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THE BEHAVIOR OF THE v-INVARIANT OF A FIELD
OF CHARACTERISTIC 2 UNDER FINITE EXTENSIONS

R. ARAVIRE AND R. BAEZA

ABSTRACT. Let F be a field of characteristic 2. We define
v(F) as the smallest integer n such that any n-fold quadratic
Pfister form over F is isotropic. If L/F is any finite extension,
we prove v(F) < v(L) < v(F)+1. The corresponding question
for fields of characteristic 7 2 is still open.

1. Introduction. The v-invariant of a field F' of characteristic
# 2 was introduced in [2] as the number v(F) = Min{n|I"(F) is
torsion free}, where I(F') denotes the maximal ideal of even dimensional
quadratic forms over F in the Witt ring W(F). If F is non real,
then v(F') is the smallest integer n such that any n-fold Pfister form
over F' is isotropic. Similarly, if F' is a field of characteristic 2, let
W, (F) be the Witt group of non singular quadratic forms over F' and
W (F) the Witt ring of non singular symmetric bilinear forms over F'.
It is well known that W,(F) is a W(F)-module under the operation
b-q(z ®y) = blz,z)q(y) for any x € V = space of the bilinear
form b, y € W = space of the quadratic form q. If I(F) C W(F)
is the maximal ideal of even-dimensional bilinear forms, then the
chain of submodules W, (F) D IW,(F) D I*W,(F) D --- plays an
important role in the knowledge of the module structure of W, (F).
If aj,...,a, € F*, b € F, then the quadratic n-fold Pfister form
(1,a1)...(1,a,)[1,b] is a typical generator of I"W,(F), where (1,a)
denotes the symmetric bilinear form U? + aV?2 and [1,b] denotes the
quadratic form X2+ XY +bY 2. We shall usually write ({(a,- -+ ,an,b]|
instead of (1,a1)--(1,a,)[1,b]. (We refer to [1, 3] for general facts
on quadratic forms in characteristic 2). We define now, as in [2], the
v-invariant of a field F of characteristic 2 as

(1.1) V(F) = Min {n| I"W,(F) = 0},

i.e., v(F) is the smallest integer n such that any n-fold Pfister form
over F is isotropic.
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In [2] it was conjectured that (L) < v(F) + 1 for any non real field
F of characteristic 7 2 and any finite extension L/F. The authors
proved v(L) < v(F)+[L: F] -1, and recently Leep (unpublished) has
shown the much better estimate v(L) < v(F) + (log,([L : F]/3)) + 1,
which still depends on the degree [L : F]. In this paper we consider the
same question for fields of characteristic 2 and prove that the above
conjecture is true. Our main result is

THEOREM 1.2. Let F be a field of characteristic 2. Then, for any
finite extension L/F,

v(F) <v(L) <v(F)+1.

For the rest of this paper, F' will denote a field of characteristic 2.

2. The separable case. Let L/F be a finite separable extension.
In this section we will prove Theorem 1.2 under this assumption. For
a,b € F, let [a,b] be the quadratic form aX? + XY + bY2, so that if
a # 0, we have [a,b] = (a)[1,ab]. Obviously, for a;,as,b € F, we have
in W, (F) the relation [a1 + ag,b] = [a1,b] + [a2, b].

LEMMA 2.1. For anya,b,c € F witha,b,a+b # 0, we have in Wy(F)
(La+b)1Ld= a1, -2 | + 1,1, -2
' W ‘a+b ’ “a+b]

PROOF. We have (1,a + b)[1,¢] = [1,¢] L (a + b)[1,¢] = [1,¢] L

[a + b, a%_b] But in W, (F),
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C
[a+b,—~——a+b]

- [ + el
= @125 ] o] 2]
= [1’ ggf—b + a—bfg] +(1,a) [1, aa—fb} +(1,b) [1, ab_fb]

=[1,¢] +(1,a) [1, E%] +(1,b) [1, a%]

Inserting this in the first relation, the lemma follows. O

COROLLARY 2.2. Let E/F be any extension, « € E and f =
by + bia? + - + b0%™ # 0 with by,--- ,by, € F. Then, for any
v € E, we have in Wy(E)

m

(LA = (1,6:)[1,7]

i=1

with certain v; € E (1 means that the sum is taken over all i with
b; # 0).

Now for the finite separable extension L/F we have L = F(a?)
with some a € L, so that 1,a?,---,0?®"1) (n = [L : F]) is a
basis of L over F. Thus any element 8 € L has the form 8 =
by + bya? + -+ + bp_1a2™=V with bg,--- ,b,_1 € F. We conclude,
from Corollary 2.2,

PROPOSITION 2.3. Let L/F be a finite separable extension. For any
B € L*, v € L there exist by,--- by, € F*, y1,-++ ,%m € L (m > 1)
such that

m

(Lﬂﬂl’ﬂ = Z<17bi>[1’ '711]

i=1
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in Wy (L).

Iterating this result we obtain

COROLLARY 2.4. Let L/F be a finite separable extension. Then, for
anyn >0, I"W,(L) is generated by the Pfister forms ((a1,- " ,an,7]]
with ay,--- ,a, € F*, y € L.

Let s : L — F be any trace map, i.e., s is an F-linear map # 0.
For any quadratic form q over L, let s.(g) = s o g be the transfer of q.
s, defines a homomorphism s, : Wy(L) — W, (F), which satisfies the
usual Frobenius reciprocity law. We obtain, directly from Corollary
2.4,

COROLLARY 2.5. Let L/ F be a finite separable extension and s:L— F'
a trace map. Then, for any n > 0,

s.[I"W,(L)] C I"W,(F).

REMARK 2.6. If ch(F) # 2, Corollary 2.5 is a well known result
of Arason, but the proof in this case uses the Milnor-Scharlau exact
sequence. Thus, for fields of characteristic 2, we have a completely
elementary proof of this fact.

The above result can be improved. In fact we have

THEOREM 2.7. Let L/F be a finite separable extension ands: L — F
a trace map. Then, for any n > 0, we have

s.[I"W,(L)] = I"W,(F).

PROOF. From Corollaries 2.4, 2.5 and the Frobenius reciprocity law,
it follows that we only need to consider the case n = 0, i.e., we must
show that s, : Wy(L) — W, (F') is onto. Notice that this fact does not
depend on the particular choice of the trace map s. We now consider
several cases

(i) [L: F]=2,i.e., L = F(a) with a®?4+a = a € F. Using Frobenius
reciprocity it suffices to show that [1,b] € Im(s,) for all b € F'. This
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follows from the direct computation s.([1,(1 + «)?b]) = [1,b], where
8§ = T‘I‘L/F.

(i) [L : F] odd. Let L = F(a) and define s : L — F by s(1)
=1, s(a) = -+ = s(@™ ) =0, n = [L : F]. From Frobenius
reciprocity law we get s,(¢ ® L) = s,((1)) - ¢ for any ¢ € W,(F).
But an easy computation shows that s.((1)) = (1) in W(F), so that
s«(g® L) = g, i.e., s. is onto.

(i) L/F is Galois. According to (ii) we may assume that [L : F]
is even. Let H < G = Gal(L/F) be a 2-Sylow subgroup and denote
by K the fixed field of H. Let s; : L — K, s3 : K — F be trace
maps, so that s = sy 081 5% 0, i.e,, s : L — F is a trace map. Since
Sx = S24 O S14, and sz, is onto by (ii), it suffices to show that sy, is
onto. But H = Gal(L/K) is a 2-group, so that we can find a chain
of fields K = Ko Cc K, C --- C K, = L with [Kz : Ki—l] = 2. We
choose trace maps t; : K; — K;_; such that t =t 0---0t,. % 0, i.e.,
t: L — K is a trace map. Since t, = t1, 0--- 0t and any t;, is onto
by (i), we conclude that ¢, is onto, and hence $;., too. This shows that
S« is onto.

(iv) Let L/F be any finite separable extension. Choose a finite
extension N/L such that N/F is Galois, and trace maps s; : N — L,
s: L — F with sosy # 0. By part (iil) (so 1)« = S« 0514 is onto, and
therefore s, is also onto. This concludes the proof of Theorem 2.7. 0

COROLLARY 2.8. Let L/F be a finite separable extension. Then
v(F) <v(L).

PROOF OF THEOREM (1.2) FOR SEPARABLE EXTENSIONS. Let L/F
be a finite separable extension. We will show v(L) < v(F) + 1. Let
L = F(a?), so that 1,02, -+ ,a?"=1 is a basis of L over F. For
any a € F*, v € L let us consider the quadratic form (1,a)[1,7] #
0. We can write (1,a)[1,7] = (1,a)[1,(y(a? + a)--- (a® + a®"%))/
((a® + a)---(a? + a?"73))], where we consider only factors of the
form a? + a*71, 1 < i < n—1. We may assume a*~1 # ¢%~!
for all i # j, since otherwise we get a?*~1 = 1 for some integer
k, because ChF = 2, and hence (a) = (1), i.e., (1,a)[1,7] = 0.
Let v(a® + a)---(a® + a?"73) = by + bja® + -+ + b,_10*"~ V) with
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bo,b1, -+ ,bp—1 € F. Because of the above assumption we have the
following decomposition in partial fractions

bo + bra? +--- +bn_1a2("‘1) c1 Cn_1
2 3, m3) 0t 5 Tt S s
(a2 +a)---(a®? +a?"3) o’ +a o? +a*"
with ¢g,c1,--+ ,¢n—1 € F. (We have ¢g = b,—1 and the determinant
of the linear system of equations defining c;,--- ,c¢,_; has the form

a” (1 + a)*® for some r,s > 0, which is 7 0 since we assume (a) # (1)).
Inserting the above expression in the form (1,a)[1,7] we obtain in
Wo(L)

’ a? + a2i—1

(La)lto] = (L)Ll + 3010 L e |

But using lemma (2.1) we have

(1,a? +a® 1|1, -5 | = (1,6 |1 cia®”!
@ oy *a2i-1(a? + q2i-1)
2
2 C;,
+(L,a >[1’ 212 +a2i—1)]

= (1,a) [1 C—J

’ o? + a2t-1

in Wy (L), so it follows that

(2.9) (l,a)[l,v]=(l,a)[l,CO]+i(1,a2+a2i‘1)[1 i ]

? q2i—1
i=1 a

Therefore, for any m > 0, ay,--- ,a;,m41 € F*, v € L, we obtain in
W, (L) applying (2.9) to (1, am+1)[1,],

((al,”' ,am+1,‘/]]

n—1
. C;
= <<a1,-.- ’a,n+1,60” + Z(l,az +a72,i+i><<al,' ©t sy Qmy _22%1-]]

i=1 am+l

The proof of Theorem 1.2 is now obvious. If I"W,(F') = 0, then, from
the above formula and from the fact that I™*'W (L) is generated
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by the forms ({(a1, - ,am+1,7]] with a1, ,ams+1 € F*, v € L (see
Corollary 2.4), it follows that I™*'W,(L) = 0, i.e., v(L) < v(F)+ 1.0

In fact we have shown the following general fact.

THEOREM 2.10. Let L/F be a finite separable extension. Then
I YW, (L) = I(L)i [I™W,(F)]

for all m > 0, where i, [I"Wy(F)] is the image of I"™Wy(F) under the
natural homomorphism i, : Wy(F) — Wy(L).

REMARK 2.11. It is easy to show that, for any quadratic separable
extension L/F the equality v(L) = v(F) holds. We just need to prove
v(L) < v(F). Assume I"W,(F) =0. Let L = F(a), *+a=a € F
and define s : L — F the trace map given by s(1) = 0, s(a) = 1,
ie, s = TrL/F. For any m-fold Pfister form over L, we have
s:(q) € IMWy(F) = 0, ie., g € Ker(iy). Hence ¢ = go ® L with
some form ¢o defined over F' (see [1, V (4.10)]), and hence, using |1,
(V, 4.14)], we conclude ¢ = ¢; ® L with an m-fold Pfister form defined
over F, which by assumption is 0 in W (F). This shows I"W,(L) = 0,
ie., v(L) < v(F).

3. The purely inseparable case. The main result of this section
is

THEOREM 3.1. Let L/F be a finite purely inseparable extension.
Then v(F) = v(L).

Since any finite purely inseparable extension L/F admits a chain of
subfields F = Fy C Fy C --- C F,, = L with F; = Fi_1(y/ai), a
€ F*,, to prove Theorem 3.1 it suffices to consider the case L =
F(V1),l € F*. Let us write L = F(a),a? = I. Then we have

LEMMA 3.2. Any n-fold Pfister form q = ({a1, - ,an, 5]] over L is
a linear combination in Wy (L) of n-fold Pfister forms of the type

(i) ((a1,--- ,an,b]] with ay,--- ,a,b € F*
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(ii) {{a,ay, -+ ,an_1,b)] withay, -+ ,an_1,b € F*.

PROOF. Let us consider first a 1-fold Pfister form ¢ = (1,8)[1,4]
over L. Since v = 7?(modpL), where pL = {z? + z|z € L}
and 72 € F for all ¥ € L, we may assume v = ¢ € F. Let
3=a+ba, a,b € F. From Lemma 2.1 we get ¢ = (1,a + ba)[l,¢] =
(1,a)[1,ac/B] + (1,ba)[1,cb/B) = (1,a)[1,c1] + (1, ba)[1, c2] with some
c1,c2 € F. Hence ¢ = (1,a)[1,c1] + (b)(1,b)[1,co] + (b)(L,a)[1,c2]
in W,(L). Since (1,a)? = 0 in W(F), the lemma follows easily by
induction. O

We proceed now to prove the theorem. As noticed above, we may
assume L = F(a), a®> =1 € F*. Suppose first I"W,(F) = 0. We will
show I"W,(L) = 0. According to Lemma 3.2 we just need to consider
forms of type (i), (ii), but since I"W,(F) = 0, then all forms of type
(i) are 0.

Take a form ¢ = ({(a,a;, -+ ,an—1b]] of type (ii). Since ¢ =
({ay, -+ yan—1,b]] L (@){{a1,--- ,an—1b]], it suffices to show that any
form ({aj,---,an—1,b]] does represent a over L, because then g is
isotropic and hence also hyperbolic over L. Notice that I"W,(F') =0
implies that p = ({a1,--,a,—_1,b]] represents any element of F*. We
set o = {{a1, " ,an-1)) = (L,a1)---(1,an—1), and [1,b] = Fe+ Ff
with p(e) =1, p(f) = b, by(e, f) = 1, so that p = p-[1,b] = PReB PR f.
Any vector of p has the form z = r® e + y ® f with z,y € ¢ and
p(2) = ¢(z) + ¢(z,y) + (y)b. Over L, for z,y € ¢ ® L we write
T =1xo+ T100, Yy = Yo + Y1 with zg,z1,y0,y1 € ¢ defined over F.
Since ¢ is written in diagonal form we have ¢(z) = (xo)+lp(z1), ©(y)
= @(yo) + lp(y1) so that, for r=rRe+yQR f € p L, we get

p(2) = ¢(z0) + ¢(20, 30) + P(30)b + Up(1) + (1, 91) + ¢ (1)b]
+ alp(zo, y1) + (21, Y0)]
p(2) =p(zo@e+yo ® f) +p(z1®e+y1 @ f)l
+ afp(zo, y1) + (1, 30)]-
Choose z; = (1,0,---,0),y; = 0, i.e., p(x; ® e+ y1 ® f) = 1. Since
p represents all elements of F*, we can find zg,y0 € ¢ such that

plzo ®e+yo® f) = 1. Setting ¢ = z¢9 + 210, ¥y = Yo + Y1 = Yo,
we obtain, for z =z Qe+ yR fe€EPRL, 2#0,

(3-3) p(2) = ayo.1,
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where yp,; is the first coordinate of yo. If yo,; = 0, it follows that p is
isotropic over L, and hence it represents o over L. If yp1 7 0, then yo 1
is represented by p over F, and since p is a Pfister form, it follows from
(3.3), that p represents « over L. This proves I"W,(L) = 0. Thus we
have v(L) < v(F).

We now prove the converse, i.e., v(F) < v(L). To this end we use

LEMMA 3.4. Let L = F(a),a® =1 € F*. Assume I"W,(L) = 0.
Then

(i) Any n-fold Pfister form over F is of the type ({l,a1,- - ,an-1,b]]
with ay,- - ,ap_1,b € F*

(ii) Any (n—1)-fold Pfister form over F is of the type ((by,--- ,bn_1,
Ic?)] with by,--+ ,by_1,c € F*.

Let us proceed with the proof of v(F) < v(L). Assume "W, (L)
= 0. Then any n-fold Pfister form over F has the form ¢ =
{{l,a1,- ,an—1,b]] (see Lemma 3.4(i)). Now using Lemma 3.4(ii) we
can write ({(a1," " ,an-1,b]] = ((b1,--+ ,bn_1,lc?]] with some c € F*,

q = {(br, + ,bnu_1)) - (1,1)[1,1c?]. But obviously (1,)[1,Ic?] is
isotropic, so that ¢ = 0 in Wy(F). This proves I"W,(F) = 0, i.e.,
v(F) < v(L), and Theorem 3.1 follows. O

For the proof of Lemma 3.4 we need the following general fact about
Pfister forms over fields of characteristic 2.

PROPOSITION 3.5. Let q be an n-fold Pfister form over F.

(i) If q contains a subform [1,a],a € F, then q = ((a1,-- - ,an,al] for
some ay, - ,a, € F*.

(ii) Write ¢ = ¢ ® [1,b] with ¢ = (b1, -+ ,bn)) = ( y L ¢ ie.,

= [1,b] L ¢ -[1,b]. Ifl € F* is represented by ¢’ - [1,b], then
%’ ((l,a1,"+ ,an_1,c|] with some a1, ,an_1 € F*.

PROOF. Part (i) has been proved in [1, Chapter V] in a much more
general setting, so that we omit the proof here. Let us prove (ii).
Assume n =1, ¢ = (1,b1)[1,b] = [1,b] L (b1)[1,b]. If | is represented by
(b1)[1,8],1 = by (2 +zy+by?), and since (z? +zy+by?)([1,b] = [1,b], we
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get ¢ = [1,b] L (by(2® + zy + by?))[1,6] = [1,0] L (D)[1,8] = (1,0)]L,b].
Assume now n > 1. We use induction with respect to n. Write
Y= (17b1> Y= <<b2a' e 7bn>)' Hence ¢’ = ¢’ L <b1>¢7q = [17b] 1
W' [1,b] L (b1)y[L,b], ice., @[1,6] = ¥'[1,b] L (b1)9[1,b]. If I € F* is
represented by ¢'[1,b], we can write [ = ¢ + b;d with c represented by
¥'[1,b] and d represented by ¥[1,b] (if  0). (We may assume c, d 7 0).
By induction we have 9[1,b] = (1,¢)7[1,4'] with some (n — 2)-fold
bilinear Pfister form 7, € F. Moreover (d)-9[1,b] = ¥[1,b]. Therefore

q= (1vbl>¢[1’b] = 7/’[176] 1 (b1>1/J[l,b],
q = (1,c)7[1,b] L (b1d)(1,c)T[1,¥],
q = (1,c)(1,byd)7[1,¥],

But (1,¢){1,01d) = (1,¢,b01d,cbid) = (1,¢ + bid,z,z(c + b,d))) =
(1,0(1,x), ie., ¢ = (1,0)(1,z)7[1,b']. This proves (ii). O

Now we prove Lemma 3.4. Let us assume I"W,(L) = 0. Let
q= (a1, ,an,b]] = ¢-[1,b] be any n-fold Pfister form over F'. Since
q®L = 0, we can find nonzero vectors x = o+, y = Yo+y1a € PRL
(see notation above) such that

gz®e+y® f) =0,

ie.,
gzo®@e+y®f)+lgz1®e+y1 ® f) =0,
byxo®@e+y @ f,z1Q@e+1y1 ® f)=0.

Letu=zo®@e+y1®fiv=21®e+y1® f € q. Then g(u)+Ig(v) =0,
bg(u,v) = 0. Of course we may assume q(u),q(v) # 0, because
otherwise ¢ would be isotropic over F, and hence ¢ = 0. Since
2 = 0, we can find vectors u, v € ¢ with bg(u,u1) = 1,b4(v,v1) =1,
and (u,u;) L (v,v1). Thus we have (u,u;) L (v,v1) C q. Let
a = q(v),d’ = ¢q(v1),a” = q(uy). Then [a,a'] L [al,a”] C ¢, ie.,
(a}[1,a1] L (al)[1,a2] C q for some a;, az € F. But a = g(v) is
represented by ¢, so that (a)q = ¢, and therefore [1,a,] L (I)[1,a2] C q.
In particular [1,a;] C g, so that, by Proposition 3.5(i), we have
g = ¥ - [1,a;] with some n-fold bilinear Pfister form 1. Since ¢ =
[1,a1] L ¥'[1,a4], it follows by cancellation that (I)[1,a2] C ¥'[1,a4],
and hence [ is represented by ¥'[1,a,]. Using Proposition 3.5(ii) we
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conclude q = ({l,by,- - ,bp—1,b]] for some by,--- ,b,_1,b' € F*. This
proves Lemma 3.4 (i).

Consider an (n — 1)-fold Pfister form over F,q = {{a1,*** ,an-1,b]|
= ¢-[1,b,¢ = ((a1, "+ ,an—1)). Since I"W,y(L) = 0, it follows that
(1,a)g = 0 over L, i.e., q represents « over L. Therefore there exist
r=zo+T10, Yy=Yo + Y10 € p® Lsuch that gz ®e+y® f) = a.

This means g(zo ® € + yo @ f) + lg(z1 ® e + y1 @ f) = 0,by(zo e
+y0 ® f,z1 ® e+ y1 ® f) = 1. Thus we have u,v € g with g(u) +
lq(v) = 0,b4(u,v) = 1. Hence (u,v) C ¢q and (u,v) = [g(v),lg(v)] =
(q(v))[1,1g(v)?]. But {g(v)) - ¢ = g, so that [1,1c?] C g, where ¢ = q(v).
Now we apply Proposition 3.5(i) to conclude q = ((b1,- -+ ,b,_1,1c?]],
i.e., Lemma 3.4(ii). 0

4. Proof of Theorem 1.2. Let L/F be a finite extension. Let Fj
be the separable closure of F' in L, F' C F, C L. Hence L/F; is purely
inseparable, and therefore (see Theorem 3.1) v(L) = v(F}). According
to the results of §2 we have v(F) < v(Fs) < v(F) + 1, i.e., we have
v(F)<v(L)<v(F)+1.

5. An example. We will now construct a field F' and a separable
extension L/F with [L : F] = 3 and v(L) = v(F) + 1. In fact, for any
n, it is possible to find a field F' and a separable finite extension L/F
with v(F') = n,v(L) = n+1, but we will just consider the simplest case
n = 0. Let F be the quadratic separable closure of F2(X). Obviously
v(F) = 0. Since W3 + W + 1 € F[W] is irreducible, let L = F(3)
with 3% = 3+ 1. We want to show v(L) = 1, which is equivalent with
L # pL. We assert X3% € pL. Otherwise there exist yo, y1,y2 € F with
p(yo+y18+y28%) = z?, ie., yo+y =0, y1+y3 =0, y7+y2+y3 = X.
Hence Y4 + Y2 +Y = X has a solution in F. Let us show that this
is impossible. Obviously there is no solution in Fz(X). Assume that
F(X) C E C F is asubfield such that Y*+Y2+Y = X has no solution
in E. We will show that there is no solution in any quadratic separable
extension E(a),a?+a =t € E of E. Otherwise let u+va(u,v € E) bea
solution. It follows that u*+u?+u+vit2+vit+v%t = X, vi+v2+v =0.
But v3 + v+ 1 = 0 has no solution in F, and hence v = 0. Then
u* 4+ u? 4+ v = X in E, which is a contradiction. We conclude by
induction, that there is no solution of Y+ Y2 +Y = X in F, and
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therefore we have v(L) = 1.
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