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BEST APPROXIMATION BY SMOOTH FUNCTIONS
IN THE NONPERIODIC CASE

NOHA EFTEKHARI

ABSTRACT. Let W, be the set of those functions f €
C([0,1]) which have absolutely continuous (n — 1)th deriva-
tives and nth derivatives with essential suprema bounded by
one. Let n € N. The paper states, if f € C([0,1]) \ Wp, then
there is a separating measure A € C([0,1])* for f and W,
which has finite support and for all f € C([0,1]) \ Wy, there
is no bound for |supp A|.

1. Introduction. Let C(]0,1]) be the space of continuous real val-
ued functions defined on the interval [0, 1], equipped with the uniform
norm, and let W,, be the set of those functions f € C([0,1]) which have
absolutely continuous (n — 1)th derivatives and whose nth derivatives
satisfy the condition ||f(™]|, < 1.

The central results of [1] concerning best approximation from W, in
C(]0,1]) have as a corollary the fact that if f € C([0,1]) \ W,, then
there exists a separating measure A € C([0, 1])* = M([0,1]), the space
of real valued regular Borel measures A on [0, 1] for f and W,, which has
finite support. In [4, Theorem 3.1.7], there is a direct proof of periodic
case, and now we give a direct proof of the nonperiodic case (Theorem
2.6). Both of them are a result of [1, Theorem 1].

Although in [5] it has been stated that, if M is a finite-dimensional
subspace of C([0,1]) then there exists a separating measure A for
f e C(0,1]) \ M and M, |supp | < dim M + 1, that is, for all
f € C([0,1])\ M, there exists a separating measure A for f and M such
that |supp A| is bounded by dim M + 1. But, in Section 3 (Theorem
3.3), we shall show that no such result holds for best approximation by
W,,. That is, for any m € N, there exists f € C([0,1]) \ W, such that
|supp A\| > m for any separating measures A for f and W,,.
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Require theorems. The uniform norm is defined by

£l = nax, |f(t)] forall fe C([0,1]),
and
d(f,Wn) = gg‘f,n If—gll for feC([0,1])

is called the distance from f to W,,; if the inf attains at go € W,
we say that gg is a best approximation to f from W,. The set W,
is a nonempty convex boundedly compact subset of C([0,1]); hence,
W, is a proximinal subset of the space C([0,1]). That is, for each
f € C(]0,1]), there exists a best uniform approximation go from W,,. If
f € C([0,1])\W,, then the set W,, and the open ball B(f, d(f, W,,)) are
convex and disjoint and can be separated by a nonzero linear functional
A € C([0, 1])* = M([0, 1]).

Let p1(x) = X[g,1]. Define ¢, for n > 2 to be the convolution powers
of 1, that is,

Pn = Pn—1*P1-

If f € L*([0,1]), then (1 * f)(z) = [y 1(z — y)f(y) dy =[5 f(y) dy
and @, * f is an nth integral of f. Now consider the kernel

n—1

(z —y)+
(n—1)!
it follows that K, (z,y) = ¢p(z —y) for n > 1 and so ¢, * f = K, % f

for n > 1.
If A € M([0,1]), then
(1 N@) = [ oo~ 4)dAy) = A(0,),

[0,1]

K,(z,y) = for n>1;

and @, * A is an (n — 1)th integral of A([0,]). If A is a measure defined
by d\(y) = f(y) dy, where f is Lebesgue integrable on [0, 1], then ¢, * A
is just @, * f.

The following theorem of [2, Theorem 2.2] is required.

Theorem 1.1. Let A € M([0,1]) and n > 2. If p is the function
defined by

u(y) = - Kn(z,y) d\(z),
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then p is n—2 times differentiable, u"=2) has left and right derivatives

/,L(fnfl) and N(f*” at every point and

p" D () = ()" (s 1)
pE () = (1A ((, 1)

The following simple results will be required.

Proposition 1.2. Suppose A € M([0,1]), and let p € C([0,1]),
n €N,

uly) = /[0 ; on(r —y) dX(z).

(i) If a < b, then supp AN (a,b) = & if and only if the restriction of
w to (a,b) is a polynomial of degree < n — 1.

(ii) If supp AT Nsupp A~ = &, then u is a piecewise monotonic
function.

Proof. (i) If n =1, then

w) = [ el -pd@ = [ 0w =),

so p is constant on (a,b) if and only if supp AN (a,b) = &. For n > 2,
(n— (n—1)

by Theorem 1.1, there exist py D and we at every point and

n D () = (-1 ([ 1),
u V() = (=)™ M (1),

so (=1 exists and is constant on (a, b) if and only if supp AN(a, b) = @.
This proves (i).

(ii) Suppose supp AT N supp A~ = &; thus, A([0,-]) is piecewise
monotonic on [0, 1]. It follows that ¢, * A, which is a repeated integral
of ), is also piecewise monotonic. ]
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2. Separating measures. The following theorem is the general
result of [1, Theorem 1] which, applied to the subset W,, of C([0,1]),
contains the following preliminary characterization theorem as a special
case.

Theorem 2.1. Let n € N. Suppose f € C([0,1]) \ Wa, go € Wy,
A e C([0,1])* \ {0} and let w,, be defined by

Wr(A) = @p * A

Then the two conditions

I(a) go is a best approzimation to f from W,

I(b) A(g) < A(h), for all g € W,, and h € B(f, d(f, Wy)),
together are equivalent to the three conditions

II(i) A(p) = 0, for all p € P, 1, i.e., A\ € P |, where P, is the
set of polynomials of degree not greater than n — 1,

I1(ii) gén)(y) = sgnwy, (N)(y) for almost every y in [0, 1]\ w, (\)~1(0),
I(iii) A(f = go) = [l = goll or; equivalently,

supp AT C (f —go) (I — goll),
supp A~ C (f — go) ' (—[If — gol])-

If f € C([0,1]) \ W,, then a measure A € M([0,1]), which satisfies
condition I(b) will be called a separating measure for f and W,,. Let
S(f, Wy) denote the set of separating measures for f and W,,. Note
that if \ is a separating measure for f and W, then, by condition
II(iii), [|A]] = 1 if and only if [|A]] < 1 and A(f —go) = ||f — gol|. It
follows that the set {\ € S(f, W,,) : ||A\]| = 1} is a weak*-compact
subset of C'([0,1])* = M(]0, 1]).

If A € S(f, W,,), then the function w,, () will be called an associated
function of f and W, or the associated function of .

The next proposition, which is a straightforward consequence of
Theorem 2.1, gives conditions which are sufficient to ensure that a
regular Borel measure A is an element of S(f, W,,).
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Proposition 2.2.  Suppose that f € C([0,1]) \ W,, and Xy €
S(fa Wn) If>‘ € M([(]’ 1]) n P’ri_—l’

(1) supp AT C supp )\3', supp A~ Csupp Ay,
(2) wn(X0) 7H(0) € wn(N)7H(0)

and

(3) wn (M) (y) wn(Xo)(y) 2 0 for all y € [0,1],

then X is also an element of S(f, Wp,).

Proof. If Ay € S(f, W,,), then X, satisfies conditions II(i)—(iii) of
Theorem 2.1. It follows from the conditions (1)—(3) that A also satisfies
conditions II(i)—(iii). So the conclusion follows by Theorem 2.1. o

In this part it is first established that there exist separating measures
with minimal supports and associated functions with maximal zero sets.

Theorem 2.3. Suppose that f € C([0,1])\ W,,. If A1 is a separating
measure for f and Wy, then there exists a separating measure Ao such
that supp Ay C supp A1 and if A is also a separating measure and
supp A C supp Ag, then supp A = supp Ag-

Proof. Suppose that A € S(f, W,,). Let
L(\) = {\ € S(f, Wy) : supp X' C supp A, [|N']| = 1},

which is a weak*-compact subset of M([0,1]), and let £ = {supp \ :
XN € L(A)}. If L' is a chain in £, then A = (A, : @ € L) is a net
of measures (for a € L’ choose a measure in L()), A\, say, such that
a = supp Ay). We want to find a lower bound in £ for the chain L'.
Then by Zorn’s lemma, £ contains a minimal element.

Since L(\) is weak*-compact then the net A has a cluster point, Ay
say, that is, the net A has a convergent subnet (convergent to Ag). If
there is an open set V' C [0, 1] such that A(f) = 0 whenever supp f C V
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(that is, f]fo,1\v = 0) for A in convergent subnet of A, then \o(f) = 0;
that is, for each open set V' C [0, 1],

V . [0,1] \ supp A — V C [0,1] \ supp Ao.

So supp A\g C supp A, for each o € L'. That is, supp A\ is a lower
bound in £ for chain L'. O

Theorem 2.4. Suppose n € N. Let f € C(|0,1])\ W,,, and let A1 be
a separating measure for f and W, with minimal support. Then there
exists Ao € S(f, W) such that

(i) supp Ao = supp A1,

(ii) wn(A)7H0) = wn(Xo)~'(0) wherever A € S(f, W,,), suppA =
supp Ao and w,(A)~1(0) 2 w,(Xo)~1(0).

Proof. For each A € S(f, W,), let I(\) denote the set of \' €
S(f, W,) such that [|[N| = 1, supp X C supp A and w,(\)71(0) 2
w, (A)71(0). Each of the sets I()\) is a nonempty and compact subset of
M([0,1]). The completion of the proof now follows that of the previous
theorem. o

The next lemma is the nonperiodic variant of [4, Lemma 3.1.6]. The
proof of the two lemmas are essentially the same.

Lemma 2.5. Let n € N. Let f € C([0,1]) \ Wy, and let Ay €
S(f, W) be such that Ay has minimal support and w,(Xo) has mazimal
zero set, that is, satisfies condition (ii) of Theorem2.4. If0 <a<b<1
and w,(Xo)~1(0) N [a,b] = @, then |supp Ao N [a, b]| < 3n + 1.

Proof. The lemma will be proved by contradiction. Suppose that
|supp Ao N [a,b]| > 3n + 1. Let By,...,Bs,i2 be disjoint closed
subintervals of [a,b] such that Ao|p, # 0, for j = 1,...,3n + 2. Let
Aj € M([0,1]), for j =1,...,3n+1, be such that \;(A) = A\g(A N B;)
for each Borel subset A of [0, 1].

Let y1,...,yn be distinct points of (0,a), and let yn41,... ,Y2n be
distinct points of (b,1). (Ifa =0or b= 1and (a,b) # (0, 1), then a part
of this step will be removed and the upper bound for [supp Ao N [a, b]|
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is 2n + 1.) Then there exists a nonzero (ai, ... ,a3n+1) € R* ! such
that
(@1 A1+ -+ + aznt1A3041)(pi) = 0,
where p;(z) =z'"', for i=1,...,n,

and

wn(al)\l + -+ a3n+1)\3n+1)(yk) =0 for k=1,...,2n.

Let A = a3 A\1 + -+ + asn41A3n+1- So A # 0 and A € Prf;l. Now
supp AN (b, 1) = @ (and also supp AN(0,a) = &). Thus, Proposition 1.2
implies that the restriction of w,(\) to each of (b,1) and (0,a) is a
polynomial of degree less than or equal to n — 1 with n zeros in (0,a)

and n zeros in (b,1). So [0,a) and (b, 1] are zero intervals of wy, ().

Let € = sgnwy,(Ao)(y), for all y € [a,b]. Let J be the set of t € R
such that
ta; >—1 for j=1,...,3n+1,

and
ewn (Ao +tA)(y) >0 forall y € [a,b].
Then 0 € J # R and J is an open subinterval of R.
Suppose ¢ € J. Then supp (Ao + tA) D supp Ao N B3, 12 # @ so that
Ao +EXN#0; Ag +EA € Prf_—l and
supp (A + tA) T
supp (Ao + tA)~

C supp \¢,
-

supp Aq -

Furthermore,

wn (Ao + tA) = w,(Xo) + tw, (N),
so it follows that
wn (Ao +tA)1(0) 2 wa(Xo) 1(0)
and
wn (Ao +tA)(y) wn(Xo)(y) =0 forall ye[0,1].

Therefore, by Proposition 2.2, A\g + tA € S(f, W,,).

Now let ¢ be a point of the nonempty boundary of J. Then either
ta; = —1 for some j € {1,...,3n + 1}, in which case supp (Ao +t ) N
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B; = @ and supp (Ao + tA) # supp A, in contradiction to the fact that
Ao is a separating measure of minimal support, or w,(Ag+tA\)(y) = 0 for
some y € [a, b], in contradiction to the fact that w,(Ao) has a maximal
zero set. The proof of the lemma is complete. i

The finite support theorem now follows easily.

Theorem 2.6. Let n € N. If )\ is a separating measure of minimal
support for some f € C([0,1]) \ W,,, then supp A is finite.

Proof. By Theorem 2.4 it may be supposed, after replacing A
by another measure with the same support if necessary, that the
associated function wy, () has maximal zero set. It follows from (ii) of
Proposition 1.2 that w,(\) is a nonzero piecewise monotonic function.
Therefore, w,(\)"1(0) is a union of a finite family of zero intervals and
a finite set of isolated points. If I is a zero interval of w,(}\), then
Proposition 1.2 implies that supp A Nint I is empty. If J is an open
interval of [0, 1] disjoint from w,,(A)~%(0), then in Lemma 2.5 it follows
that |[supp A N J| < 3n + 2. This proves the theorem. o

3. On the separating measures for W,,. The main result of
the previous section (Theorem 2.6) is the fact that if n € N and A
is a separating measure of minimal support for some f € C([0,1]) \
W,, then supp A is finite. If M is a finite-dimensional subspace of
C([0,1]), then there exists a separating measure \ for f € C([0, 1]) \ M
and M, |supp A| < dim M, +1, [5]. The main result of this section,
Theorem 3.3, shows that no such result holds for best approximation
by W,. In fact, it is established that for any m € N, there exists
f € C([0,1]) \ W,, such that |supp A| > m for any A € S(f, W,,), that
is, there is no m such that |suppA| < m for all A\ € S(f, W,,) and
feC([0,1]) \ Wh.

Let ¥, 1 be the set of spline functions defined on R which are of
degree n — 1 and have a finite set of simple knots. If w is a continuous
function, then it will be said that [a,b] is a zero interval of w if a < b
and w(y) = 0 for all y € [a,b]. If w € 9,—1 and w(y) = 0, then
Zn(w, y) will be the multiplicity of zero y of w as defined in [2]. That
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is,if 1 <a<n-—2and

w(y) = wW(y) = =@ V(y) =0, 0 (y) #£0,
then Z,(w, y) = a. If
w(y) =wM(y) =---=w"?(y) =0,

then Z,(w, y) is either n — 1 if w changes sign at y or n if w does
not change sign at y. It follows that if y is a point of a zero interval
of w then Z,(w, y) = n. Distinct zeros y and y’ of w are said to be
separated zeros of w if the interval with endpoints y, and 3’ is not a
zero interval of w. If I is an interval of R, then Z, (w, I) will denote the
maximal number of separated zeros of w on I, each zero being counted
according to its multiplicity.

If ay,...,0r, € R, then Scc(ay,...,ax) denotes the number of
strict sign changes in the sequence ay,...,a;. Let A € M([a,b]) and
supp ANJa, b] be finite. If I is an interval and supp A\NJI = {z1,... ,2n },
define

Scc (A, I) = Scc (A(z1), .-+, Mxm))-
The following proposition is a result of [2, Corollary 1.7].

Proposition 3.1. Letn > 1 and a < b. Then Z,(wn(N),[a,b]) <
Sce (A, [a,b]) + n.

The following lemma [3, Lemma 4.7.7] is required.

Lemma 3.2. Letn € N, ¢>2 m=q+n—-1,2z; < -+ < Ty,

21 < < Zg, T1 = 21, Ty, = 2¢ and Z = {z1,... ,24}. The following
two sets of conditions on x1,... ,Tm,21,- .. ,2¢ and Z are equivalent.
(i) 2 < 2; < Tyyn—1 foralli=2,... ,¢g—1,

(i) |Z N (zj,zk)] > k—j —n whenever 1 < j < k < m and

(4, k) # (1, m).

Proof. If j € {2,... ,m — n}, then

(4) z; < z; ifandonlyif |ZN(zj,zm)>m—j—n.
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Ifke{2,...,m —n}, then

(6) 2k < Tk_14n ifand onlyif |ZN(z1,2x)]>k—1—n.

Ifl<j<k<m,then
(6) 120 (zj, i)l = [Z 0 (2, )| + 120 (25, 2m) | = |Z 0 (21, 2) |-

The lemma now follows from (4), (5) and (6). o

Theorem 3.3. Let n € N. For a given m > n + 1, there exists
f € C([0,1]) \ W,, such that if X is a separating measure for f and W,
then |[supp A| = m.

Proof. At first, we find f € C([0,1]) \ W,, and gy € W,, where gg is
a best approximation to f from W,,, and then it is established that,
for any separating measure A for f and W, |[supp AN|0,1]| = m. Now
let m € N and m > n + 1. We choose arbitrary interval [a, b], where
0<a<b<l,anintegerg=m—n+1>1,asigne € {-1,1}, points

a=z < --<zg=b,
let Z ={z,...,24} and go € W, such that
g8 (z) = (~1)7"e forall € (2i_1,2) and i€{2,...,q},
and
(7) dM(@) =0 forall zel0,1]\ [ab].

Next we choose
a:x1<...<l‘m:b

such that
(8) rj <2zj <Tj14n for j=2,... m—n.
We choose f € C([0,1]) \ W,, and d € R™ such that

(f —g0)(z;) = (~1)™"ed forall je{l,...,m},
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and
[(f —go)(z)| <d forall ze€][0,1]\{z1,...,Zm}

In fact d = ||f — go|-

Suppose that A € S(f, W,,) with minimal support (existence by
Theorem 2.3) and associated function w, () satisfies condition II(ii)
of Theorem 2.1. Then A\(f — go) = ||Al||lf — 9ol or, equivalently,

(f—g0)(@) =||f —gol| forall zesuppA®

and
(f —g0)(z) = —[|f —gol| forall z&suppA .

So supp A C {z1,...,2m} C [a,b] and supp A N ([0,1] \ [a,b]) = @.
Thus, the restriction of w,, () to each of [0, a] and [b, 1] is a polynomial
of degree less than or equal to n — 1, Proposition 1.2.

On the other hand, Theorem 2.1 II(ii) and (7) imply that w,(}) is
zero almost everywhere on [0, 1]\ [a, b]; but, it is a polynomial on each
of [0,a] and [b, 1], so

wp(A)(z) =0 forall z€]0,1]\ [a,b],
ie., [0,1]\ [a,b] C w,(N\)71(0). Now we claim that w,()\) has no zero
interval in [a, b], for if [z}, k] C [z1,2.,] for some (4, k) # (1,m) is a
maximal interval in [z1,z,,] such that w,()\) has no zero interval in
[}, k], then Proposition 3.1 implies that
Zn(wn(X), (zj,2r)) < Scc (A, [z, zx]) — n.
So Lemma 3.2 and (8) imply that

k= —n <120 50| < lwn(3)710) 0 (25,20)
< Zn(wn(N), (mjaxk)) < Scc (A, [Ijaxk]) —n<k—j—n,
which is impossible. Therefore, w,(\) has no zero interval in [a, b].
Now Proposition 3.1 implies that

¢ —2=1Z0(z1,2m)| < [wa(\)71(0) N (21, 2m)|
< Zn(wn(N), (z1,2m)) < Scc (A, [z1,Tm]) — n.
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Now if supp A # {z1,...,zm}, then Scc (A, [z1,Zm]) < m — 2 and so
q—2<m-—-n-—2,

but m = ¢+ n — 1, which is absurd. So supp A = {z1,... ,z,}, and so
the proof is complete. ]
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