ORTHOGONAL DECOMPOSITIONS OF INDEFINITE QUADRATIC FORMS

DONALD G. JAMES

Introduction. A well known theorem of Milnor (see [8] or [9]) classifies the unimodular indefinite quadratic forms over Z. Either the form represents both even and odd numbers, in which case the form diagonalizes as $\langle \pm 1, \ldots, \pm 1\rangle$; or the form only represents even numbers, in which case it decomposes into an orthogonal sum of hyperbolic planes and 8-dimensional unimodular definite forms. We give here some generalizations of this theorem for indefinite forms with square free discriminant of rank at least three.

Let L be a Z-lattice on an indefinite regular quadratic \mathbf{Q}-space V of finite dimension $n \geq 3$ with associated symmetric bilinear form $f: V \times V \rightarrow \mathbf{Q}$. Assume, for convenience, that $f(L, L)=\mathbf{Z}$ and that the signature $s=s(L)$ of the form is non-negative. Let x_{1}, \ldots, x_{n} be a Z-basis for L and put $d=d L=\operatorname{det} f\left(x_{i}, x_{j}\right)$, the discriminant of the lattice L. We assume that d is square free. Let $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ denote the \mathbf{Z}-lattice $\mathbf{Z} x_{1} \perp \cdots \perp \mathbf{Z} x_{n}$ with an orthogonal basis where $f\left(x_{i}\right)=f\left(x_{i}, x_{i}\right)=a_{i}, 1 \leq i \leq n$. Most of our notation follows O'Meara [7]. Thus L_{p} denotes the localization of L at the prime p.

The lattice L is called even if $f(x) \in 2 \mathbf{Z}$ for all $x \in L$; otherwise the lattice is odd. The condition that L is an odd lattice is equivalent to the local condition that L_{2} diagonalizes over the 2-adic integers (since d is not divisible by 4).

Odd lattices. While not all odd indefinite lattices have an orthogonal basis, we can get very close to this.

Theorem 1. Let L be an odd indefinite Z-lattice of rank $n \geq 3$ with square free discriminant d. Then

$$
L=\langle \pm 1, \ldots, \pm 1\rangle \perp B
$$

where B is a binary lattice. Moreover, if d is even, then B can be chosen to be definite or indefinite.

Proof. It suffices, by induction, to prove that L represents both 1 and -1 , for then we can split off a one-dimensional orthogonal component, although we must be careful that the other component remains odd. Also, it is enough to consider $n=3$. Since d is square free, by Kneser [6], the genus and the class of L coincide. Thus it remains to show that the localization L_{p} represents both 1 and -1 for each prime p. This is clear for the odd primes, since the Jordan form of L_{p} has a unimodular component of rank at least two. It remains to consider L_{2}.

Assume first that d is even. Then

$$
L_{2}=\mathbf{Z}_{2} x_{1} \perp \mathbf{Z}_{2} x_{2} \perp \mathbf{Z}_{2} x_{3}=\left\langle\epsilon_{1}, \epsilon_{2}, 2 \epsilon_{3}\right\rangle
$$

with ϵ_{i} all 2-adic units. Thus $f\left(x_{1}\right)=\epsilon_{1} \equiv 1 \bmod 2$. We can choose a_{3} equal to 0 or 1 such that $f\left(x_{1}+a_{3} x_{3}\right) \equiv \pm 1 \bmod 4$ (both choices of sign are possible). Finally, choose a_{2} equal to 0 or 1 so that $f\left(x_{1}+2 a_{2} x_{2}+a_{3} x_{3}\right) \equiv \pm 1 \bmod 8$. By Hensel's Lemma, L_{2} now represents both 1 and -1 . Note that the orthogonal complement of $x_{1}+2 a_{2} x_{2}+a_{3} x_{3}$ in L_{2} is not an even lattice and hence there is no problem in proceeding by induction. The choice of sign in ± 1 is made to ensure the complement remains indefinite (except at the last step).

Now assume that d is odd. Then either $L_{2}=\langle\epsilon\rangle \perp H$ with H a hyperbolic plane, or

$$
L_{2}=\mathbf{Z}_{2} x_{1} \perp\left(\mathbf{Z}_{2} x_{2}+\mathbf{Z}_{2} x_{3}\right)=\langle\epsilon\rangle \perp\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)
$$

(see O'Meara $[\mathbf{7} ; \S 93]$). In the first case L_{2} clearly represents both 1 and -1 . For the second case, the unit ϵ can be changed by a square and we may assume $\epsilon \in\{ \pm 1, \pm 3\}$. If $\epsilon=3$, then $f\left(x_{1}+x_{2}+x_{3}\right) \equiv 1 \bmod 8$ and L_{2} represents 1. If $\epsilon=-3$, then $f\left(x_{1}+x_{2}\right)=-1$ and L_{2} represents -1. Thus L_{2} always represents either 1 or -1 , and if $\epsilon= \pm 1$ then L_{2} represents both 1 and -1 . This would complete the proof except that in the induction step from $n=4$ to $n=3$ it is necessary for L_{2} to represent both 1 and -1 . However, for $n=4$, since $\langle 3,3\rangle \cong\langle-1,-1\rangle$, the lattice $\langle 3,3\rangle \perp\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$ represents both 1 and -1 .

REMARK. The problem of determining for which values of the discriminant $d=d L$ the odd lattice L always has an orthogonal basis is studied in [5]. The answer is complicated and depends on the factorization of d and on the Legendre symbols of some of the prime factors. For example, if $|d|$ is a prime $q \equiv 3 \bmod 4$, then L can always be diagonalized, while if $|d|$ is a prime $p \equiv 1 \bmod 4$, then L cannot always be diagonalized.

Even lattices. We now study even lattices with square free discriminants and try to construct them as far as possible from hyperbolic planes H and the eight dimensional even definite unimodular form E_{8}. Recall we are assuming that the signature s is non-negative.

THEOREM 2. Let L be an even indefinite Z-lattice of rank $n \geq 3$ with square free discriminant d. Then

$$
L=H \perp \cdots \perp H \perp E_{8} \perp \cdots \perp E_{8} \perp M
$$

where $\operatorname{rank} M \leq 7$. Moreover, if d is odd, then $\operatorname{rank} M \leq 6$.

Proof. The idea for this proof was suggested by John Hsia. We may assume $n \geq 5$. Then L is isotropic and is split by a hyperbolic plane H (see [4, p. 18]). Hence $L=H \perp \cdots \perp H \perp L^{\prime}$, where either $\operatorname{rank} L^{\prime} \leq 4$ and we are finished, or L^{\prime} is positive definite. We need only consider $\operatorname{rank} L^{\prime} \geq 8$. It now suffices to show that E_{8} is an orthogonal summand of $H \perp L^{\prime}$. Moreover, since d is square free, the class and genus coincide and it suffices to establish this locally. For the prime 2 the localization of E_{8} is the sum of four hyperbolic planes, while L_{2}^{\prime} must contain at least three hyperbolic planes. Hence $\left(H \perp L^{\prime}\right)_{2}$ is split by $\left(E_{8}\right)_{2}$. For odd primes the localization of E_{8} is $\langle 1,1, \ldots, 1\rangle$ which clearly splits the localization $\left(H \perp L^{\prime}\right)_{p}=\langle 1,1, \ldots, 1, \epsilon, \epsilon d\rangle(\epsilon$ some local unit). This completes the proof, for if d is odd then L_{2} must have even rank.

REMARK. Theorems 1 and 2 are sharper results for forms with square free discriminants of the general results of Watson [10] and Gerstein [3] on the orthogonal decomposition of indefinite forms. Our bounds
on rank M are, in general, best possible. For odd $d, L=H \perp E_{6}$ is an example with $d=-3$. For even d take $L=\left(\begin{array}{cc}10 & 1 \\ 1 & -2\end{array}\right) \perp E_{7}$ so that $s=7$ and $d=-42$; that $L \neq E_{8} \perp\langle-42\rangle$ follows from computing Hasse symbols at 3 . See also the remarks following Theorem 3.
For special classes of d the component M in Theorem 2 can be more specifically described. For $|d|=2 q$ with $q \equiv 3 \bmod 4$ a prime, this was done in $[4]$. We consider now the case where $|d|$ is a prime.

Theorem 3. Let L be an even indefinite Z-lattice with rank $n \geq 3$, signature $s \geq 0$ and discriminant $\pm q$, where $q \equiv 3 \bmod 4$ is a prime. Then n is even and $s \equiv 2 \bmod 4$. Moreover, for each compatible choice of n and s, there exists a unique such Z-lattice L with an orthogonal decomposition as in Theorem 2 with $M=\left(\begin{array}{cc}\frac{1}{2}(q+1) & q \\ q & 2 q\end{array}\right)$ when $s \equiv 2 \bmod 8$, and $M=E_{6}^{q}$ a definite even lattice of rank 6 and discriminant q when $s \equiv 6 \bmod 8$.

Proof. Let L be an even indefinite \mathbf{Z}-lattice with discriminant $\pm q$. Then $N=L \perp \mathbf{Z} x$ where $f(x)=-1$ is an odd lattice and, by [5], must diagonalize as $\mathbf{Z} x_{1} \perp \cdots \perp \mathbf{Z} x_{n+1}=\langle \pm 1, \ldots, \pm 1, \pm q\rangle$. Let $x=\sum a_{i} x_{i}$. Then all the coefficients a_{i} must be odd integers since the orthogonal complement of x in N is the even lattice L. Hence

$$
-1=f(x)=\sum a_{i}^{2} f\left(x_{i}\right) \equiv \sum f\left(x_{i}\right) \equiv \pm 1 \pm \cdots \pm 1 \pm q \bmod 8
$$

Since the signature $s(N)=s(L)-1=s-1$, it follows that $s \equiv 2 \bmod 4$. This fact also follows from the general results of Chang [2].
We now construct even indefinite lattices with discriminant $\pm q$ and even rank for each possible signature $s \equiv 2 \bmod 4$. If $s=2+8 r$ take

$$
L=H \perp \cdots \perp H \perp E_{8} \perp \cdots \perp E_{8} \perp\left(\begin{array}{cc}
\frac{1}{2}(q+1) & q \\
q & 2 q
\end{array}\right)
$$

with r copies of E_{8} and the number of hyperbolic planes chosen to match the required even rank.
Next consider $s \equiv 6 \bmod 8$ and $q \equiv 3 \bmod 8$. Let

$$
N=\perp \mathbf{Z} x_{i}=\langle 1,1,1,1,1,-1, q\rangle
$$

and put $z=a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}+x_{4}+x_{5}+q x_{6}+x_{7}$ so that $f(z)=a_{1}^{2}+a_{2}^{2}+a_{3}^{2}-q^{2}+q+2$. By Gauss' Three Square Theorem, there exist odd integers a_{i} such that $f(z)=-1$. Let E_{6}^{q} be the orthogonal complement of z in N. Then E_{6}^{q} is an even definite lattice with rank 6 and discriminant q (since any vector orthogonal to z must have an even number of its coefficients odd, and hence have even length). By adjoining copies of H and E_{8} to E_{6}^{q} we obtain lattices of all possible ranks and signatures in this case. For $s \equiv 6 \bmod 8$ and $q \equiv 7 \bmod 8$ a similar argument can be used to obtain E_{6}^{q} by starting with $N=\langle 1,1,1,1,1,1,-q\rangle$.
Only the uniqueness remains to be shown. Now let N be an even indefinite \mathbf{Z}-lattice with the same rank n, signature s and discriminant as L. Then $d N=d L=(-1)^{(n-s) / 2} q$. Locally at the prime 2 we have either $N_{2}=H \perp \cdots \perp H$ or $N_{2}=H \perp \cdots \perp H \perp\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$. In the first case $d N_{2} \equiv(-1)^{n / 2} \equiv \pm q \bmod 8$ and hence $q \equiv 7 \bmod 8$, while in the second case $d N_{2} \equiv-3(-1)^{n / 2} \equiv \pm q \bmod 8$ and $q \equiv 3 \bmod 8$. Thus, locally, $N_{2} \cong L_{2}$, and hence the Hasse symbols $S_{2} N$ and $S_{2} L$ are equal. For all odd primes $p \neq q$ we have $S_{p} N=S_{p} L=1$. At the infinite prime we already know $S_{\infty} N=S_{\infty} L$ since the signatures match. By Hilbert Reciprocity it follows that $S_{q} N=S_{q} L$. Thus N and L can be viewed as lying on the same quadratic space over \mathbf{Q}. Finally, N and L are locally isometric at all primes and hence globally isometric.

Remarks. (i) Theorem 3 can be strengthened if we assume the lattice L has Witt index $i(L) \geq 2$. Then, from uniqueness,

$$
H \perp H \perp E_{6}^{q} \cong E_{8} \perp\left(\begin{array}{cc}
-\frac{1}{2}(q+1) & q \\
q & -2 q
\end{array}\right)
$$

since these two even lattices have the same rank, signature and discriminant. Then, in Theorem 3, we have

$$
L=H \perp \cdots \perp H \perp E_{8} \perp \cdots \perp E_{8} \perp\left(\begin{array}{cc}
\pm \frac{1}{2}(q+1) & q \\
q & \pm 2 q
\end{array}\right) .
$$

(ii) In general, for Theorem 2, if $\operatorname{rank} M \geq 5$ and M is indefinite, we can split another hyperbolic plane from M and reduce the rank of M by two. If $\operatorname{rank} M \geq 6, M$ is definite and $i(L) \geq 2$, then $H \perp H \perp M$ is split by E_{8}. Thus, for $i(L) \geq 2$ in Theorem $2, L$ has a splitting of the type

$$
L=H \perp \cdots \perp H \perp E_{8} \perp \cdots \perp E_{8} \perp M
$$

with rank $M \leq 5$ if d is even, and $\operatorname{rank} M \leq 4$ if d is odd. If d is even and $i(L) \geq 3$, we can further strengthen this to rank $M \leq 3$.
(iii) For $|d| \equiv 1 \bmod 4$, Satz 2 in Chang $[2]$ implies that $s \equiv 0 \bmod 4$. Hence, for this case, we again have $\operatorname{rank} M \leq 4$ in Theorem 2. If, moreover, $|d|=p$ is prime, then Theorem 3 has an analogue with $M=\left[\begin{array}{cc}\frac{1}{2}(p-1) & p \\ p & 2 p\end{array}\right]$ if $s \equiv 0 \bmod 8$, and M an even definite lattice of rank 4 and discriminant p when $s \equiv 4 \bmod 8$.
(iv) For $|d|=2$ we have, from [2], that n is odd and $s \equiv \pm 1 \bmod 8$. In Theorem 2 we can now take $M=\langle \pm 2\rangle$.

REFERENCES

1. J.W.S. Cassels, Rational Quadratic Forms, Academic Press, London, 1978.
2. K.S. Chang, Diskriminanten und Signaturen gerader quadratischer Formen, Arch. Math. 21 (1970), 59-65.
3. L.J. Gerstein, Orthogonal splitting and class numbers of quadratic forms, J. Number Theory 5 (1973), 332-338.
4. D.G. James, Even indefinite quadratic forms of determinant $\pm 2 p$, A Spectrum of Mathematics, Oxford University Press, 1971, 17-21.
5. - Diagonalizable indefinite integral quadratic forms, Acta Arith. 50 (1988), 309-314.
6. M. Kneser, Klassenzahlen indefiniter quadratisher Formen in drei oder mehr Veranderlichen, Arch. Math. 7 (1956), 323-332.
7. O.T. O'Meara, Introduction to Quadratic Forms, Springer-Verlag, New York, 1963.
8. J.P. Serre, A Course in Arithmetic, Springer-Verlag, New York, 1973.
9. C.T.C. Wall, On the orthogonal groups of unimodular quadratic forms, Math. Ann. 147 (1962), 328-338.
10. G.L. Watson, Integral Quadratic Forms, Cambridge University Press, 1960.
