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GEOMETRIC MODULI FOR KLEIN SURFACES 

MIKA SEPPÄLÄ AND TUOMAS SORVALI 

1. Introduction and statement of results. The analytic coun­
terpart of a real algebraic curve of genus g is a Klein surface of genus g. 
That is a compact topological surface E*, which is either non-orientable 
or has boundary components (or both), together with an analytic struc­
ture. This assertion is due to Norman Ailing and Newcomb Greenleaf 
(cf [1]). The surface E* is a topological model for the corresponding 
real curve. Observe that surfaces arising as topological models of real 
algebraic curves are never classical compact and oriented surfaces with­
out boundary. There are also some other restrictions for the topological 
type of real curves of genus g. These constraints are not very compli­
cated and we can easily compute the number of different topological 
types of real algebraic curves of genus g - that number is (Sg -f 4)/2 
(cf., e.g., [3, §2]). 

The moduli problem is to give, for an algebraic curve, parameters 
or moduli which determine its isomorphism class. In the complex case 
the isomorphism classes of complex algebraic curves of a given genus 
g form an algebraic variety. The case of real algebraic curves is more 
complicated. The genus does not yet classify them even topologically. 
Hence, instead of considering all real algebraic curves of a given genus, 
we should consider all real algebraic curves of a given topological type 
E*. 

To exclude certain special cases we assume now that all real algebraic 
curves or Klein surfaces are of genus g > 1. That excludes the following 
Klein surfaces: the disk, the real projective plane, the annulus, the 
Möbius band and the Klein bottle. 

It is now a formal simplification to consider the interior E of the 
surface (E* instead of E* itself. By a real algebraic curve of the 
topological type E we then mean a real algebraic curve of the type E* 
in the sense of Ailing and Greenleaf. These real algebraic curves are 
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analytic structures X of E such that the (non-compact) Klein surface 
( E , X ) is analytically a compact Klein surface from which a certain 
number of closed disks have been removed. Note, in particular, that 
the surface E also carries analytic structures for which some or all 
boundary components degenerate to points. Such analytic structures 
do not come from real algebraic curves of the topological type E and 
we do not consider them here. By the uniformization theorem there is 
a one-to-one correspondence between the analytic structures of E and 
the complete hyperbolic metrics d of E, i.e., complete metrics which 
have a constant negative curvature — 1. Those hyperbolic metrics d for 
which the boundary curves of E* (if any) are infinitely long correspond 
then to the analytic structures of E arising from real curves. In this way 
real algebraic curves of topological type E are just hyperbolic metrics 
on E. 

The moduli problem then leads to the following 

PROBLEM. Find parameters which determine the hyperbolic metric d 
o / E up to an isometry homotopic to the identity mapping o / E . 

This is not exactly a translation of the original moduli problem for 
real algebraic curves. Two such curves are isomorphic if and only if 
there is an isometry between the corresponding hyperbolic metrics. 
In the above geometric version of the moduli problem, we require, in 
addition, that the isometry is homotopic to the identity mapping of 
E. In other words, we actually want to parametrize the Teichmüller 
space of real algebraic curves of topological type E. This change allows 
us to give intrinsic geometric parameters or moduli for real algebraic 
curves of topological type E. These geometric moduli are lengths of 
closed geodesic curves. The connection to the moduli problems of real 
algebraic geometry motivates the study of Teichmüller spaces T(E) of 
non-orientable surfaces E with boundary. 

We need more notation. Let A1(E) denote the set of those hyperbolic 
metrics of E which arise from real algebraic curves of topological type 
E. We identify two metrics d\ and d<i of E if there is an isometry 
(E ,d i ) —> (£ ,^2) homotopic to the identity mapping of E. In this way 
we obtain the Teichmüller space T ( £ ) of the surface E as a quotient 
space of Â4(E). 
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Now let A be a closed curve on E. Define the geodesic length function 
l\ : T(E) —» R+ setting, for a hyperbolic metric d, 

h([d]) = inî{d — length of r | r homotopic to À}. 

Here [d] denotes the point of T(E) defined by the metric d and R+ is 
the set of positive real numbers. 

The problem we want to study is 

PROBLEM. Find a minimal set {Ài, À2,.. . , Am} of closed curves on 
E such that the associated geodesic length functions lj — l\^ j = 
1,2,..., m, give an injective mapping 

(1.1) L : T(£) - (R;r , M-(MM),--. , UM))-

In other words, we want to be able to recognize every real algebraic 
curve and every Klein surface by measuring how long their handles 
are, how wide their holes are, and how large their cross caps are, etc.. 

Assuming that the arithmetic genus of the corresponding real curves 
is g, or—which is the same thing—that the Euler characteristic x(^) 
of the surface E equals 1 — #, we can compute the dimension of 
T(£). This Teichmüller space is a connected real analytic manifold 
and dim#T(E) = Sg — S (cf, e.g., [4, Theorem 5.6]). This implies that 
we need at least 3g-3 closed curves Xj in order to have an injective 
mapping (1.1). 

THEOREM 1. Let E be a topological type of real algebraic curves of 
genus g. There are 3g — 3 closed curves Ài , . . . , À39_3 on E such that 
the associated geodesic length functions determine an injective mapping 
L by the formula (1.1). 

For oriented topological surfaces E with boundary this theorem was 
proved in [5, §7] (see also [2] where a particular case of the same 
problem is studied). For nonorientable surfaces E without boundary this 
theorem was shown in [7, Theorem 6.1]. The only case that remains to 
be proved is that of non-orientable surfaces E which have a non-empty 
boundary. We will give the proof in the next section. 
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By Theorem 1 the Teichmüller spaces T(E) of real algebraic curves 
can be parametrized geometrically by m , m = dimR,T(E), geodesic 
length functions. This is, however, not possible for compact and ori­
ented surfaces E. In other words, for the geometric parametrization of 
the Teichmüller space T(E) of the compact and oriented surface E we 
need more than m — dimR,T(E) closed curves. In fact, Scott Wolfert 
has observed that we cannot even choose a set of m closed curves on 
E such that the associated mapping (1.1) would be locally injective. 
On the other hand, in [6] and [7] we have constructed, for an oriented 
compact surface E, a set of m + 2 closed curves on E such that the 
associated mapping (1.1) is injective. The reason which makes the 
geometric moduli problem more difficult in the case of compact and 
oriented surfaces without boundary is that the fundamental group of 
such surfaces is not freely generated. In the case of non-orient able sur­
faces without boundary, the fundamental group is not freely generated 
either, but the relation between generators can be expressed in a rather 
nice form and it can be used in computations. 

2. Proof of T h e o r e m 1. As we have remarked already, it remains to 
prove Theorem 1 only for non-orientable surfaces E which are obtained 
from compact non-orientable surfaces by deleting a certain number of 
closed disks. Such a surface E can always be built as a connected sum of 
p tori (i.e., handles) and m cross caps from which we delete n open disks. 
Then the arithmetic genus of the real algebraic curve of topological type 
T, is g = 2p -\- m + n — 1. In the case under consideration, m > 0 and 
n > 0. We have assumed furthermore that g — 2p + m + n — 1 > 1. 
Actually one may build all non-orientable surfaces by using two cross 
caps only. Hence we might suppose that , in our case, m — 1 or m — 2. 
This does not, however, simplify considerations at all. 

So we think of the surface E as one having p handles, m cross 
caps and n holes. Let Q be a point of E. The first fundamental 
group of E at the point Q , 7 T I ( E , Q ) , has the following generators: 
a i , / 3 i , . . . , a p , / 3 p , c r i , . . . , ( T m , 7 i , . . . , 7 n . The generators <*j and ßj 
correspond to the handles, the generators <jj go through the cross caps 
and the generators 7j go around the holes. The relation is simply 

p m m 

(2.1) iifo'ßirRii'^1-
j = l j = l j = \ 
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Here [otj,ßj] = ajß- la- lßj is the commutator of ctj and ßj. 

Let d be a hyperbolic metric on E arising from a real algebraic curve of 
the topological type E. The pair (E, d) is a Klein surface which we can 
represent as the quotient (E,d) = U/G where U = {z E C|Im2 > 0} 
is the hyperbolic upper half-plane and G is a reflection group acting 
in U. Here G is a properly discontinuous group of hyperbolic Möbius 
transformations and their complex conjugates. The group G acts freely 
in U. Let fì be the domain of discontinuity of G. Then Q fi R consists 
of intervals which correspond to the boundary curves of (E,d) in the 
projection U -+ (E,d) = U/G. 

There is an almost canonical isomorphism 7TI (E, Q) —• G. It is defined 
by lifting to U the curves representing points of 7 T I ( E , Q ) —> G. Some 
choices are involved and the isomorphism 7 T I ( E , Q ) —>• G is defined 
up to an inner automorphism of G. Choose one isomorphism. Let 
A be a closed curve on E representing a point [A] of 7 T I ( £ , Q ) . If 
g € G corresponds to [A] under the isomorphism 7 T I ( E , Q ) —> G, then 
/A([rf|) = log k(g), where k(g) is the multiplier of the transformation g. 
Hence the values of the geodesic length functions can be computed by 
the multipliers of the elements of G (for details see e.g., [5]). 

In order to prove Theorem 1 we have to find 3g — 3 closed curves 
on E such that the corresponding mapping (1.1) is injective. Con­
sider a set { [Ai ] , . . . , [Aw]} of elements of 7 T I ( E , Q ) . Let gj E G 
be the transformation corresponding to [A7] under the isomorphism 
7Ti(E,<2) —» G, j = 1,...,7V. The following result is a well-known 
fact. For a proof see, e.g., [7, §5 and §6]. 

PROPOSITION 1. The mapping L defined by the geodesic length 
functions associated to the closed curves A7, j = 1 , . . . , N, is injective 
if and only if the multipliers of the corresponding transformations 
gj £ G, j = 1,...,7V, determine the group G up to a conjugation 
by a Möbius transformation. 

Let aj,bj,Sj and gj correspond to the generators a^ß^Gj and 77 

of 7Ti(E,(5) under the isomorphism 7Ti(E,Q) —> G. Then they also 
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generate the reflection group G and satisfy the relation 

p m n 

(2.2) n^iii^ru—id. 
j = l j = \ j = \ 

Let F be the subgroup of G generated by Ü{ , b{, i = 1 , . . . , p, s2-, j — 
1 , . . . , ra, and gk,k = 1 , . . . , n. Then F is a Fuchsian group and it 
is a subgroup of order 2 in G. The group F has M = 2p + m + n 
generators which satisfy the relation (2.2). But from the relation (2.2) 
we can solve, for instance, for the transformation gn. Recall that , 
in the case under consideration, n > 0. Hence the group F is actually 
freely generated by the M — \ transformations ai, b{, i = 1 , . . . , p, sj, j = 
1 , . . . , m, and £/&,& = 1 , . . . , T Ì — 1. The following result is proved in [5, 
§7]-

PROPOSITION 2. There exists a set K = { # I , . . . , # 3 ( M - I ) - 3 } of 
3(M — 1) — 3 elements of F such that the multipliers of the Möbius 
transformations gj E K determine F up to a conjugation by a Möbius 
transformation. 

Assume that the multipliers of the elements of K are known. Then the 
group F is determined up to a conjugation by a Möbius transformation. 
Normalizing in such a way that the attracting and the repelling fixed-
points of gi are 0 and oo and that the repelling fixed-point of s\ 
is 1, the group F becomes uniquely determined by the multipliers 
of the elements of K. The transformations Sj G G are orientation 
reversing glide-reflections. Since the group F is now determined, also 
the hyperbolic Möbius-transformations s2- are determined. On the 
other hand, glide reflections gj are already determined if we know what 
their squares are [7, Lemma 6.1]. Consequently, the multipliers of the 
elements of the set K determine also the group G up to a conjugation 
by a Mobius-transformation. 

For each index j — 1 , . . . , 3 (M — 1) — 3, let Xj be a closed curve for 
which [Xj] e 7Ti(£,Q) corresponds to gj G K under the isomorphism 
7Ti(E,<2) —• G. By Proposition 1, the mapping L defined by the 
geodesic length functions associated to the curves Xj is injective. This 
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proves Theorem 1, since Sg — 3 = 6p + 3m + 3n — 6 = 3(M — 1) — 3 for 
g = 2P-\-m + n-l and M = 2p + m + n. 
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