

If my = b; =0 and l; # 0, we consider k := a? — 4l;d;. If k # 0,
the change of variables z1 = 2l1(x + a1/(2l1))/+/1k|, y1 = y and time
rescaling t; = /]k[t/2 converts system (A.1) into (V) or (VI) according
to whether k is positive or negative. If k¥ = 0, then the change of
variables 1 = x +a1/(2l1), y1 = y and time rescaling ¢; = ;¢ converts
system (A.1) into (VII).

If mi = b =1; = 0 and a; # 0, then the change of variables

x1 = ¢ +di/a1, y1 = y and time rescaling t; = a;t converts system
(A.1) into (VIII).

(A.2)
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Finally, suppose my = by =1; = a; = 0. If d; = 0 we already have
(X), while if d; # 0 the time rescaling t; = dit converts system (A.1)
into (IX). O

Next we reproduce from [4] the tables showing the number and types
of the singularities of 7(X) for each of the ten families. An isolated
singularity is of type E if hyperbolic, type S if exactly one eigenvalue
of the linear part is zero, type H if the linear part is not zero but
both its eigenvalues are zero, and type 7T if the linear part is zero. A
notation like (E,T) in the second column means that there are two
distinct singularity pairs on E, one of type E, one of type T. The
notation “(degenerate)” in the second column means that the equator
E is composed entirely of singularities of 7(X).

In Table A.1, the notations (A), (B) and (C) mean:

(A) The polynomial [z* + az® + (d — m)z? — bz +n has no real roots
different from 0.

(B) Either a = 0, d — m # 0 and b* — 4n(d — m) < 0,

() ora=b=n=0and d—m #0,
(2)ora=d—m=mn=0andb#0,
(3)orb=n=d—m =0 and a #0,
4)ora=b=d—m=0and n#0,

(5) or n =0, a # 0 and (d — m)? + 4ab < 0.

(C) Either =0 and a®> —4l(d —m) <0,orb=a=d —m = 0.

In Table A.2, the notations (A), (B), (C) and (D) mean:
A) b* — 4nd < 0 and a? — 4ld < 0.

B) a =0 and b* — 4nd < 0.

C) b =0 and a? — 4ld < 0.

D)a=b=0and d#0.

In Table A.3, the notations (A) and (B) mean:

(A) The polynomial nz* —ma? + (I — b)z? + ax + d has no real roots.
(B) Either m = 0,1—b # 0 and a®?—4d(I-b) < 0,ora=m =1-b=0
and d # 0.

(
(
(
(
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TABLE A.1.
Infinite Singularities for System (I)
(E,E,E) m2 —4n -1 >0 (I1)
(E) 1#£0|m2—4(n—-1)<0| (L2) | (A)
(E,S) m2 —4(n—-1)1=0| (L3)
(E,E,S) =0 m#0 (L4) | (B)
(E,T) m=0 (1.5)
(E,E,S) m2+40>0 (1.6)
(S) 1#0 m2 + 41 < 0 L7) | (C)
(S,9) m24+4l=0 (L.8)
(E,S,9) m#£0 (1.9)
(S,H) =0 m=0a#0 .10) | (B)
(S,T) m=a=0
(E,S) 1#0 m#0 (A)
(S) m =0
(S,9) 1=0 m#0 (B)
(degenerate) m =0
TABLE A.2.
Infinite Singularities for System (II)
(E,E,E) m2 —4(n—-1)l >0
(E) 1#0|m2—4(n—-1)1<0 (A)
(E,S) m?2 —4(n - 1) =0
(E,E,S) =0 m#0 (B)
(E,T) m =0
(E,E,S) m2 +41>0
(S) 1#0 m?2+41<0 (C)
(S,9) m2+4l=0
(E,S,9) 1=0 m#0 (D)
(S,T) m =0
(E,S) 1#0 m#0 (A)
(S) m =0
(S,9) 1=0 m#0 (B)
(degenerate) m =0

In Table A4, A = 4an® — 2bmn — m?, and it is assumed that either

l#0and a®> —4ld < 0,ora=1=0and d # 0.
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TABLE A.3.
Infinite Singularities for System (I)
(E,E,E) (m—1)2 —4nl >0 | (IIL.1)
(E) n£0 | (m—-1)2—4nl <0 | (I11.2) | (A)
(E,S) (m —1)2 —4nl =0 | (IIL3)
(E,H) n=0 (I1L.4) | (B)

TABLE A.4

Infinite Singularities for System (IV)

(E,S,S) m2 —4nl >0 (IV.1)
(E) n#0 m2 —4nl <0 (IV.2)
(E,H) m? —4nl =0, A £0 | (IV.3)
(E,T) m? —dnl=A=0 | (IV.4)
(S,H) n=0 m#0 (IV.5)
(H) m=0,l#0 (IV.6)
System (IV) is linear when n=m=101=0 (IV.7)
TABLE A.5.
Infinite Singularities for System (V)
(E,E,E) (m—1)2—4nl>0| (V.1)
(E) n#0 | (m—1)2—4nl <0 | (V.2) | (A)
(E) (E,S) | (m—1)2 —4nl=0 | (V.3)
(E,T) n=0 (V.4) | (B)
TABLE A.6.
Infinite Singularities for System (VI)

(E,E,E) (m—1)2—4nl >0 | (VL1)

(E) n#0| (m—1)2—-4nl <0 | (VL2)

(E,S) (m—1)2 —4nl =0 | (VL3)

(E,T) m#1 (VL4)

(T) n=0| m=1,1£0 | (VL5)

(degenerate) m=1,1=0 (VL6)
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In Table A.5, the notations (A) and (B) mean:

927

(A) (m+b)?2 —4n(d+a+1) <0and (m—b)>—4n(d—a+1) <O0.
(Bym=b=0and d+1 # *a.

In Table A.8, A =2an — (b — 1)m.

In Table A.9, A = 2an — bm.

In Table A.10 the equation d + ax + by + lz% + mzxy + ny? = 0 has
no real solutions. Moreover,

I m/2 a/2
D=det| m/2 n b2
a/2 b/2 d
TABLE A.7.

Infinite Singularities for System (VII)

(E,E,E) (m—1)2 —4nl >0 | (VIL1)

(E) n#£0|(m—-1)2—-4nl <0 | (VIL2) | b —4nd < 0
(E,S) (m—1)2 —4nl =0 | (VIL3
(E,T) m# 1 (VIL4
(T) n=0| m=1,1#£0 |(VIL5)|b=0,d#0
(degenerate) m=1,1=0 (VIL6
TABLE A.8.
Infinite Singularities for System (VIII)
(E,S,S) m2 —4nl >0 (VIIL1)
(E) n#0 m?2 —4nl <0 (VIIL.2)
(E,H) m2 —4nl =0, A #£0 | (VIIL3) | b2 —4nd < 0
(E,T) m?2 —4dnl=A=0 | (VIIL4)
(S,T) n=0 m#0 (VIIL5)
(T) m=0,1%0 (VIIL6) | b=0,d #0
System (VIII)

is linear when n=m=10=0 (VIIL7)
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TABLE A.9.
Infinite Singularities for System (IX)
(E,S,9) m?2 —4nl >0 (IX.1)
(E) n#0 m? —4nl <0 (IX.2)
(E,H) m? —4nl =0, A #0 | (IX.3)
(E,T) m?2 —dnl=A=0 | (IX.4)
(S,T) n=20 m # 0 (IX.5)
(T) m=0,1%#0 (IX.6)
System (IX) is
linear or of degree zero when n=m=10=0 (IX.7)
TABLE A.10.
Infinite Singularities for System (X)
(E) n#0| m2—4nl <0 and either ID >00r D=0 | (X.1)
(E,T) m?2 —4nl=2an —bm =D =0, b% —4nd < 0 | (X.2)
(T) n=0 b=m=0,l#0and a? —4ld <0 (X.3)
System (X) is of
degree zero when a=b=l=m=n=0, d#0 (X.4)

We close with a lemma on (properly) degenerate quadratic foliations
that simplifies some computations in the final part of the proof of
Theorem 1.4. A properly degenerate system X in Fo is one that is
neither constant nor linear, but such that the equator E is composed
entirely of singularities of m(X).

A.3. Lemma. For a (properly) degenerate system X € Fq, there
exists an affine transformation and a scaling of the time variable which
reduces X to one of the systems:

z=1+zy T =2y
D.1 D.2
(b1 {y=y2 (D-2) {y=1+by+y2,
where |b| < 2.

Proof. From the tables above the only (properly) degenerate quadratic
systems correspond to (1.15), (IL.14), (VI.6) and (VIL6).

System (I.15) with d = 0 is already (D.1). If d # 0 we have d > 0,
since we are assuming b2 — 4d < 0. Therefore, the change of variables
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1 = Vdz, y1 = 1/\/Ey and time rescaling ¢; = v/dt converts system
(I.15) to

=142y

A3
- g=1+y+y%

which, after the new change z1 = z — b’ — y, y1 = y, becomes system
(D.2). Similarly, system (II.14) becomes (D.2).

Any system (VI.6) converts to system

(A1) :%:wf—2ba:+b2+1
y=d +zy

after applying the translation z7 = z + b, y1 = y +a. If d # 0, we
apply the change of variables z; = v/b2 + 1/d'y, y1 = 1/v/b? + 1z and
time rescaling t; = v/b2 + 1t to system (A.4) to get system (A.3), and
consequently system (D.2). If d’ = 0, the change of variables z; = y,
y1 = 1/v/b2+ 1z and time rescaling t; = vb% + 1t converts system
(VIL6) into system (D.2).

Finally the change of variables 1 = (y+a)/d, y3 = = converts
system (VIL.6) to system (D.1). o

REFERENCES

1. A.A. Andronov, E.A. Leontovich, I.I. Gordon and A.G. Maier, Qualitative
theory of second-order dynamic systems, John Wiley & Sons, Israel Program for
Scientific Translations, 1973.

2. J.C. Artés, R. Kooij and J. Llibre, Structurally stable quadratic vector fields,
Memoirs Amer. Math. Soc. 639, American Mathematical Society, Providence, 1998.

3. S. Borofsky, Elementary theory of equations, Macmillan, New York, 1950.

4. A. Gasull, J. Llibre and L. Sheng, Chordal quadratic systems, Rocky Mountain
J. Math. 16 (1986), 751-782.

5. E. Gonzélez Velasco, Generic properties of polynomial vector fields at infinity,
Trans. Amer. Math. Soc. 143 (1969), 201-222.

6. A. Haefliger and G. Reeb, Variétés (non séparées) a une dimension et
structures feuilletées du plan, Enseign. Math. 2 (1957), 107-125.

7. X. Jarque, J. Llibre and D.S. Shafer, Structural stability of planar polynomial
foliations, J. Dynamics Differential Equations 17 (2005), 573-587.

8. J. Kotus, M. Krych and Z. Nitecki, Global structural stability of flows on
open surfaces, Memoirs Amer. Math. Soc. 261, American Mathematical Society,
Providence, 1982.



530 X. JARQUE, J. LLIBRE AND D.S. SHAFER

9. L. Markus, Global structure of ordinary differential equations in the plane,
Trans. Amer. Math. Soc. 76 (1954), 127-148.

10. D.A. Neumann, Classification of continuous flows on 2-manifolds, Proc.
Amer. Math. Soc. 48 (1975), 73-81.

11. M.M. Peixoto, Structural stability on two-dimensional manifolds, Topology
1 (1962), 101-120.

12. M.M. Peixoto, On the classification of flows on 2-manifolds, Dynamical
Systems, Proceedings of a Symposium at the University of Bahia, Academic Press,
New York, 1973.

13. S. Schecter and M.F. Singer, Planar polynomial foliations, Proc. Amer. Math.
Soc. 79 (1980), 649-656.

14. D.S. Shafer, Structural stability and generic properties of planar polynomial
vector fields, Rev. Mat. Iberoamericana 3 (1989), 337-355.

15. J. Sotomayor, Stable planar polynomial vector fields, Rev. Mat. Iberoameri-
cana 1 (1985), 15-23.

16. G. Tavares dos Santos, Classification of generic quadratic vector fields with
no limit cycles, Jacob Palis and Manfredo do Carmo, eds., Springer Lecture Notes
Math. 597, Springer-Verlag, New York, 1977.

DEPARTAMENT DE MAT. APL. 1 ANALISI, UNIVERSITAT DE BARCELONA, GRAN
Via 585, 08007 BARCELONA, SPAIN
Email address: xavier.jarque@ub.edu

DEPARTAMENT DE MATEMATIQUES, UNIVERSITAT AUTONOMA DE BARCELONA,
08193 BELLATERRA, BARCELONA, SPAIN
Email address: jllibre@mat.uab.cat

MATHEMATICS DEPARTMENT, UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE,
CHARLOTTE, NC 28223
Email address: dsshafer@uncc.edu




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


