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Qx SPACES VIA HIGHER ORDER DERIVATIVES

HASI WULAN AND KEHE ZHU

ABSTRACT. We characterize the Mobius invariant Qg
spaces in terms of higher order derivatives. Our methods are
new even in the case of @, spaces.

1. Introduction. One of the classical topics in complex analysis
is the study of Md&bius invariant function spaces in the unit disk D,
namely, spaces of analytic functions equipped with a norm that is
invariant under the action of Mdbius maps. Examples of such spaces
include the familiar disk algebra, H, the Dirichlet space, the Bloch
space and BMOA.

A particular class of Mdbius invariant function spaces, the so-called
(Q)p spaces, has attracted a lot of attention in recent years. More
specifically, for any 0 < p < oo, @, consists of all analytic functions f
in the unit disk D such that

1115, = Sgp/D ()P (1~ le(2) )P dA(2) < oo,

where dA is area measure on D normalized so that A(D) = 1, and
the supremum is taken over ¢ € Aut(D), the group of Mdbius maps
of the unit disk D. The Mobius invariance of the ¢}, norm is then
a consequence of the well-known Mobius invariance of the Dirichlet
integral. A good summary of recent research on @, spaces is Xiao’s
monograph [10].

Since every Mdbius map ¢ can be written as ¢(z) = e?p,(2), where
6 is real and
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is the Mobius map of the unit disk that interchanges the points 0 and
a, we can also write

1%, = sup [ 1FGIR = lpa() PP dAC),

Three special cases are worth mentioning. When p = 0, @, becomes
the Dirichlet space; when p = 1, @, coincides with BMOA; and when
p > 1, @ is just the Bloch space.

There are a number of ways we can further generalize the (), spaces;
see [11, 12|, for example. In this paper we are concerned with a
particular type of generalization, the so-called Qg spaces. Thus, for
any nonnegative, Lebesgue measurable function K on (0, 1], we consider
the space Qg consisting of all analytic functions f in the unit disk D
such that

£, = flelg/n [f'(2)PE(1 — |pa(2)[?) dA(2) < o0

Clearly, if K(t) = t?, then Qx = @p. It is also clear that Q) x is Mobius
invariant in the sense that ||f o ¢|lo, = ||fllox Whenever f € Qg
and ¢ € Aut(D). See [1] for a general exposition on Mobius invariant
function spaces.

The study on @k spaces has mainly been on understanding the
relationship between the properties of K and the resulting space Q.
See [5, 6, 9], for example. Each space Qk contains all constant
functions. Since Qg is Mobius invariant, it contains a nonconstant
function (in this case, we say that Qk is nontrivial) if and only if it
contains all polynomials; see [1]. Therefore, Qk is nontrivial if and
only if the coordinate function z is in Q, that is,

sup/DK(l— lpa(2)[2) dA(2) < oo.

a€D

Making an obvious change of variables in the above integral and
simplifying the result using polar coordinates, we see that Qg is
nontrivial if and only if

K 1—7)
sup (1 —s) < 00.
0<s<1 ]. —T'S
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In the rest of the paper, we always assume that K satisfies this
condition. We further assume that K is continuous and nondecreasing
on (0,1]. We then extend the domain of K to (0,00) by setting
K(t) = K(1) when t > 1, so that K becomes a continuous and
nondecreasing function on (0, c0).

The purpose of this paper is to characterize the (Qx spaces in terms
of higher order derivatives. The corresponding problem for the @,
spaces is studied in [2]. The main difficulty for the Qg case is
finding the right condition on K that will ensure the higher order
derivative characterization. We find out that a previously defined,
familiar condition on K is enough for us here. More specifically, we
need the auxiliary function

0 < s <oo.

_ K(st)
(1) pK(s) = S R

Since K is nondecreasing, the function ¢k is also nondecreasing.
Furthermore, we always have gk (s) < 1for 0 < s <1 and pg(s) > 1
for s > 1.

We obtain two conditions on the function ¢k (s), one near the point
s = 0 and the other near s = oo, that will ensure a higher order
derivative characterization for the spaces Qx.

Theorem A. Suppose that some p < 2 exists such that

/ @K—(S)ds<oo.
1

sp

Then, for any positive integer n, an analytic function f in D belongs
to Qi if and only if

:lelg/]) [F )P~ [22)*" 2K (1 = |pa(2)?) dA(2) < co.

Theorem B. Suppose that the function K satisfies o (2) < oo and

1
/ SOK—(S)dS<oo.
0 S
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Then for any positive integer n, an analytic function f in D belongs to

QK if and only if

21613/13 S @) = 122K (1~ |pa(2)]*) dA(2) < co.

In particular, we obtain new proofs of the higher order derivative
characterization for @, spaces. One of our methods also works for @k
spaces defined on the open unit ball in C”.

It is easy to see that the condition ¢k (2) < oo in Theorem B can
be replaced by ¢k (s) < oo for some s > 1. Obviously, if the integral
condition in Theorem A is satisfied, then ¢k (s) < oo for every s > 0.

Our definition of Qg here is based on K(1 — |p,(z)|?). There is a
slightly different definition of Qk in the literature that is based on
K(G(a, z)), where G is the Green function of the unit disk. However,
it has been known that the two definitions are essentially equivalent;
see [3] or [6, Theorem 3.1]. In particular, the definition @, based on
(1 — |pa(2)]?)? is equivalent to the definition of @, based on G(a, 2)?;
see [10, Theorem 1.1.1]. From a technical view point, the expression
K(1—1pa(z)]?) is easier to manipulate than the expression K(G(a, 2)).

2. Preliminaries. One of the tools for our analysis is the classical
Schur’s test which concerns the boundedness of integral operators with
positive kernels on LP spaces.

Let (X, ) be a measure space. Consider integral operators of the
form

2) Tf(e) = [ He0)fW) dulw)
X
where H is a nonnegative, measurable function on X x X.

Lemma 1. Suppose 1 < p < oo and 1/p+1/q = 1. If there exists a
positive, measurable function h on X such that

/X H(z,y)h(y)" duy) < Ch(z)?
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for almost all x € X and

/X H(z, y)h(z)? du(z) < Chy)?

for almost all y € X, where C is a positive constant, then the integral
operator T defined in (2) is bounded on LP(X,du). Furthermore, the
norm of T on LP(X,du) does not exceed the constant C.

Proof. This is classical. See [13, Theorem 3.2.2], for example. O
We are going to use the following special case.

Lemma 2. If there exists a positive, measurable function h on X
such that

/X H(a,y)h(y) du(y) < Ch(z)

for almost all x and

/X H(z,y)h(z)du(z) < Ch(y)

for almost all y, then the operator T defined in (2) is bounded on
L?(X,du), and the norm of T on L*(X,du) is less than or equal to
the constant C.

Proof. This clearly follows from Lemma 1. i

Note that the lemma above not only tells when an integral operator
is bounded, it also gives an estimate on the norm of the operator. This
norm estimate will be essential for our analysis later on.

Our strategy is to compare the integrals

/D FPEL - |pa(2)?) dA(2)

and

/D 1F® ()P [2)*" 2K (1~ |pa(2)?) dA(2),
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where a is any fixed point in D. We do this using Schur’s test and
show that the comparison can be made uniformly for a € D, provided
that the function K satisfies the integral condition in Theorem A. An
alternative approach is presented in Section 5 based on local properties
of the function ¢k near the origin.

The following estimate will be needed several times later on.

Lemma 3. Suppose t > —1. If s > 0, then there exists a constant
C > 0 such that

[ o W) dA(w) _ _ C
D

T—zwre = (=P
for all z € D. If s <0, then there exists a constant C > 0 such that

[ OBy ddw)
D

1= zw2rtts =

for all z € D.
Proof. This is well known. See [13, Lemma 4.2.2], for example. o
We also need the following estimate.
Lemma 4. If s > 1, then there exists a constant C' > 0 such that

2w
/ de . C
o =2 = TPy

for all z € D. If s < 1, then there exists a constant C' > 0 such that

27
/ L <0
o |1—ze"i0)s —

for all z € D.

Proof. This is also well known. See [4, Section 4.6] or [7, Theorem
1.7]. o
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3. Raising the order of derivative. Let a be a point in D, and
fix a positive integer n. Define a positive measure p, on the unit disk
by
(3) dpa(2) = K (1 — |pa(2)]*) dA(2),

and consider the integral operator

(4) nf@wzﬁgn@nwﬂwMWAw»

AP w)e
(5) Ha(Z,’lU) - |1 . zm|2+n+O¢K(l — |<Pa(w)|2)

is a positive integral kernel and « is a sufficiently large constant.

Our goal in this section is to show that the operator 7j is bounded
on L?(D, du,) and the norm of 7,, on L?(D, dy,) is bounded for a € D.
As a consequence, we will show that every function in Qi satisfies an
estimate in terms of higher order derivatives.

Theorem 5. Suppose there exists some N € (0,2n + 2) such that

(6) /1°° 240 ds < oo.

sN

Then for a sufficiently large, the operator T, defined in (4) is bounded
on L?(D,du,). Moreover, there exists a constant C > 0, independent
of a, but dependent on «, such that

/Nnﬂaﬁwaasc/Wﬂaﬁwaa
D D
for all f € L?*(D,du,).

Proof. We prove the theorem using Lemma 2. To this end, we fix a
constant o such that

(7) N—-(n+2)<o<n.
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This is possible because the condition N < 2n+2 gives N —(n+2) < n.
We also fix a constant o such that

(8) a>n+20+1, at+o>-1, a>0.
We now verify the conditions in Lemma 2 using the function
h(z) = (1 — [2]?)°, z € D.

First, for any z € D, we have

n 1 — |w]?)**7 dA(w
[ B i) du) = (- ey [ DTS

Since &« + 0 > —1 and n — o > 0, an application of Lemma 3 shows
that there exists a constant C' > 0, independent of a, such that

/D Ha (2, w)h(w) dpta(w) < Ch(2)

for all z € D.

Next, for any w € D we consider the integral

L(w) = / Ha (2, w)h(2) dpia (2).
D
It is clear that

P [ A TR - fea()) dA()
() = o) T zartore '

We make a change of variables z = ¢,,(u) in the above expression and
use the fact that there exists a unimodular constant e*’ such that

a0 pu(u) = oy (u),

where A = p,,(a). After the result is simplified, we obtain

_ -y [ ) - @) dAG)
L) = o o T w s
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Since ) )
(L= AP — Jul*)

1 |pa(u)]® = 11— Aulf?

it follows from the definition of the auxiliary function ¢ that
2 1 — |ul? 2
K1 —]oa(w)]”) < o | o7 | KA = [A[).
|1 — Auj

Therefore,

S 1 |uf®
/ 1 — wal2tn+2o- o PK 11— huf? dA(u).

Since the function ¢x is nondecreasing, and since

1—|ul? < 1—|ul? 1y
T S O Ju)? 1

(1—|u|2>< <1+|u>
PN =) = P\ Tl )

— [u)"e 1+ Juf
dA(u).
/ 11— watnt2o—a PE\ Ty (u)

Write the above integral in polar coordinates, use the condition that

we must have

SO

24n+20—a<l,

which follows from the first assumption in (8), and apply Lemma 4.
We find another constant C' > 0, independent of a, such that

L(w) < Ch(w) [ (L) (%)d

It is clear that we can find a different positive constant C, independent
of a, such that

I(w) < Chw) / (;:)“"w(ij:)dT,
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Now make a change of variables according to s = 1+ r/1 —r. The
result is

[ Hale )b dua(e) < Ontw) [ R,

1

Recall from (7) that n + 24 o > N, so the integral above converges,
and we obtain yet another positive constant C', independent of a, such
that

/ H,(z,w)h(z) dpe(z) < Ch(w)
for all w € D.

In view of Lemma 2, the proof of the theorem is now complete. |

Corollary 6. Suppose K satisfies condition (6) and f € Qg. Then

sup/ [FOHD(2) (L~ |27 K (1~ Jpa(2)[?) dA(2) < 00

a€eD

Proof. Choose o and « according to the proof of Theorem 5. Since
QK is Mobius invariant and the Bloch space is the maximal Mdbius
invariant space, see [8], we must have

sup (1 — [2*)[f'(2)] < oo.
zeD

This together with the assumption o > 0 in (8) shows that we have the
following integral representation:

Fo= i) [ LR A

(1— zw)2te

see [7, Corollary 1.5]. Differentiating under the integral n times and
multiplying the result by (1 — |2|?)", we obtain

(1- \z|2)”f("+1)(z) — C‘/D (1—|2[2)™(1 — |w]?)*w™ ' (w) dA(u)),

(1= zw)2Fetn
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where C'is a positive constant depending only on o and n. In particular,

(1= [=)" £ ()] < C/D Ha (2, w)|f'(w)| dpta(w).

By Theorem 5, there exists another constant C' > 0, independent of a,
such that

/ (1 222" f D ()P dpa(2) < © / 1/ (2)[? dpaa(2)
D D
for all a € D. Since

d:u'a(z) = K(l - |‘10a(z)|2) dA(Z)v

and since the above estimate holds for all @ € D, taking the supremum
over a € D leads to the desired estimate (9). O

4. Lowering the order of derivative. In this section we show
that under a more restrictive condition than (6), the condition in (9)
implies that f € Q. To this end, we consider integral operators of the
form

(10) Saf(2) = /D La (2 w) (1) dpa (w),

where dp, is defined in (3) and

_ (1 Jwp)”
1= P K (1~ [pa(w)P)

La(2,w)
Again, « is a sufficiently large constant.

Theorem 7. Suppose K satisfies the integral condition

(11) /100 240 ds < 00

82—5

for somee € (0,1). Then for any a > 1, the operator S, defined in (10)
is bounded on L?(D,du,). Moreover, there exists a constant C' > 0,
independent of a, such that
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/D S (2)? dpa(z) < C /D ()2 dptal2)

for all f € L?*(D,du,).

Proof. We use the function
h(z)=(1~[z*)%, z€D,
and apply Lemma 2 to show the boundedness of S, on L?*(D,dpu,).
First, for any z € D, we have

f o - [ S

Since o —e > —1, an application of Lemma 3 yields a positive constant
C > 0, independent of a, such that

/D La(z,w)h(w) dpta(w) < Ch(z)

for all z € D.

Next, for any w € D, we consider the integral

Ja(w) = / Loz, 0)h(2) djta(2).
D
It is clear that

0P [ AP E( - fea(2)P) dAC)
1) = T ol o 1wt

Just like in the proof of Theorem 5, we make the change of variables
2z = @y (u) and simplify the result to obtain

b)) KO e w)l) dA)
20 = g5 1og T—vaf oo

)

where A = ¢,,(a). Duplicating the corresponding part of the proof of
Theorem 5, we obtain another positive constant C, independent of a,

such that - p
Jalw) < Cfw) [ LI,
1
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By condition (11), there exists a new constant C' > 0, independent of
a, such that

/D La(z,w)h(2) dpta(z) < Chw)

for all w € D.

An application of Lemma 2 then completes the proof of the theorem.
]

Corollary 8. Suppose K satisfies condition (11) and f satisfies
condition (9). Then f belongs to Q.

Proof. Since every polynomial belongs to @k and every polynomial
satisfies condition (9), by subtracting a Taylor polynomial from f we
may as well assume that

FO)=f(0) == f"(0)=0.
We use this and integrate both sides of the reproducing formula, see
[7, Corollary 1.5] for example,
)1 — |w*)"(1 — |w|*)* dA(w)
(1 — zw)2tnte

(n+1)
FO () = (n+a+1) / o (w
D
n times to produce

z,w) f ) (w)(1 = |w]?)™(1 — |w|?)™ w
f,(z):/Dh(, ) (w) (1 — [wf?)" (1 — Jw[?)* dA(w)

(1 — zw)?te ’

where h(z,w) is a bounded function in z and w (if we chose « to be a
positive integer, then h(z, w) is a polynomial in z and w). In particular,
there exists a constant C' > 0, independent of a, such that

1F'(2)l < C/D La(z,w)|F™ D (w) (1 — [w]*)"| dpa (w).

By Theorem 7, there exists another constant C' > 0, independent of a,
such that

/\f'(Z)Izdua(Z)ﬁc/ FOD ()L~ [2*)*" dpa(2)
D D
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for all a € D. Go back to
dpa(z) = K(1 = |pa(2)[?) dA(2)

and take the supremum over all a € D. We deduce from condition (9)
that
sup [ IFQEK(1=pu(2) ) 4AE) < o,

acD
or fe€Qk. O

Combining Corollaries 6 and 8, we obtain Theorem A, which we
restate as follows.

Theorem 9. Suppose K satisfies condition (11). Then for any
positive integer n and any analytic function f in D we have f € Qk if
and only if

21613/]3 [F™ )P~ [22)* 2K (1~ |pa(2)?) dA(2) < co.

Up to this point, we have not used the continuity of the weight
function K. The continuity of K will be needed in the next section
along with some other regularity conditions of K near the origin.

5. Another approach. In this section we present a different
approach to the problem of characterizing QQk functions in terms of
higher order derivatives. This method requires the function K(t) to be
more regular near the point ¢ = 0.

Lemma 10. Suppose the function K satisfies the following two
conditions:

(12) YK (2) < oo, /01 QOKT(S) ds < c0.

Then the function

t
K*(t):/ K@) 4 0<i<n,
0 S
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is comparable to K, that is, there exists a constant C' > 0 such that

-1 K@)
(13) ¢ < K <C

for allt > 0. Here again, K, (t) = K.(1) when t > 1.
Proof. See [6]. O

Theorem 11. Suppose that K satisfies the conditions in (12). Then
for any o > —1 the integral

/D [F(2)P (1= [2]*) K (1= [2[*) dA(2)
is comparable to the integral
IFO) + /D /()P (L= [2)* 2K (L — [2*) dA(2),
where f is analytic in D.

Proof. Fix an analytic function f in D with Taylor expansion
oo
f(z)= Zakzk, z € D.
k=0

Without loss of generality, we may assume that f is analytic on the
closed unit disk. Otherwise, we work with f(pz) first, where 0 < p < 1,
then take limits as p — 1 and use Lebesgue’s monotone convergence
theorem.

We consider the integral

I.(f) = /D [FP(Q = [2)* K (1 - [2]*) dA(2).

Integration in polar coordinates shows that

(14) L(f) = /01(1 SR (1 - m(i; |ak2rk> dr.



344 HASI WULAN AND KEHE ZHU

‘We write
K1l—-r)dr=—(1-r)dK.(1-r1)

and integrate in parts to obtain
L(f) = K.(1)|f(0)?
—(a—i—l)/(l—r l—r(Z|ak|2 k)dr
0

+ /01(1 — K, (1 - r)(Z akzkzrk_1> dr.

Therefore,

(15) Ia(f)+(a+1)/01(l—r L(1—7) <Z|ak2 k>

is equal to

16) KOO+ [ 0 - )<§_°; ot )

Combining (13) with (14), (15) and (16), we conclude that
1
(0D L)~ FOF + [ (=0 K@ - (Z oufr= ) .
0

Similarly, integration by parts along with (13) shows that the integral

Ja(f):/ol(l et (1 (Z|ak| e 1) dr

is comparable to

f’(0)|2+/01(1—)°‘+2K (Zakm ) >d
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Since k(k — 1) is comparable to k% and, with the help of polar coordi-
nates, the integral

/01(1— ret2K (1 (Z|a |2 k2rk = 2)

can be written as

/Z ol 2
/D(]'f ‘Z|2)a+2K(lf |Z‘2)|f( )|z|f (0)| dA(Z),

we see that I, (f) is comparable to

FO)2 4+ [7/(0) + /D (1 ey ) QSO )

2]

A standard argument using the sub-mean value property then shows
that I, (f) is comparable to

£(0)* + /D(l = ) 2K (1~ [2])|f' () ] dA(2),
completing the proof of the theorem. o

Lemma 12. If f satisfies condition (9), then f belongs to the Bloch
space.

Proof. After a change of variables, condition (9) becomes

(1 — [af?)2C+D) / FO ) (pa(z

(1-a2) 2(n+1> (1 —[2)*" K (1= |2?) dA(2) < C,

where C' is a positive constant independent of a € D. We integrate
in polar coordinates and use the sub-mean-value property at z = 0 to
obtain

(1~ Jaf*)?+ D5 (a )Iz/D(l* |2[)?" K (1~ |2]*) dA(z) < C.
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This shows that

sup (1 — |af*)" ! |f T ()| < oo.
a€D
According to [18, Theorem 5.1.5], f is a Bloch function. o

We now prove the second main result of the paper, Theorem B, which
we restate as follows.

Theorem 13. Suppose that K satisfies the conditions in (12) and f
is analytic in D. Then f € Qk if and only if f satisfies condition (9).

Proof. By Lemma 12 and the fact that Qk is contained in the Bloch
space, we may as well assume that f is in the Bloch space.

Let n be a positive integer, and consider the integral

I(f;a) = /D [F @)= 122 2K (1~ [pa(2) ) dA(2).

By a change of variables,

In(f,a) = /D l9(2)1*(1 = [21%)*" 72K (1 = [2]*) dA(2),

where
9(2) = F™(pa(2))(1 = |al*)"(1 —@z) ",

According to Theorem 11, I,(f, a) is comparable (uniform in a) to
(1= 1a)*| £ (@) + Ju(f, a),

where
Jn(f,a) = /D 9" (2) (1= |2*)*" K (1 — |2]*) dA(2).
Since f is in the Bloch space, we see that

sup I,(f,a) < oo
a€D
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if and only if
sup J,(f,a) < oo
a€eD
We differentiate g using the product rule and write

g'(2) = 2nah(2) — ha(2),

where
hi(z) = f™(a(2))(1 = |a*)"(1 — @z) >

and
ha(z) = f D (pa(2))(1 — [af*)"FH(1 —az) 20D,
After a change of variables, the integral
/D [ha(2)[*(1 = [2*)" K (1 = |2]*) dA(2)
becomes
La(fia) = [P0~ 22K = lea(2)) dAG).
On the other hand, the integral
H(a) = /D [P (2)*(1 — |2*)*" K (1 — [2]*) dA(2)
can be written as

H@ = [ 1= lpa@P 1 e P aac),

az|?

Since f is in the Bloch space, there is a positive constant C' such that

K(1 -2
) < A(z).
c/ e dA)

Integrating in polar coordinates and applying Lemma 10, we find out

that
B 1
/ Kd=r) :(J’/ K() 4y < o (1),
1-r o S
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where C’ and C" are positive constants independent of a. Combining
this with the triangle inequality, we deduce that the integral J,(f,a)
is bounded for a € D if and only if the integral I,,1(f,a) is bounded
for a € D. Therefore, I,,(f,a) is bounded in a if and only if I,,+1(f, a)
is bounded in a. The theorem is then proved by induction. O

6. The spaces Qko. Let Qko denote the space of analytic
functions f in D such that

tim [ IF KL pa(o))dAG) =0,
D

la]—1—

Since our results in Corollaries 6 and 8 are pointwise estimates at a,
we also have the following little oh version of Theorem 9.

Theorem 14. Suppose K satisfies condition (11). Then, for any
positive integer n and any analytic function f in D, we have f € Qko
if and only if

lim / PP - 222 2K (1~ |pa(2)[2) dA(z) =

la|—1—

Carefully checking the proof of Theorem 13, we also obtain the
following little oh version of Theorem 13.

Theorem 15. Suppose the function K satisfies the conditions in
(12). Then for any positive integer n, an analytic function f in D
belongs to Qk o if and only if

lim / £ )20 2K (1~ [pa(2)[?) dA(2) =

la|—1—

In many situations, the subspace Qk, is simply the closure in Qx
of the set of polynomials. Examples include BMOA and the Bloch
space. There are also cases when the polynomials are dense in Q.
For example, if K = 1, then Qg is the Dirichlet space; in this case,
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the polynomials are dense, but Qg o as defined at the beginning of this
section consists of just the constant functions.

We have obtained higher order derivative characterizations of Qg
based on the behavior of ¢k (s) near s = 0 and near s = oo. It would
be interesting to find the “optimal conditions” on K that will ensure
the higher order derivative description of Qi spaces.

7. The case of Q,. If K(t) = t?, then pk(s) = sP, so condition
(11) holds if and only if p < 1. However, in this particular case, it is not
necessary to use the auxiliary function ¢, and our proofs of Theorems
5 and 7 can be simplified, and the statements of these theorems can be
improved to cover all p > 0.

In fact, even with the use ¢g, Theorem 5 remains true for @,
whenever p < 3, because the constant 2n + 2 is at least 4.

In the proof of Theorem 7, if K(¢) = ¢?, then the integral J,(w) can
be written as

Ju(w) = —) ) / (L Ju) (1~ lpa(u)2) dA(u)

EBE 11— wal? 2= o

A little manipulation gives

o [ ~ JuP)r dA(w)
|1—wu|2 Ze—a|] — \yl2P

We may assume that o was large enough so that 2 —2¢ —a < 0. Then
there exists a constant C' > 0, independent of a, such that

Jatw) < Cng) [ (=TI dAR)

D |]_ —Xu|2p

If p < 2, we can find a small enough ¢ so that p + ¢ < 2, and then an
application of Lemma 3 shows that there exists a new constant C' > 0,
independent of a, such that

Jo(w) < Ch(w), w € D.

In conclusion, our first method can be modified to work for @,
whenever p < 2. Since @), is the Bloch space for all p > 1, this
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method covers all @, spaces. Also, since px(s) = sP for K(t) = t?, the
conditions in (12) hold @, for all p > 0. Therefore, our second method
works for all (), spaces as well.
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