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ORTHOGONAL DECOMPOSITIONS OF 
INDEFINITE QUADRATIC FORMS 

DONALD G. JAMES 

Introduction. A well known theorem of Milnor (see [8] or [9]) 
classifies the unimodular indefinite quadratic forms over Z. Either the 
form represents both even and odd numbers, in which case the form 
diagonalizes as ( ± 1 , . . . , ±1); or the form only represents even numbers, 
in which case it decomposes into an orthogonal sum of hyperbolic 
planes and 8-dimensional unimodular definite forms. We give here 
some generalizations of this theorem for indefinite forms with square 
free discriminant of rank at least three. 

Let L be a Z-lattice on an indefinite regular quadratic Q-space V 
of finite dimension n > 3 with associated symmetric bilinear form 
/ : V x V —» Q. Assume, for convenience, that f(L,L) = Z and 
that the signature s = s(L) of the form is non-negative. Let xi,...,xn 

be a Z-basis for L and put d = dL = det/(:r?;,a;7), the discriminant 
of the lattice L. We assume that d is square free. Let ( a i , . . . , a n ) 
denote the Z-lattice Zx\ J_ • • • _L Zxn with an orthogonal basis where 
f(xi) = f(xj,,Xj) = a7;, 1 < i < n. Most of our notation follows 
O'Meara [7]. Thus Lp denotes the localization of L at the prime p. 

The lattice L is called even if f(x) G 2Z for all x € L\ otherwise the 
lattice is odd. The condition that L is an odd lattice is equivalent to 
the local condition that L2 diagonalizes over the 2-adic integers (since 
d is not divisible by 4). 

Odd lattices. While not all odd indefinite lattices have an orthogo
nal basis, we can get very close to this. 

THEOREM 1. Let L be an odd indefinite Z-lattice of rank n > 3 with 
square free discriminant d. Then 

L = (±1,...,±1)±B, 
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where B is a binary lattice. Moreover, if d is even, then B can be 
chosen to be definite or indefinite. 

PROOF. It suffices, by induction, to prove that L represents both 
1 and - 1 , for then we can split off a one-dimensional orthogonal 
component, although we must be careful that the other component 
remains odd. Also, it is enough to consider n = 3. Since d is square 
free, by Kneser [6], the genus and the class of L coincide. Thus it 
remains to show that the localization Lp represents both 1 and -1 for 
each prime p. This is clear for the odd primes, since the Jordan form 
of Lp has a unimodular component of rank at least two. It remains to 
consider L2. 

Assume first that d is even. Then 

L2 = Z 2 xi _L Z2x2 -L Z2x3 = (ei ,e2 ,2e3) 

with €i all 2-adic units. Thus f(x\) — e\ = l m o d 2 . We can 
choose a3 equal to 0 or 1 such that f(x\ + 03X3) = ± l m o d 4 (both 
choices of sign are possible). Finally, choose a2 equal to 0 or 1 so 
that f{x\ + 2a2x2 + «3^3) = =blmod8. By Hensel's Lemma, L2 now 
represents both 1 and - 1 . Note that the orthogonal complement of 
x\ + 2a2x2 + ü3Xs in L2 is not an even lattice and hence there is no 
problem in proceeding by induction. The choice of sign in ± 1 is made 
to ensure the complement remains indefinite (except at the last step). 

Now assume that d is odd. Then either L2 — (e) _L H with H a 
hyperbolic plane, or 

L2 = Z2Xl JL (Z2x2 + Z2x3) = <c> _L ( 1 2 ) 

(see O'Meara [7; §93]). In the first case L2 clearly represents both 1 
and - 1 . For the second case, the unit e can be changed by a square and 
we may assume e G { ± 1 , ± 3 } . If e = 3, then f(x\ -f x2 + £3) = 1 mod 8 
and L2 represents 1. If e = —3, then f(x\ +x2) = —1 and L2 represents 
- 1 . Thus L2 always represents either 1 or - 1 , and if 6 = ± 1 then L2 

represents both 1 and - 1 . This would complete the proof except that 
in the induction step from n — 4 to n = 3 it is necessary for L2 to 
represent both 1 and - 1 . However, for n = 4, since (3,3) = (—1,-1) , 

the lattice (3,3) ± I ) represents both 1 and - 1 . D 
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REMARK. The problem of determining for which values of the dis
criminant d = dL the odd lattice L always has an orthogonal basis is 
studied in [5]. The answer is complicated and depends on the factor
ization of d and on the Legendre symbols of some of the prime factors. 
For example, if \d\ is a prime q = 3 mod 4, then L can always be diag-
onalized, while if \d\ is a prime p = lmod4, then L cannot always be 
diagonalized. 

Even lattices. We now study even lattices with square free discrim
inants and try to construct them as far as possible from hyperbolic 
planes H and the eight dimensional even definite unimodular form Eg. 
Recall we are assuming that the signature s is non-negative. 

THEOREM 2. Let L be an even indefinite Z-lattice of rank n > 3 with 
square free discriminant d. Then 

L = # 1 _ . - . _ L # _ L £ 8 J _ - - - _ L £ 8 _ L M , 

where rank M < 7. Moreover, if d is odd, then rank M < 6. 

PROOF. The idea for this proof was suggested by John Hsia. We 
may assume n > 5. Then L is isotropic and is split by a hyperbolic 
plane H (see [4, p. 18]). Hence L = H1-—-JLHA-L', where either 
rank V < 4 and we are finished, or V is positive definite. We need only 
consider rank V > 8. It now suffices to show that Eg is an orthogonal 
summand of if _L V'. Moreover, since d is square free, the class and 
genus coincide and it suffices to establish this locally. For the prime 
2 the localization of Eg is the sum of four hyperbolic planes, while L'2 

must contain at least three hyperbolic planes. Hence (H _L L')2 is split 
by (Eg)2- F° r odd primes the localization of Eg is ( 1 , 1 , . . . , 1) which 
clearly splits the localization (H _L L')p = ( 1 , 1 , . . . , \,e,ed) (e some 
local unit). This completes the proof, for if d is odd then L^ must have 
even rank. D 

REMARK. Theorems 1 and 2 are sharper results for forms with square 
free discriminants of the general results of Watson [10] and Gerstein 
[3] on the orthogonal decomposition of indefinite forms. Our bounds 
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on rank M are, in general, best possible. For odd d, L = H _L EQ is 

an example with d = — 3. For even d take L = ( _2 ) _L £7 so that 

s = 7 and d = —42; that L^E8± (—42) follows from computing 

Hasse symbols at 3. See also the remarks following Theorem 3. 

For special classes of d the component M in Theorem 2 can be more 
specifically described. For \d\ = 2q with q = 3 mod 4 a prime, this was 
done in [4]. We consider now the case where \d\ is a prime. 

THEOREM 3. Let L be an even indefinite Z-lattice with rank n > 3, 

signature s > 0 and discriminant ± ç , where q = 3 mod 4 is a prime. 

Then n is even and s = 2 mod 4. Moreover, for each compatible 

choice of n and s, there exists a unique such Z-lattice L with an 

orthogonal decomposition as in Theorem 2 with M = ( 2 / 

when s = 2 mod 8, and M — E\ a definite even lattice of rank 6 and 

discriminant q when s = 6 mod 8. 

PROOF. Let L be an even indefinite Z-lattice with discriminant ±q. 
Then N = L J- Zx where f(x) = —1 is an odd lattice and, by [5], must 
diagonalize as Zx\ _L • • • J_ Z x n + i = ( ± 1 , . . . , ± 1 , ±q). Let x — J2 aixi-
Then all the coefficients a; must be odd integers since the orthogonal 
complement of x in TV is the even lattice L. Hence 

- 1 = /(:r) = 5 ^ a ? / ( x i ) = ^ / ( x i ) = ± 1 ± - - - ± 1 ± ç m o d S . 

Since the signature s(N) = s(L) — 1 = s — 1, it follows that 5 = 2 mod 4. 
This fact also follows from the general results of Chang [2]. 

We now construct even indefinite lattices with discriminant ±q and 
even rank for each possible signature s = 2 mod 4. If s = 2 + 8r take 

L = H±---±H±E8±--±E8±_ 

with r copies of Eg and the number of hyperbolic planes chosen to 
match the required even rank. 

Next consider s = 6 mod 8 and q = 3 mod 8. Let 

TV =±Zxi = (1 ,1 , l , l , l , - l , g > 



ORTHOGONAL DECOMPOSITIONS 739 

and put z — a\X\ -f &2x2 4- «3^3 + #4 + x§ + g^6 + £7 so that 
f(z) = af + a2 + a2 - q2 + q + 2. By Gauss' Three Square Theorem, 
there exist odd integers a7; such that f(z) = — 1. Let E% be the 
orthogonal complement of z in N. Then E% is an even definite lattice 
with rank 6 and discriminant q (since any vector orthogonal to z must 
have an even number of its coefficients odd, and hence have even 
length). By adjoining copies of H and Eg to E% we obtain lattices 
of all possible ranks and signatures in this case. For s = 6 mod 8 and 
q = 7 mod 8 a similar argument can be used to obtain EQ by starting 
with N = (1,1,1,1,1,1,-g). 

Only the uniqueness remains to be shown. Now let N be an even 
indefinite Z-lattice with the same rank n, signature s and discriminant 
as L. Then dN = dL = {-l)^n~s^2q. Locally at the prime 2 we have 

either N2 = H J_ • • • J_ H or N2 = H JL • • • 1 H _L (? ^ Y In the 

first case dN2 = ( — l ) n / 2 = ±çmod8 and hence ç = 7 mod 8, while in 
the second case dN2 = — 3( — l ) n / 2 = ±çmod8 and q = 3 mod 8. Thus, 
locally, ÌV2 — L2, and hence the Hasse symbols S2-/V and »S2L are equal. 
For all odd primes p ^ q we have SpN = SpL — 1. At the infinite prime 
we already know S^N = SooL since the signatures match. By Hilbert 
Reciprocity it follows that SqN = SqL. Thus TV and L can be viewed 
as lying on the same quadratic space over Q. Finally, N and L are 
locally isometric at all primes and hence globally isometric, o 

REMARKS, (i) Theorem 3 can be strengthened if we assume the lattice 
L has Witt index i(L) > 2. Then, from uniqueness, 

H±H±E%*ES-L (" i (J+ 1 )4j 
since these two even lattices have the same rank, signature and dis
criminant. Then, in Theorem 3, we have 

L = H _L • • • ± H ± Es 1 • • • ± E8 ± ( ± * (l+' > ± ^ ) . 

(ii) In general, for Theorem 2, if rank M > 5 and M is indefinite, we 
can split another hyperbolic plane from M and reduce the rank of M 
by two. If rank M > 6, M is definite and i(L) > 2, then H 1 H J_ M 
is split by Eg. Thus, for i(L) > 2 in Theorem 2, L has a splitting of 
the type 

L = H±'"±H1 Eg l ' - ' l E8 1.M 
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with rank M < 5 if d is even, and rank M < 4 if d is odd. If d is even 

and i(L) > 3, we can further strengthen this to rank M < 3. 

(iii) For \d\ = 1 mod 4, Satz 2 in Chang [2] implies that s = 0 m o d 4 . 

Hence, for this case, we again have rank M < 4 in Theorem 2. If, 

moreover, \d\ = p is prime, then Theorem 3 has an analogue with 

M — \ 2(p~l) P if s = 0 m o d 8 , and M an even definite lattice of rank 

4 and discriminant p when s = 4 mod 8. 

(iv) For \d\ = 2 we have, from [2], that n is odd and s = zb lmod8. 

In Theorem 2 we can now take M — (±2). 
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