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COMPOSITION OF OPERATORS IN ORLICZ SPACES

B. BONGIOANNI AND E. HARBOURE

ABSTRACT. In this work we find sharp conditions for
boundedness on Orlicz spaces of the composition of j oper-
ators, each one being of restricted weak type (p,p) for some
p > 1, and of strong type (00, 00). Particularly, we find neces-
sary and sufficient conditions to obtain modular inequalities
for the j-times composition of the Cesaro maximal function of
order . With this approach we treat a kind of strong max-
imal function related to Cesaro averages over n-dimensional
rectangles.

1. Introduction. Let (2, 1) be a measure space and 9(2) the space
of measurable functions. Let j € N and 71,75,...,7}, be sublinear
operators defined on M (), so that all of them are of strong type
(00, 00) and, for a given p > 1, of restricted weak type (p,p), 1 < k < j,
that is, there exist constants Ay and By such that for any measurable
function f € M(Q)

1T flloo < Akl flloos

and

Bi [ 1\’
prr(s) < (—/ I p) for all s> 0,
0

S

where 1, denotes the distribution of a measurable function g.

It is well known that for a sublinear operator T these two conditions
can be expressed in just one inequality, namely,

o5} p
(1) prf(t) < (g/ pr(s)/? ds> for all t >0,
t

t Jyc

where C is a constant independent of f and t.
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42 B. BONGIOANNI AND E. HARBOURE

In turn, the last inequality is equivalent to

) T <Co [ £ as

where g* denotes the rearrangement of a measurable function g, see for
example, [1].

Observe that the righthand side of (2) is the modified Hardy operator,
H,, defined in (22) below, acting on the rearrangement of f. Further-
more, for this operator, inequality (2) is known to be an equivalence.

As we shall see, these and even more general Hardy type operators
will play a central role in modeling our situation and in obtaining the
main results.

Now we remind the reader of the definition of Orlicz spaces. Let
¥ : [0, 0] — [0, o0] be an increasing function such that lim; .o ¥(¢) = 0
and lim; o, ¥(t) = oo. The set of functions

LY(Q) = {fEDJT(Q):/Q\If(8|f|)du< oo for some8>0}

is called Orlicz space associated to V.

In this work we are interested in boundedness properties in Orlicz
spaces for the composition operator

(3) TyoTro---0Tj,

where T}, 1 < k < j, satisfies the above conditions.

In [6], Neuguebauer deals with modular inequalities for a finite
iterated composition of a single operator that behaves like the Hardy-
Littlewood maximal function, that is, of strong type (co,c0) and of
weak type (1,1). Such a composition may no longer be weak type
(1,1) and therefore classical interpolation results cannot be applied
directly. However, they satisfy more general weak type inequalities like
those introduced in [3]. In fact, Theorem 2 in [6] might be derived
from the results in [3] after using Lemma 1 in [6].

In this paper we will give answers to the problem of finding modular
inequalities for the composition operator (3). Since, for p = 1, weak
type (p,p) and restricted weak type (p,p) are the same, we deal with
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the case p > 1. Other classical operators that satisfy the assumptions
made on T} are the one sided Cesiro mazimal function operators of
order o = 1/p, defined for f € M([0,1]) and = € [0,1] by

- = o ’ s)|(s —c)® Lds
1) Maf(z)= sup )a/cw )I(s —c)*'d

0<c<z (I —C

taking averages to the left, and

B M@= s o [l as

z<c<l1

taking averages to the right, see [5]. Let us notice that the case a =1
gives the one sided Hardy-Littlewood maximal functions.

We start by giving in Section 2 an estimate for the distribution
function of the composition operator. This formula leads us to consider
operators satisfying more general inequalities of this type, see (7).
These inequalities can be seen as the restricted weak type version of
the ones appearing in [3]. In Section 3 we give modular inequalities for
operators satisfying such general conditions and we apply the general
result to obtain boundedness properties for the composition operator.
Further, we show that the obtained modular inequalities are the best
possible. As an application of these results, in Section 4 we deal with
a kind of strong maximal function related with Cesaro averages over a
family of rectangles on R".

2. A distribution estimate. For clarity we will deal with the
case when T1,T5,...,Tj;, are all the same operator, T, = T for k =
1,2,...,j. It is easy to modify the notation in the proofs of theorems
and lemmas in this paper in order to obtain the same conclusions for
the operator (3) when the T3, T5,...,T}, are not necessarily the same.

j times
. —

Let 7U) =T o...oT be the j-times composition of the operator 7.
Following [6], the next lemma gives us an estimate for the distribution
of T f for the case p > 1.



44 B. BONGIOANNI AND E. HARBOURE

Lemma 1. Let p > 1. If the operator T satisfies (1), then T
satisfies

(6) NTmf(t) < [ﬁ /too ,uf(s/Cj)l/p [log(s/t)](j’l) ds

J

for allt > 0.

Proof. We proceed by induction on the number of iterations. For
j = 1, inequalities (6) and (1) are the same. Now, suppose (6) is
satisfied for some j > 1. If we call g = T f,

oo

p{ITU S > 6)) = u({|Tgl > 8}) < [5/ ()7 dS]
t/C

and the last term is bounded by

p

err_1 [ r/CNYP Nog(r /1YY dr ds
t/t/c(jl)!s/s pyp(r/C7)F [log(r/s)] dd]

From Fubini-Tonelli’s theorem, we have
P
c / = e [01 G-1)
— pg(r/CI)Y/P / =~ [log(r/s)|V "V dsdr| .
[(.7 -1t t/C ! t/C S

Performing the inner integral in the last expression we obtain

.g/too uy(r/C9)MP log(Cr/t) dr] :

which is the same as the second term of (6), after a change of variables.
O

3. Modular inequalities. Inequality (6) yields to consider opera-
tors 1 satisfying for some p > 1 and a constant C,

(7) prg(t) < l% /00 s (s)YPw(s/t) ds] for all ¢>0,
t/C
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where w : [1,00) — [0, 00) is continuous. Even tough we are interested
in the case w(s) = log’~'(s) there is no loss of clearness in working
with a general w.

In what follows a : [0,00) — (0,00) and b : [0,00) — (0, 00) will be
continuous functions, with floo a = oo and b increasing. Let

@(t):/ota(s)ds and \I!(t):/otb(s)ds,

for all £ > 0.

Since the more interesting applications concern the local behavior of
T f we shall work on a space €2 of finite measure. In this case the small
values of ¢ are irrelevant either in condition (7) or in the definition of ¥
and ®. Later, at the end of this section, we present the corresponding
results for Q) not necessarily of finite measure.

Theorem 1. Let Q be a finite measure space and T a sublinear
operator satisfying (7). If there exists a constant C such that

® s ( /1 t %w”(t/s) ds)l/p< /t T h(C )P ds>1/p’ < o0

then, there exists a constant C' such that

[airsamsc+c [ o
Q Q
for all f € M().
Proof. Let f be a function in the domain of 7. From (7),

o du= [ ators(s)ds

([ s

a(s)

su@)+ [~ L [T wssoyratess i as

is bounded by
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for some constant C'. Now, if we call

00 , 1/pp’
"(t):u b(@«)—wpdr] and  g(t) = [us(t/C)B(CO)]'7,

from Hélder’s inequality,

/100 W [/m us(t/C)P w(t/s) dt]pds

- /100 % {/:o g(t)w(t/s)h(t)mdtrds

can be bounded by

/1 ) % [ / ) [g(t) w(t/s) h(t)] dt] [ / oob(Cr)P’/Ph(r)P’dT] p/plds_

If we apply Fubini-Tonelli’s theorem, the last expression is
[e’e] t a(s) [e’e] , , IJ/IJ’
/ 9(6) RO / U)o (t)s) [ / b(Cr) P /Ph(r) P dr} ds dt.
1 1 8 s
Integrating by parts, we have

1/p’

(9) /:o b(Cr) P /Ph(r) P dr = p' [/:o b(Cr)_P'/Pdr}

(10) /lt a(5) o(t/s) [/1 ar) (s /) dr] o ds

—p Mﬂwp(t/r)dr] ”

rP

Now, identity (9) and inequality (8) gives

/1 t % WP (t/3) { / h b(cr)—p’/ph(r)—fo’dr] 7 s

_ /1 ' ) oy [ /:0 W) /pdr} P/&)

S

<yren [ [ wrsinyan s

1 sP rP

ds
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and from identity (10) the last expression is a constant times

[/j % w?(t/r) d?‘] " <C [/too b(Cr)‘p'/Pdr] i
= Ch(t)"?,

where the last inequality is due to (8). Therefore,

/Q STV 1) dys < 2(1)u(Q) + p(p' )77 CP / " st/ OYb(Ct) dt

< B(1)u(Q) + p(p )Y P! / W(C?f) du,

Q

and the proof is finished. a

As a consequence of Lemma 1 and Theorem 1 for the case w(s) =
log Y (s), we obtain modular inequalities for the j-times composition
of an operator of restricted weak type (p,p) and strong type (oo, 00).

Theorem 2. Let 2 be a finite measure space, p > 1 and T an
operator that satisfies inequality (1). If for some constant C, a and b
satisfy

(11)
"a(s) j e ’ "
sup </ @\ logp(kl)(t/s) ds> (/ b(C 3)—p /p ds> < 00,
t>1 1 sP t

then there exists a constant C' such that
[ e+ [ we i
Q Q

for all f € M().

In order to show that condition (8) is the best possible we introduce
a Hardy type operator for which (7) holds with equivalence. If p > 1,
w : [1,00) = [0,00) is nondecreasing and f is an integrable function of
[0, 1], we define the operator

%wf(x):;l// f(s)sYP " w(x/s)ds forall =€ |0,1].
px/P Jo
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We will need the following lemma.
Lemma 2. If f is nonincreasing, then T," f is also nonincreasing.

Proof. Let z,y € [0,1] and = < y. By a change of variables, since f
is nonincreasing, we have

T @) = i [ £6) 7 Vuafs) ds

T s

1 v
> W/o F@) /P Lw(y/t) dt=Tf(y). ©

Theorem 3. If b is monotone and for some constant C,

v [ Ei@)Ecrc [ wel@ha
for all f e M([0,1]),

then the functions a and b satisfy (8).

Proof. We deal first with the case when b has the property that there
exists a constant C; such that

oo 1/p’
(13) w(t)(/ b(Cs)p'/pds> <(C; forall t>1.
¢

Fix t > 1, and let

1 /
ht(S) = A_ b(CS)ip 5 s > 0,

¢
with A, = tb(Ct) ?'/P+ [ b(Cs) "P'/P ds. The fact that b is monotone
and (13) implies b is nonincreasing and lim,_, o b(s) = co. Thus, h; is
nondecreasing, and also lim, ;. h:(s) = 0 and h; '(s) is well defined
for s > 0.
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Now, consider the function f; € ([0, 1]) defined by

Fr =R X (0,n, (1))

Observe that, if (12) is satisfied with a constant C, then it is also
satisfied with any constant greater than C. Hence, we can assume
b(C) > 1, and

ha(t) = Ait b(Ct)" < e

Then, h:(t) is in the interval [0, 1].
The distribution of f; is

" 0= (0) tnns

Then, as b is nondecreasing, we have
1 1 00
& [ ecin@hda= [ o (s)as
0 0

<> [tb(Ct)_p'/p + / b(Cs) P/ ds]
A, \
<1,
and thus
(15) C+C V(C|f:]) < C+C%
[0,1]
On the other hand,
1 e’}
| e r@Nde = [ a)urgss)ds
(16) 0 Ot
> / a(s) prer,(s) ds.
1
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If s > 7, fi(1), by Lemma 2, the function 7,” f; nonincreases; then
there exists x5 € [0, 1], so that

{z: T, fe(z) > s} = [0, z),

and since 7, is continuous,
) s =T = i [ RGP w(e /) dy

If s <t, and as f; < 7,” fi, we have

2> @ > g () = h(2).

Then, since w increases, from (17) we have

(18) Ty > <M /Oht(t) ft(y)y“/")‘ldy>p-

S

T fi(l) <s<t,

E:<tf“fy )y P w(z /y) dy ) Z<E>p>§-

Tt Jo F) y /Pt w(ae/y)d s

Hence, from (18) it follows

(19) 5, > (M /Oht(t) L) y(l/pndy)”_

S

From the definition of f,

he(t) 0o ,
/ Fly) y /PN dy = thy(8)P + / he(r) /P dr = A}/
0

t

oo , 1/p
> </ b= /P(Cr) dr> .
t

Then, by inequality (19),

o »/p'
5, > w</ b= /P(Cr) dr) for all s € (7,"fi(1),1).
t
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If s € (1,7,°fe(1)), prws(s) = 1, by (13) and w nondecreasing,

1 o »/p
1> —pwp(t)< / b P/P(Cr) dr>
C ¢

1
L wP(t/s) ([ p/v'
2 C_f T < ‘/t b (C’I") dr ,
and thus, there exists a constant C; such that
(20)

1 wP oo , p/p’
prwg,(s) > _M(/ b(Cr)™? /p d7“> forall 1<s<t.
P Cy sP ¢

Therefore, from (12), (15), (16) and (20) we get (8).

In order to finish the proof of this theorem, it remains to consider the
case when the function b does not have the property (13). In the case

/Oo pP /P — 00,
1

following the example in [2], we consider
f=hr"Xp1

where

’

b(z)~P
he) = 2"
(ff/z b_p,/pds)

and, as it was shown there,

z>1,

1
/ f(r)rl/pfldr = oo.
0

Since fol f(r)yrt/P=ldr < T f(1) < T,°f(x) for all z € [0,1], the left
side of (12) is infinite.

The remaining case is when

(21) / b PP < oo
1
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Thus, we can choose an increasing sequence of numbers ¢, for n =

1,2,..., so that
oo , 1/p’
w(tn)</ b(s)™? /pds> > n.
tn

Also, as b is monotone and satisfies (21) it must be nondecreasing, and
so we can choose t; > 1 and b(¢;) > 1.

We will see that the operator 7,” cannot satisfy (12) for any @
increasing.

Forn=1,2,..., let

s) P
hn(s) = 1 forall s>0,
with A, = t, b(t,)"F' /7 + ftio b(s)~?'/Pds, and consider the function
Fu(@) = by (@)X (0, 00)) ()
for all z in the interval [0,1]. Since b(¢;) > 1,

b(tn) " 1
A " o b(t)

>
3
—

o~
3
~

Il
IN

1
<
tn

and due to t; > 1 and ¢, > t;, the number h,(t,) is a point of [0, 1].

In the same way as before, from the expression of the distribution of

s

AT Dmb(sm(s)ds
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On the other hand, due to h,(t,) < 1/t,,

ha(tn)
T, fa(1) 2 w(tn)/o Fly) y /Py

= w(tn) Ai/p,
0o , 1/p’
> w(tn)< / b7 /() dr)
tn
> n,

and since 7," f,, is nonincreasing,

T, fn(z) >n forall x€l0,1].

Therefore, if we have (12), as 7," is lineal, we would have

(o5t ) </ O(T(fu(2)/C)) da

SC—}-C’/I\I/(fn(ac))dm
0
<20

for all n € N, and this is a contradiction because ® is unbounded.
O

A particular case of the operator 7,°, when w(t) = t1/P, is the
operator
1 xr
— (1/p)—1
(22) Mo (@) =~ [ ) ay

It is easy to check that H,, is of restricted weak type (p,p) (but not of
weak type (p,p)) and strong type (oo, 00); then it satisfies inequality
(1).

Another example of 7" is the j-times composition of H, as the
following lemma shows.

Lemma 3. Let j € N and f be an integrable function on [0,1] with
respect to the Lebesgue measure. Then,
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1

@) WS = gy | T g e/,

for all z in [0, 1].

Proof. We proceed by induction. For j = 1, (23) is the definition
of #H,. Suppose that (23) is true for some j > 1. Then, from Fubini-
Tonelli’s theorem, if = belongs to [0, 1],

. 1 z -
Y1) = o [ W )y dy

- pml/P
1 LY )1 gL
= G- D )y vl f(r)r log? *(y/r)drdy
R 1/p)-1 [ Z1ogi—? dud
(j—l)!pj“wl/f’/o fe)r /r y o8 W/r)dydr

1 x _ .
Tl Ll OO U
: 0

From the previous lemma and Theorem 3 we obtain sharp modular
inequalities for the j-times composition of #,,.

Theorem 4. Let p > 1 and b be monotone. There erists a constant
C, such that

1 1
[ e swnar<oso [ weiwna
0 0
for all f € M([0,1]) if, and only if, the functions a and b satisfy (11).
Now we present a result for the Cesaro operators.

Theorem 5. Let 0 < a < 1 and b be monotone. There exists a
constant C such that

1 1
(24) /0 ©(|(Mo )W f(2)]) dz < C+C/0 Y(C[f(2)]) dz



COMPOSITION OF OPERATORS IN ORLICZ SPACES 55

for all f € M([0,1]) if, and only if, for some constant C'
(25)

t «a oo l-a
sup (/ % log =Y/ (1 /5) ds> (/ b(C's)“/(lo‘)ds> < 00.
t>1 18 t

The same holds for M, ™.

Proof. As we have mentioned in the introduction, the operator M, "~
is of restricted weak type (1/a,1/a) and strong type (oo, 00), and
so it satisfies inequality (1). Then, as a consequence of Theorem 2
condition (25) implies (24). To see that condition (25) is necessary,
we just observe that for x € [0,1], H,f(z) < M, f(x) and then

H,(,j)f(ac) < (M,7)Y f(z) for any j and then we can use Theorem 4.
The result for M, follows from the identity

Mo " f(x) = Mo~ g(1 - x),

with g(z) = f(1 — ), for all z € [0,1] since f and g have the same
distribution. O

The results contained in this section have a corresponding version
when Q is not of finite measure. Conditions about a and b like (8)
and (11) change because the values of ¢ near 0 may be important when
Q does not have finite measure. Also, the wanted modular inequality
is different. The results are presented without proofs in the following
theorems.

Theorem 6. Let ) be a finite measure space, w : [1,00) — [0,00)
continuous and T : M(Q) — M(Q) an operator satisfying for some
p>1

prs(t) < F /00 pr(s)Pw(s/t) dsr for all t>0.
tJ

If there exists a constant C' such that

t a(s) 1/p 0 , 1/p'
sup (/ —= wP(t/s) ds> (/ b(C's)7P /P ds> < 00,
t>0 \Jo s t
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then there exists a constant C' such that

[eirshdusc [ we'is)au
Q Q
for all f € M().

If we consider the operators M,  and M, T defined over the whole
real line, see [5], we have the analogous of Theorem 5.

Theorem 7. Let 0 < a < 1. There exists a constant C' such that
| #0070 s@de < ¢ [ w(Cl(@) de

for all f € M(R) if, and only if, for some constant C’

t (] %) l-«
sup (/ % log =Y/ (1 /5) ds) (/ b(C's)_a/(l_o‘)ds> < 0.
t>0 0o $ t

The same holds for M,™".

4. The strong Cesaro maximal function on R”. For a locally
integrable function f and & € R", the Hardy-Littlewood mazimal
function operator over cubes is defined as

d
Mf() S‘é‘élm/'f I dy

where the supremum is taken over all cubes () with sides parallel to
the coordinates axes and containing x.

If we take rectangles instead of cubes, the resulting operator is known
as the strong mazimal function operator defined by

S _
M? f(z) = sup |R‘/If )| dy

TER

where the supremum is taken over all rectangles R with sides parallel
to the coordinate axes and containing x.
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We may write this maximal function as

by bo
MSf(z) = sup / / / V)| dyy - - - diy
a;<z;<b;

for all x = (z1,2,...,2,) € R™

It is well known that this operator is strong type (p, p) for all p > 1;
nevertheless, it is not of weak type (1,1). In [4] modular inequalities
in Orlicz spaces are treated for this operator.

In order to study «-Cesaro continuity in R"™ we may deal with
the Cesdro maximal function operator of order o in R™ defined for
f € MR") and z € R, as

- cya—
(26) Maf(z)= EEBW/QV(ZI)W(%Q )*~tdy.

Here d(y, Q) denotes the distance form the point y to the comple-
ment of (), and the supremum is taken over all cubes @) containing the
point x and with sides parallel to the coordinate axes.

When n = 1, for f € M(R) and z € R, (26) can be written as
! 125 —d—c[\*"
M, = 22
of () ST \f( )I< g ) ds,

which is the bilateral version of the Cesaro maximal function operators
(5) and (4).

Let f € M(R") and =z € R". We define the strong Cesdaro mazimal
function operator of order o as

a dl d2
M3f(x)= swp Sl
ci<z;<d; (dz

" - 2y —di — ;|\ "
/ If(y)|H<1——| T o |) dyy, -+ - dya dyy
cn i=1 L

for all x = (z1,9,...,2,) € R™

Before dealing with the strong Cesaro Maximal function, we would
like to point out that for the Cesaro maximal function operator over
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cubes (26), we may obtain the same results as the one dimensional case
contained in [2]. This sublinear operator is also of restricted weak type
(1/a,1/a) and strong type (00, 00). In fact, the same arguments of [2]
can be easily adapted, giving an estimate for the rearrangement of the
function d(z, Q°) for a cube @ contained in R".

The rest of this section is devoted to apply Theorem 2 in order
to obtain modular inequalities for the strong Cesto maximal function
operator.

Theorem 8. Let 0 < a < 1 and Q2 be a bounded set of R™, and
suppose the functions a and b satisfy for some constant C

en -
sup (/ al(/so)L log"~V/%(t/5) ds> (/ b(C )~/ (=) ds> < oo0.
t>1 1S t

Then there exists a constant C' such that

(28) / (M5 f(2))de < C'+C" / W(C'|f(2))) de

for all f supported in €.

Proof. For f € M(R™) and i =1,...,n, let us consider the operator
T:f(x) = Mo (f(21,- oy Tio1y 5y Tit1s---»Zp))(2;) for all z in R™.

Then, we have
MS <TyoTso---0T,.

For i = 1,...,n, we check that the operator T; satisfies (1). For
clearness in the notation, we suppose ¢ = 1. Let 2’ = (z2,...,,), then
xz = (z1,2"). Since M, satisfies (1), for ¢ > 0 we have

pry £ (t) :/R X{yeRrn:1, f(y) >} (T) dz

:/ / X{MER:(MO‘f("””'))(u)M}($1)dmldx’
R"-1JR

C [® 1/a
< / (—/ Hz1 eR: f(z1,2") > s}ads) dz’,
re-t \ 't Jiyc
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and, due to the Minkowski integral inequality, the last integral is
bounded by

%\/UC (/Rn1 ‘{Il € R:f(a:l’x’) > S}|dx'> ds

=15 mstoras

t Jyc

1/«

1/

Therefore the operator M7 is bounded by a composition of operators
which satisfies the hypotheses of Theorem 2. Then condition (27)
implies modular inequality (28). i
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