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OPEN MORPHISMS OF REAL CLOSED SPACES 

NIELS SCHWARTZ 

Introduction. In [8] and [9] it is shown that the theory of semi-
algebraic spaces developed by H. Delfs and M. Knebusch (see [3, 4]) can 
be extended by the theory of real closed spaces much as Grothendieck's 
theory of schemes extends the classical theory of varieties. In this paper 
the systematic study of real closed spaces is continued by looking at 
open and generalizing morphisms. The reason for the interest in these 
morphisms is that in the theory of schemes openness implies that there 
is some regularity in the behavior of the fibres of a morphism (see [6]). 

In §1, some basic properties of open, generalizing, universally open, 
universally generalizing morphisms are collected. In the theory of 
schemes, there are connections between algebraic properties of a mor
phism and openness. For example, a locally finitely presented flat mor
phism of schemes is universally open [5, 1.7.3.10]. Inspired by this re
sult, algebraic properties of generalizing morphisms are investigated in 
§2. A valuative characterization of universally generalizing morphisms 
is in §3. Finally, in §4, the fibres of affine finitely presented morphisms 
of real closed spaces are studied. The fibres of these morphisms are 
affine semi-algebraic spaces. So, from semi-algebraic geometry there 
are numerous numerical invariants of these spaces (for example: di
mension, number of connected components, Betti numbers). It is easy 
to construct examples of morphisms of semi-algebraic spaces in which 
these invariants of the fibres change very drastically. Openness (in con
nection with other hypotheses) brings some measure of regularity into 
the behavior of the fibres as far as dimension and number of connected 
components are concerned. For example, if / : X —> Y is affine, finitely 
presented and universally open, then dimf~1(y') > dimf~l(y) if y is a 
specialization of y'. 

1. Open morphisms. The basic notions of open and generalizing 
morphisms of real closed spaces are adapted from the theory of schemes: 

DEFINITION 1. Let / : X —» Y be a morphism of real closed spaces. 
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(a) / is generalizing in x G X if, for all y' C y = / ( # ) , there is some 
x' Cx such that f(x') = y' (cf. [5, 1.3.9.2]). 

(b) / is open in x G X if, for all neighborhoods U C X oîx, f(U) C 
Y is a neighborhood of y = / ( x ) (cf. [5, O j , 2.10.1]). 

(c) / is generalizing (open) if / is generalizing (open) in all points 

xex. 
(d) / is universally generalizing (universally open) if, for all base 

extensions 

X' = X xYY' f ) Y' 

i i 
X f ) Fi 

/ ' is generalizing (open) (cf. [5, 1.3.9.2], [5, 1.3.8.1]). 

The most elementary properties of these notions are similar to prop

erties of generalizing and open morphisms of schemes. 

PROPOSITION 2. (cf. [5, I 3.9.1]) Let f : X -+ Y be a morphism of 
real closed spaces, let x € X, y = f(x). The following statements are 
equivalent: 

(a) / is generalizing in x. 

(b) The local morphism fx : Xx —> Yy [9; V 2.10, V 2.20] is surjective. 

(c) For any irreducible subspace {z} = Z C Y with y G Z, there is an 
irreducible component T = {t} of f~l(Z) with f(t) = z, x G T. 

PROOF, (a) & (b) is immediate from Definition 1. 

(a) => (c). With y G {z} = Z C Y we find some t G X, x G {t} such 
that f(t) = z. Let {u} C f~1(Z) be an irreducible component with 
t G M - Then f(u) = 2. 

(c) => (a). Given ?/ C 2/ find some irreducible component T = {t} of 

f~l{{y'})such t h a t /(*) = 2/' a n d xeT.u 

For generalizing morphisms the following characterization is obtained: 
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PROPOSITION 3. For f : X —> Y the following statements are 
equivalent: 

(a) / is generalizing. 

(b) For all irreducible subspaces Z — {y} C Y and for all irreducible 
components T = {t} of f~l(Z), f(T) = Z. 

(c) For all subspaces i : Z —> F , the restriction f : f~l{Z) —» Z of f 
is generalizing. 

(d) For all subspaces i : Z —> Y with \Z\ < 2, the restriction 
f : f~l(Z) —• Z of f is generalizing. 

PROOF, (a) => (b). Let Z, T be as in the statement of (b). If y Ç f(t) 
then there is some t' C t such that f(tf) — ?/. But then t' G f~l(Z), 
and {tf} 5! T, a, contradiction. 

(b) =» (c). Let x € f-\Z), y = / ( x ) , î / C y with y' G Z. Then 
set Y' = {T/'} C Y. Let T C / _ 1 ( F r ) be an irreducible component 
containing x, say T = {t}. Then t C x and /(£) = y'. 

(c) => (d). Trivial. 

(d) =» (a). Let x G X, y = /(a;), y' C y. Then let Z be the 
subspace of Y consisting of the two points {y',y} [9, V 2.11]. By (d), 
there is some x' G f~1(Z) with x' C x, / (x 7 ) = y'. D 

Between open and generalizing morphisms we have the same connec
tions as in the theory of schemes. 

PROPOSITION 4. (cf. [5, 1.7.3.10]) Let f : X -+ Y be a morphism 
of real closed spaces, let x G X, y = f(x). Consider the following 
statements: 

(a) / is open in x. 

(b) / is generalizing in x. 

Then (a) ==> (b) holds. If f is finitely presented in x, then the converse 
is also true. 

PROOF. Suppose / is open in x. Pick y' C y = f(x). Fix some open 
affine neighborhood U of x. For any open constructible neighborhood 
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U' C U of x, y' € f(U'). f~l{y')^U is a pro-constructible subset and 
is compact in the constructible topology. Since £/' D f~1(y') ^ 0 for all 
U' as above, there is some x' e f~l(y') H C\u'U'. Since 

** = civil', 

we see that x ' C x and /(a:') = y'. Assume that / is finitely presented in 
x and that (b) holds. Let [ / c i , V C.Y be open affine neighborhoods 
of x and y such that f(U) C F and that there is a finite presentation 

/ 
U • V 

Let U' C U be an open constructible neighborhood of x. Then 
/ ({ / ' ) C V is constructible [9, V 6.5]. Moreover, since / is generalizing 
in x, Vy = Yy C f(U'). But then f(U') contains some neighborhood 
of y. D 

Without proof we record 

P R O P O S I T I O N 5. (cf. [5,1.3.8.2]). 

(a) If U C X is an open sub space and i : U —> X is the inclusion, 
then i is universally open. 

(b) For x 6 X, the inclusion i : Xx —> X is universally generalizing. 

(c) / / / : X —• Y, g : Y —> Z are generalizing (open, universally 
generalizing, universally open) then so is gf. 

(d) If f : X —> Y is universally generalizing (universally open), then 
so is f : X' —> Y' for any base extension 

X' = X xyY' —^—> Y' 

i ' i 
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(e) If f : X -+ Y, / ' : X' —> Y' are universally generalizing 
(universally open) morphisms over a real closed space Z, then f x / ' : 
X Xz X' —» Y Xz Yf is universally generalizing (universally open). 

(f) Let f : X —» Y, g : Y —» Z be such that gf is generalizing (open, 
universally generalizing, universally open). If f is surjective, then g is 
generalizing (open, . . . ). If g is a monomorphism, then f is generalizing 
(open, ...). 

Both the properties of being generalizing and of being universally 
generalizing can be recognized locally. Without proof we record 

PROPOSITION 6. For f : X —• Y the following statements are 
equivalent: 

(a) / is generalizing. 

(b) For all x G X, fx '• Xx —> V/(x) is generalizing. 

(c) For all open affine subspaces U C X, V C Y such that 
f(U) C V, f : U —> V is generalizing. 

PROPOSITION 7. For f : X -> Y the following conditions are 
equivalent: 

(a) / is universally generalizing. 

(b) For all x G X, fx: Xx —• V/(x) is universally generalizing. 

(c) For all open affine U C X, V C Y with f(U) c V, f : U -* V 
is universally generalizing. 

PROOF, (a) => (b). XX^X—>Y is universally generalizing. fix 

factors in the following way: 
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Let g : Z —> Yf(x) be any morphism. In the diagram 

^ *y ^x-

gifix) 

if(x) is a monomorphism and (fix)' is universally generalizing. So is 

(a) => (c). This is proved in the same way. 

(b) => (a). Consider a pull-back diagram 

X' r Y' 

Y. 

Pick x' £ X' and set y' = f'{x'), pick y'0 C 2/'. Setting g'{x') = x, 
g(y') = y, g(yr

0) — yo, we consider the following diagram: 
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Xx x Yy Xf, and Xx, are both subspaces of X' which are closed under 
generalization, h : X'x, —» Xx Xyy X', is the inclusion. Thus, h is 
generalizing. So is fx, by hypothesis. There is some xf

0 C x' such that 
f(x'0) = fx,(x'0) = y>0. 

(c) => (a). For x e X, y = f(x) G Y let U C X, F c F b e open 
affine neighborhoods of £ and y such that f(U) C V. If yf C ?/, (C) 
shows that there is some x' C x with /(a/) = y'. ü 

2. Algebraic properties of generalizing morphisms. In the 
theory of schemes it is known that there are close connections between 
flatness of a morphism and the property of being universally generaliz
ing (e.g., [5, 1.3.9.4]). Because of these connections we will take a look 
at algebraic properties of generalizing morphisms. 

THEOREM 8. For a morphism f : X —> Y of affine real closed spaces 
the following conditions are equivalent: 

(a) / is generalizing. 

(b) For all closed subspaces C C Y and affine generalizing subspaces 
C" C C, iff : f'l(C) -> C" is the restriction of f and g : B -> A is 
the homomorphism of the rings of global sections belonging to / ' , then 
g maps non-zero divisors to non-zero divisors, or f~l(C') — 0. 

(c) For all x £ X and all closed irreducible subspaces Z C Yf(xy 
if f : f~l(Z) —> Z is the restriction of f and g : B —> A is the 
homomorphism of the rings of global sections corresponding to f, then 
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g maps non-zero divisors to non-zero divisors. 

(c;) With the same notation as in (c), let (x) C B be a principal ideal 
and consider A as a B-module viag. Then the canonical homomorphism 

(x) ® B A -+ A 

is infective. 

PROOF, (a) => (b). Let b E B be a non-zero divisor and assume that 
g(b) is a zero-divisor. Since A is reduced, the set of zero divisors of A 
is the union of all minimal prime ideals of A. Thus, g(b) E x for some 
minimal element x E / _ 1 ( C " ) . Since b is not a zero-divisor, f'(x) is not 
a minimal element of C". Let y' C f'(x) be a minimal element of C 
(this exists by definition of C). Since / is generalizing, there is some 
x' €X, x' C x such that f(x') = y'. But then x' E f~l{C), x' Ç x. 
However, x was chosen to be minimal in f~l{C). 

(b) => (c). Let Z C y/(x) be closed irreducible. Then Z = ( z j f i y ^ ) 
with 2 E ^7(x)- Setting C = {2}, C" = Z we are in the situation of (b). 
Thus, if A' is the ring of global sections of / _ 1 ( C " ) and gf : B -^ Af is 
the homomorphism corresponding to f~l(C) —• Z, then #' maps non
zero-divisors to non-zero-divisors. Since the inclusion f~l{C) HXX C 
/ - 1 ( C " ) is generalizing, the corresponding homomorphism h : A' —> vl 
maps non-zero-divisors to non-zero-divisors. Since g = hg1', the claim 
follows. 

(c) => (c'). Let v? : (6) ®ß A —• A be the canonical homomorphism. 
If b = 0, then the claim is clear. If ò / 0, then ò is a non-zero-divisor, 
since ß is an integral domain. Now let 

g(b)a = <p{b® a) = 0. 

Since g(b) is not a zero-divisor (by (c)), it follows that a = 0. Hence, 
6® a = 0. 

(c') =» (a). Pick x G I , set y = / ( # ) and pick ?/ C y. Set 
Z = {y1} C r y . Let / ' : f~l{Z) ^ Z be the restriction of / . Let 
g : B —> 4̂ be the homomorphism of the rings of global sections. It 
suffices to show that there is some minimal prime ideal x' C A with 
f(x') — y'. Assume that this is not true. Then there is some 0 ^ b E B 
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with g(b) G x' for some minimal prime ideal x' C A. Thus, g(b) is a 
zero-divisor, i.e., there is some a G A with 0 ^ a, g(b)a = 0. Since 
<P - (b) ®B A —• A is injective, b <S> a = 0 in (b) <S>B A. But since B is an 
integral domain, B —• (b) : c —» cb is an isomorphism. Then 

A ^ # ®ß A -> (ò) O B -4 

is an isomorphism as well, and we see that a = 0 which is a contradic
tion. D 

If both X and Y are affine real closed schemes, then the result of 
Theorem 8 can be improved. 

PROPOSITION 9. Let f : X —• Y be a morphism of affine real closed 
schemes. Then the following conditions are equivalent: 

(a) / is generalizing. 

(b) For all closed subspaces C C Y, if f : f~l(C) —• C is the 
restriction of f and g : B —• A is the corresponding homomorphism 
of the rings of global sections, then either f~l(C) = 0 or g maps non
zero-divisors to non-zero-divisors. 

(c) With the notation o/(b), if (b) C B is a principal ideal, then the 
canonical homomorphism 

ip : (6) ®B A -> A 

is injective. 

PROOF, (a) => (b) is a special case of Theorem 8. 

(b) => (a). Let x G X, y = f(x), y' C y. If it is possible to find 
x" C x with f(x,f) = y" C y' minimal, then set C = {y"} and have 
a monomorphism B/y" —» A/x" of totally ordered integral domains. 
The convex hull of yf/y" in A/x" is a prime ideal x'/x"', where x' C A 
is a prime ideal with x" C x' C X. Clearly, f{xf) = y'. Assume 
that y' is minimal in Y and y' £ f(Xx). Set C = {y'}. For every 
x' €Xxn f~l(C) there is some 0 ^ b(x') e B with g(b(xf)) G z'. Set 

N&) = {aef-l(C)\g{b{x'))(a)=0}. 
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The N(xf) cover the pro-constructible set XXC\ f l(C). So there is a 
finite subcover 

^nr^cjcuf^). 
Set 6 = b{x[) • . . . • b(x'r). Clearly, 0 ̂  6 G B and flf(6)(a) = 0 for 
all a £ Xx D / _ 1 ( C ) . In particular, g(b)(a) = 0 for some minimal 
a G / _ 1 ( C ) . But then there is an open constructible neighborhood 
U C / - 1 ( C ) of a with 0(6) | U = 0. If *7 = {a G / - 1 ( C ) | a(a) > 0} 
for some 0 < a E A, then #(6)a = 0. However, B is an integral 
domain, hence b is a non-zero-divisor, but #(6) is a zero-divisor which 
is a contradiction. 

(b) =$> (c). If b = 0 everything is trivial. Assume that 6 / 0 and that 
there is some 0 ^ a G A with g(b)a = <£>(6 ® a) = 0. Set 

N = {a G C | 6(a) = 0} 

I/ = { a G / - 1 ( C ) | a ( a ) ^ 0 } . 

Then f(U) C AT. By (a), f(U) is closed under generalization. By 
quasi-compact ness of f(U) (U is constructible) and by construct ibility 
of AT, there is some open constructible neighborhood V C N of f(U). 
By [9, II 4 .14], 

F = { a e C | v ( û ) > 0 } 

for some 0 < v G B. But then b - v = 0 and a G y/g(y)A. Thus, there 
is some e e B, some d € J4, some m G N such that v = c m , a = #(c)d. 
Then, we also have be = 0. It follows that 

6 ® a = b ® #(c)d = 6c 0 d = 0. 

(c) => (b). Let 6 G # be a non-zero-divisor, #(6) e A a, zero-divisor 
and g(b)a = 0 for 0 ^ a G A From injectivity of 

(6) ® ß A - • ,4 

we see that 6 0 a = 0. Since 

B -> (6) : c -> 6c 

is an isomorphism, 

A ^ B ® ß A - • (6) 0 B A 
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is an isomorphism as well, and a = 0, another contradiction, D 

As a consequence of Theorem 8 we can prove the following connection 
with flatness: 

COROLLARY 10. Let f : X —» Y be a flat morphism of real closed 
spaces. Suppose that X is a scheme. Then f is generalizing. 

PROOF. Let x £ X, y — f(x) and consider the local morphism 
fx : Xx -+ Yy. Let y1 G Yy. Set Z = {y'} C Yy,JT = fx

l{Z). Let A, B 
be the rings of global sections of Xx1Yy and A,B the rings of global 
sections of T, Z. Then we have the local homomorphisms 

g:B-+A, g :B - Ä 

corresponding to fx and the restriction fx : T —• Z of fx. By 
hypothesis, g is flat, g is obtained from g by base extension, and is 
flat as well. But then ~g maps non-zero-divisors to non-zero-divisors, 
and the claim is proved by Theorem 8. D 

This result is no longer true if we drop the hypothesis that X is a 
scheme. For example, let X be an affine real closed space which is 
not a scheme. Let i : X —» Aff(X) be the natural morphism into the 
associated affine real closed scheme [9, V 2.24]. i is clearly flat. But 
i is not generalizing since the convex hull of i{X) in Aff(X) is all of 
Aff(X) [9, II 4.7], but i(X) ^ Aff(X). 

3. A valuative criterion. In the theory of real closed spaces there 
is valuative criteria for separatedness and universal closedness as in the 
theory of schemes ([9, V 3.19], [5, 1.5.5.4] and [9, V.5.4], [5, 1.5.5.8]). 
We will see that there is a valuative criterion for a morphism to be 
universally generalizing. This is reminiscent of the valuative criterion 
for flatness of a morphism of schemes in [6, IV 11.8.1]. 

THEOREM 11. For a morphism f : X —>Y of affine real closed spaces 
the following conditions are equivalent: 

(a) / is universally generalizing. 
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(b) For all valuative real closed spaces Y' [cf. [9, V 2.11]) and 
all morphisms g : Y1 —* Y, the projection / ' : X' xY Y' —• Y! is 
generalizing. 

(c) For all morphisms g : Y' —> Y with Y' valuative such that, if 
yf

0 G Y1 is the generic point, p(g(y'0)) —> p(yo) is an isomorphism, the 
projection f : X' = X xy Y' —• Y' is generalizing. 

PROOF, (a) => (b) => (c) hold trivially. We will prove (c) => (a). 
Consider any pullback diagram 

Xf = X x y r —^—• Y' 

of real closed spaces. If / ' is not generalizing then there is some x[ G Xf 

and some yf
0 C y[ = ff{x[) such that y'Q £ f'x, (X'x, ). Replacing Y' by 

an open affine neighborhood of y[ we may assume that Y' is affine 
as well. Let C C p(y'o) be the largest convex subring such that the 
image of the natural homomorphism Oy^y' —• p(y'o) is dominated by 
C. Let Y" be the valuative real closed space associated with C. Let 
h : F " -> Y' be induced by 0Y^y[ -+ C ([9, V 2.21]). Consider 

x" = XxYYf —^—• F " 

Let t/o C y" be the points of Y". Let z" G X" be such that 
f"{x'{) = y'{, h'{x'{) = x[. If there is some x% G Xx'/f such that 
/ " K D = 2/0 t h^n we find x{, = h'(x^) € X^, and / ( x j ) = ^ , 
a contradiction. Thus we may assume that Yf itself is valuative. 
# induces p(g{y'0)) —• p(2/ó)- Let C c p(yó) De t n e r m § °f global 
sections of Y', let i? = C D p(g{y'o)) and let F " be the valuative real 
closed space associated with B. Then g factors as Y'^>Y"—»F. In the 
diagram 
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X' = XxYYf —f—+ Y' 

9i 1« 

1- i 
x" = xxYY" — -̂» r" 

every square is cartesian. Set x'{ = <7Ì(#ì), y^ = gi(yro) and 
Vi — 9i{Vi)' ßy (c)>/" is generalizing, i.e., we find some X'Q G X"„ 
with /"(^o) = 2/Ó'. We have a commutative diagram 

p(x'{) < P K ) 

! I 
p(a?i) < p(î/i) 

of real closed residue fields. Let L> c p(%o) be the largest convex 
subring such that 0X»,X» —• p(#o) factors through Z) via a local 
homomorphism. Let R be the residue field of D. By choosing a large 
enough îfo-field E (cf. [7, Chapter IV]) we obtain a diagram 

E < p(x'{) 

Î I 
R < p(xi) 

Let TB^CI^D be the value groups of B,C,D. There is some totally 
ordered group T such that we have a commutative diagram 

i i 
r c • r. 

Then we have a diagram 
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PiyïWs)) 

i 
p(yi)((rc)) 

Ä((r0)) 

E((r)) 

of formal power fields. Valuation preserving embeddings 

P(y'ó) - PÌX'ÌWB)) 

P(VÓ) ^ pix'iWc)) 
p(x'0) - R((TD)) 

can be chosen such that 

p(y'ó) 

PÌVZWB)) 

1 
p(y'o) —PWIWC)) 

PK) 

fi((rD)) 

i 
E((T)) 

commutes [7, Chapter II §5]. If A is the natural valuation ring of 
^ ( ( r ) ) and Z is the corresponding valuative real closed space then we 
get 
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such that h(zo) = yf
0, h(z\) — y[ (ZQ is the generic point of Z,z\ the 

closed point). But then Ì(ZQ) C 2(2:1) = x[ and f'i(zo) — yf
0 which is a 

contradiction. D 

COROLLARY 12. If Y is a valutative real closed space or a real closed 
space with one point then any generalizing morphism f : X —» Y is 
universally generalizing. 

Up to this point it is not clear if there is any difference between 
the notions of generalizing and universally generalizing morphisms. 
However, by comparing Proposition 3 and Theorem 11 a very clear 
picture of the difference between these notions emerges. / : X —> Y is 
generalizing if the projection / ' : X x y Y' —> Y' is generalizing for all 
base extensions by subspaces Y' C Y with \Y'\ < 2. / i s universally 
generalizing if the projection / is generalizing for all base extensions 
by valuative real closed spaces. 

We will now see that a morphism may be generalizing without being 
universally generalizing. 

EXAMPLE 13. Let R be a real closed field with rank 2 natural 
valuation. Thus, the valuation ring C has the prime ideals (0) C 
P C M. Let R\ be the residue field. Identify R\ with a field of 
representatives. Then set B = R\ + P. Let R2 be the residue field of 
the valuation ring B1 = Cp. Identify R2 with a field of representatives 
such that jRi C J?2- Let 0 < r <E R2 be infinitesimal with respect to 
Äi. Let Y = SperJE? and Y' the valuative real closed space associated 
with B'. Let g : Y' —» Y be the natural morphism. Now define 

X to be the following constructible subspace of Yx RQ RQ : If y0 C y\ 
are the points of Y then X is the union of the constructible subsets 

of p~l{yo) = R, P~l(yi) = R\ (p : YXRQRO -+ Y projection) 
corresponding to the semi-algebraic spaces 

{r}cR, {0}CÄ1. 

Then f : X —> YXRQRQ-^Y is generalizing. However / ' : Xf = 
X Xy Y' —» Y' is not generalizing. Because X' is the union of the 

constructible subsets ofpf~1(y,
0) = R, p,~1(y[) = R2 corresponding to 
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the semi-algebraic spaces 

{r}cR, {0}CR2-

The diagram 

B'[X] -

1 X 
i X 

R2[X) — 

> B' CR 

—+0 1 
• R2 

does not commute. 

It is shown in [10] that for morphisms of semi-algebraic spaces the 
properties of being generalizing and of being universally generalizing 
agree. Since the morphism / : X —• Y is finitely presented, we see 
that this equivalence is a property which does not carry over to finitely 
presented morphisms of real closed spaces. 

4. Fibres of open morphisms. If / : X —• Y is a finitely 
presented morphism of real closed spaces then the fibres of / are semi-
algebraic spaces. Two important numerical invariants of such spaces 
are their dimensions and their numbers of connected components. In 
this section the question to be studied is to what extent the fibres of 
an open morphism behave regularly. More specifically, we investigate 
the functions 

c : Y —> Z : y —+ { connected components of f~l(?/)}, 

diY^Ziy-xiimf-^y) 
for / finitely presented and open. (We set dim 0 = — 1.) 

First we record a few results about constructibility of certain sets. 
The basic tool for this is the real version of the Theorem of Chevalley 
([9, V 6.5], [2, Proposition 2.3]) along with the description of con
structible sets by logical formulae ([2]). For the sake of simplicity we 
consider only affine spaces. 

PROPOSITION 14. (cf. [6, IV 9.6.1]) Let f : X -+ Z, g : Y -» Z be 
finitely presented morphisms of affine real closed spaces, and h : X —> Y 
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be a morphism over Z. Let E be the set of those z £ Z for which 
hz : f~l{z) —> g~l(z) has one of the following properties: 

(a) hz is dominant, 

(b) hz(f~
l(z)) C g~~l(z) has nonempty interior, 

(c) hz is open, 

(d) ForT CY constructible, hz(f~
l(z)) C T H f 1 ^ ) , 

(e) hz is infective (= a monomorphism - see [3]), 

(f ) hz—iz ifi:X-+Yis another morphism over Z, 

(g) hz is an isomorphism, 

(h) hz is surjective, 

(i) hz has finite fibres, 

(J) \hz
l(y)\<nforallyeg-l(z). 

Then E is constructible. 

PROOF. 

(a). Let 

^ T _ 
T > z Xfl0 fig 

be a finite presentation of #. We identify Y = T. /i(X) C F is 
constructible. Let $, ^ be logical formulae defining h(X),Y as subsets 

of Z XRQ RQ. Let fi be the formula 

V x i , . . . , x n 3e > 0(^(ar i , . . . ,x n) -> 3y i , . . . , y n 
n 

( * ( y i , . . . , y n ) & $ 3 | a ? i - y i | 2 < e ) ) . 
t = i 

If fi2 is the specialization of fi over ^(z) then p(z)\= fi2 is equivalent 
to 

hz{f-\z))cg-\z) 
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is dense. Thus, 
E={ze Z\p(z)\= Qz 

is constructible ([2]). 

(b). This clearly follows from (a), 

(c). Finite presentations of g and h yield 

X = X 

YxRoR% • Y = Y 

ZxRoR™+n • ZxRoR% y Z 

Let $ be a logical formula defining X as a constructible subset of 
Z x f l o IÇ+". 

Let $ be a logical formula defining F as a constructible subset of 
Z xRo RQ". Then consider the formula il: 

V x i , . . . , X m V2/1,.. . ,2/n 

($(*,</) ^ Ve > 0 2 < 5 > 0 V z i , . . . , z n 

(*(*)&£(& - zi)2 < 8 - 3*!,... ,tm 
2 = 1 

m n 

($(t, z)& J > < - t,)2 + £ > - î)2 < €))). 
i = l 

Then 
£ = { z S Z | p ( z ) f = fi,}. 

(d). £ = { ^ 2 | Ä(X) n ff-
x(z) c m g-l{z)} = Z\g(h(X)\T) is 

constructible by the Theorem of Chevalley. 

(e). Use the same notation as in the proof of (c) up to the definition 
of the formula Q. Now, let Q be the formula 

3ar i , . . . 3?/i, •. -, yn 3 ^ i , . . . , zn : 
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(Vi £zx V--- Vyn ^ Zn) & ^{xu...,xn,yu...iyn) 

CsL 4 ? ^ l , . . . , Xjji) Z\, . . . , Zm). 

Then Çtz holds precisely if hz is not injective. Thus, 

E = Z\{z e Z\p(z)\= nz} 

is constructible. 

(f). From finite presentations of #,/i,i we obtain the diagram 

Z x Ro R0 

Z x Ä o ^ 0 

r>jl+m+2n 

Let ^ be a formula defining X as a subset of Z x #0 RQ , let O be 
the formula 

3xu...,xi 3yi,...,ym 3zi,...,zn 3 t i , . . . , t n : 

Then 0^ holds over p(z) exactly if hz ^ iz. Thus, 

is constructible. 

(g). hz is an isomorphism if and only if hz is open, injective and 
surjective. Therefore, it suffices to prove (h) (in view of (c), (e)). 

(h) and (i) follow from: 



932 NIELS SCHWARTZ 

THEOREM 15. / / / : X —> Y is a finitely presented morphism of affine 
spaces then, for all n G Z, 

Dn = {yeY\dimf-1(y)=n} 

is constructible. 

PROOF OF (h). Set T = Y\h(X). Then T c F i s constructible, i.e., 
i : T —* Y—>Z is finitely presented. By Theorem 15, 

E = g(Y) H {z e Z | dim r x(z) = -1} 

is constructible. D 

PROOF OF (i). In a first step, 

D = {y eYldimh^iy) = - 1 or 0} 

is a constructible subset of Y. Thus Y\D is constructible as well and 

E = Z\g(Y)Ug(Y)\g(Y\D) 

is constructible. G 

PROOF OF THEOREM 15. Let B be the ring of global sections of Y. 
Then consider a finite presentation of / : 

^ ^ Y > Spero 

YxRoR% v S p e r P [ * i , . . . , X n ] . 

Pick any ?/ G F . Then f~1(y) C p( z/)n is a semi-algebraic sub-
space. p(y) is the quotient field of B/y. Thus, there are polyno
mials P i , . . . , Ps 6 B[X\,...-, Xn] such that their images P i , . . . , Ps 
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in p(y) [X\,..., Xn] generate the ideal of all polynomials vanishing on 
r\y). Set 

V = YxRoR^nV(Pl,...,Ps) 

with V(Plt...,Pa) = {z € SperB[X1,...,Xn]\Pl(z) = ••• = P.{z) 
= 0}. Let 

A = {z e Y[f-\z) C VC\V-l{z)}. 

This is constructible by Proposition 14 (d). Suppose that d im/ _ 1 (y) 
= m and set 

B = {zeA\p(z)^= $z} 

where $ is the following formula: 

3x i , . . . , a ; n 3e > 0 Vj/i,...,2/n : 
n 

(Pi(y) = 0 & . . . & P.(y) = 0 & £ ( ; * - t/i)2 < e 

& f i ^ ( ^ i ( ^ i , . . . , a ? n ) j =n-m) -> ^(2/1,. ..j/n) 

(^ is a formula describing the constructible set X C Y XR0 R0). If the 
dimension of the algebraic variety Vz = VDp~1(z) is m then this means 
that f~1(z) contains some open subset of the set of regular points of 
the variety Vz. Then f~l{z) has dimension m as a semi-algebraic space. 
So, finally set 

C = {z£ B\dimVz =m}. 

By ([6, IV 9.9.1]) this is constructible. 

Starting from y £ Y we have constructed the constructible set C. We 
change notation now and denote C by Cy. By construction, y G Cy. 
The sets Cy, y E Y form a constructible cover of Y. Hence, there is a 
finite subcover 

For each z, dim/""1 (2) = dim/""1 (y*) for all z G CVi. Thus, 

D n = U{C ? / i | d im/ - 1 (^ ) = n} 

is constructible. D 



934 NIELS SCHWARTZ 

To complete the proof of Proposition 14 we must still prove (j). This 
follows from 

THEOREM 16. Let f : X —> Y be a finitely presented morphism of 
affine real closed spaces. For all n G Z set 

Cn = {y £ Y I f~1(y) has n connected components). 

Then Cn is constructible. 

PROOF. Let B be the ring of global sections of Y. We have a finite 
presentation 

Sper B 

YxRoR%(— SpevB[Xu...iXn]. 

of / . Let $ be a formula with constants from B defining X as a 

constructible subset of y x #0 RQ. Pick y G Y and let 

r1(y) = C(y),V---VC(y)r(y) 

be the decomposition into connected components. Let *&y be a formula 
with constants from B/y expressing that the C(y)i are precisely the 
connected components of f~1(y) (cf. [2], Lemma 5.6). Let ^(y) be a 
formula with constants from B lifting tyy. Then 

C(y) = {zeY\p(z)\= nv)z} 

is constructible and y G C(y). Thus, 

Y = UyeYC(y) 

is a constructible cover, and there is a finite subcover Y = C(y\) U 
• • • U C(yr). Since the number of connected components of f~1{z) is 
constant as z varies in C(yi), the claim is proved. D 
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As an immediate consequence of Proposition 14 we have 

COROLLARY 17. Let f : X —• Y be a finitely presented morphism of 
affine real closed spaces. Suppose that f is open. If 

Y 

v 

Y xRo R0 

is a finite presentation and Z C Y x #0 R0 is closed constructible, then 

E = {y er\xnp-
l(y) c znp-'iy)} 

is closed constructible. 

PROOF. Constructibility follows from Proposition 14(d). For closed-
ness we must show that E is closed under specialization ([1, Propo
sition 1]). Pick a G E, ß D a a specialization in Y. Assume that 
XC\p-\ß) </lZ^p-l{ß), i.e., there is some 7 G X^p~l{ß)\Z. Since 
/ is generalizing there is some 6 G X fi p~x(a) such that 6 C 7. Thus, 
S G Z. Since Z is constructible, Z is closed under specialization, i.e., 
7 G Z, a contradiction. D 

Next we consider the function c defined at the beginning of this 
section: 

THEOREM 18. Let f : X —• Y be a finitely presented morphism of 
affine real closed spaces. Suppose that f is open and closed. Then 

C<n = {yeY\ c(y) < n} 

is closed constructible for all n G Z. 
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PROOF. C< n is constructible by Theorem 16. It remains to prove 
that C<n is closed under specialization. Pick a, ß G F, a C ß such 
that a G C<n. The properties of / are preserved under base extension 
by Yß —> Y. Therefore, assume that ß is the unique closed point 
of Y. Then f~l(ß) C X is closed and the connected components 
C ( / ? ) i , . . . , C(ß)t of f~l{ß) are closed in X. By ([9, II 4.16]), there are 
fu • • •, ft e Ox(X) such that fi | C(ß)i > 0, / i | <?(/?),• < 0 for j ^ i. 
Assume that / i (7) = 0 for 7 G f~1(a). By closedness of / , there is 
some 6 € f~1(ß)i 7 C <5. But then fi(6) = 0 also. However, fi was 
chosen such that there is no zero of fi on f~l(ß). Thus, fi does not 
have a zero on f~1(a). By openness of / , there are 7 1 , . . . ,7* G f~l{a) 
such that { 7 J H C(ß)i ^ 0. It follows that 

fihj)-
> 0 for i = j 
< 0 for i 7̂  j . 

This shows 

with 

r1H = c1 u-uc, 

Q = { 7 € / - 1 ( a ) | / i ( 7 ) > 0 } 

is a partition into nonempty open constructible subsets. Thus, 

c(ß) = t < c(a) < n. D 

Finally, we take a look at the dimensions of the fibres: 

THEOREM 19. Let f : X —> F be a finitely presented morphism of 
affine real closed spaces. Suppose that f is universally open. Then 

D<n = {yeY\ d(y) < n} 

is closed and constructible for all n G Z. 

PROOF. From Theorem 15 D<n is constructible. By ([1, Proposition 
1]) it remains to show that D<n is closed under specialization. It suffices 
to show this for the case that F is a valuative real closed space. Let 
yo,yi be the generic and the closed points of F . By ([2 Proposition 
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8.11]), d i m / 1(t/i) is the length of a longest chain of specializations in 

/ - x ( y i ) . Let 
i o C x i C ' " C x m 

be such a chain. Then tTdgrp^yi>}p(xo) = m. For, consider f~1(yi) 
as a semi-algebraic subspace of p(y\)r for some r G N . If V is the 
Zariski closure of f~1{yi) C p(yi)r we decompose V into its irreducible 
components V"i,...,Vs- Then XQ G VI. By [2, Proposition 8.3], the 
function field of V has transcendence degree m over p(y\). P(XQ) is 
the real closure of this function field with respect to the total order 
belonging to XQ. 

Since / is open (i.e., generalizing), there is some z G f~x(yo) with 
z C XQ. Let B be the ring of global sections of Y and A = 0x,Xo/z 
C p(z). Let C C p(z) be a convex subring dominating A. Then we 
have local homomorphisms 

B-+A-+C 

and homomorphisms 

p(yi) -> P(XQ) -> C / r a c 

of residue fields. Thus, trdgrp^yi^C/mc > m. The place B —> p(yi) is 
a restriction of the place C —> C/mc- Hence, 

trd%vp(yo)P(z) ^ trd&p(yi)
c/mc > m. 

Now the dimension of f~l{yo) is the length of a longest chain of 
specializations in f~l(yo) ([2, Proposition 8.11]). By [2, Proposition 
8.3], this implies 

d i m / _ 1 ( y o ) > trdgrpiyo)p{z) > m. ü 

The last two results show that the hypothesis of openness brings some 
measure of regularity to the fibres of a finitely presented morphism of 
affine real closed spaces. Examples in [10] show that the results pre
sented here are the best one may expect without stronger hypotheses. 
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