A NEW APPROACH TO THE STUDY OF HARRIS TYPE MARKOV OPERATORS

SHAUL R FOGUEL

Harris operators are generalizations of Markov matrices. It is our purpose to present an elementary discussion of the theory of Harris operators. In Chapter 1 we introduce most of the results about Markov operators to be used later. In Chapter 2 we study Orey's Lemma. And in the rest of the paper we use Orey's Lemma to give elementary proofs of Harris' Theorem, Ornstein-Metivier-Brunel Theorem, Doeblin's theorem, and Pointwise Convergence of $u P^{\prime \prime}$.

1. Introduction. We shall use the definitions and notation of $[\mathbf{3}]$ and [4].

Recall that if λ is σ finite measure on (X, Σ), then a Markov operator, P, is a linear operator on $L_{\infty}(X, \Sigma, \lambda)$ satisfying

$$
P 1 \leq 1 ; \quad f \geq 0 \Rightarrow P f \geq 0 ; \quad f_{n} \downarrow 0 \Rightarrow P f_{n} \rightarrow 0
$$

All inequalities, here and elsewhere are in the a.e. sense. Denote $\langle u, f\rangle=\int u f d \lambda ; u \in L_{1}$ and $f \in L_{x}$. The dual operator acts on L_{1} by $\langle u P, f\rangle=\langle u, P f\rangle ; u \in L_{1}$ and $f \in L_{x}$.

We may extend P, by monotone continuity, so that $P f$ and $u P$ are defined for all non-negative measurable functions [3, Chapter I].

Theorem 1.1. Let P be conservative and ergodic. Then:
(1) $P 1=1$.
(2) $f \geq 0, P f \leq f \Rightarrow f=$ Const .
(3) $f \geq 0, f \neq 0 \Rightarrow \Sigma P^{\prime \prime} f \equiv \infty$.
(4) $u \geq 0, u \neq 0 \Rightarrow \Sigma u P^{n} \equiv \infty$.

[^0](5) There is at most one function, up to a multiplicative constant, such that
$$
0 \leq u(x)<\infty, \quad u P=u
$$

If $u \frac{1}{\tau} 0$, then $u(x)>0$.
Elementary proofs for (1)-(4) are given in [4, Chapter II] and for (5) in [3: Chapter VI, Theorem A].

An integral kernel is an operator of the form

$$
K f(x)=\int k(x, y) f(y) \lambda(d y)
$$

where $k \geq 0$ is $\Sigma \times \Sigma$ measurable and $K 1 \leq 1$.
We shall use "The Harris Decomposition" [3; Chapter V]: $P^{"}=$ $Q_{n}+R_{n}, Q_{n} \geq 0, R_{n} \geq 0$ and Q_{n} is the largest integral kernel bounded by P^{n}.

DEfinition. P is a Harris operator provided:
(a) P is conservative and ergodic.
(b) $Q_{j} \frac{1}{\tau} 0$ for some integer j.
2. Orey's Lemma. Let h, w be non-negative and non-trivial functions.
Denote the integral kernel of $h(x) w(y)$ by $h \otimes w$, thus:

$$
\begin{aligned}
& (h \otimes w) f=\langle w, f\rangle h . \\
& u(h \otimes w)=\langle u, h\rangle w .
\end{aligned}
$$

Note also that

$$
\begin{aligned}
& P(h \otimes w)=(P h) \otimes w \\
& (h \otimes w) P=h \otimes(w P)
\end{aligned}
$$

Orey proved the following theorem [13, Theorem 2.1].

THEOREM 2.1. Let P be Harris. If Σ is separable, then $P^{r} \geq h \otimes w$ for some integer r and non-negative non-trivial functions h and w.

Conjecture. Separability of Σ is not necessary.

We shall prove two versions of Orey's Lemma where Σ is not assumed to be separable.

Lemma 2.2. Let P be Harris, then

$$
\sum_{n=1}^{\infty} q_{n}(x . y)=\infty \text { a.e. } \lambda^{2}
$$

Proof. By [3; Chapter V, Equation (5.5)],

$$
Q_{j+n} \geq P^{n} Q_{j}
$$

Hence

$$
\sum_{n=1}^{\infty} Q_{j+n} 1 \geq \sum_{n=1}^{\infty} P^{n}\left(Q_{j} 1\right) \equiv \infty
$$

Choose Y with $\lambda(Y)=0$ such that. if $x \in Y$, then $q_{\prime \prime \prime}(x \cdot \cdot) \neq 0$ for some m. Now

$$
q_{n+m}(x, y) \geq\left[q_{m}(x, \cdot) P^{n}\right](y)
$$

by [4, p. 298].
Thus, if $x \in Y$, then

$$
\sum_{n=1}^{\infty} q_{n}(x, y) \geq \sum_{n=1}^{\infty} q_{n+m}(x, y) \geq \sum_{n=1}^{\infty}\left[q_{m}(x, \cdot) P^{n}\right](y)=\infty
$$

for almost all y, by Theorem 1.1.

LEMMA 2.3. Let $s_{n}(x, y) \geq 0$ be $\Sigma \times \Sigma$ measurable. If $s_{n} \uparrow s<0$ a.e. λ^{2}, then there exists an integer n, a positive constant ε. and two sets f and G, of positive measure such that

$$
\int s_{n}(x, z) s_{n}(z, y) \lambda(d z) \geq \varepsilon 1_{F}(x) 1_{G}(y)
$$

Proof. Let $\lambda_{1} \sim \lambda$ with $\lambda_{1}(X)=1$. Put:

$$
\begin{aligned}
& \varphi_{n}(x)=\lambda_{1}\left(\left\{z: s_{n}(x, z) \geq 1 / n\right\}\right) \\
& \psi_{n}(y)=\lambda_{1}\left(\left\{z: s_{n}(z, y) \geq 1 / n\right\}\right)
\end{aligned}
$$

Then $0 \leq \phi_{n}(x), \psi_{n}(y) \leq 1$. Also,

$$
\int \phi_{n}(x) \lambda_{1}(d x) \rightarrow 1 \text { and } \int \psi_{n}(y) \lambda_{1}(d y) \rightarrow 1
$$

Thus $\phi_{n}(x) \uparrow 1, \psi_{n}(y) \uparrow 1$ a.e. λ_{1}, hence a.e. λ.
Given $\delta>1 / 2$ find n such that, if

$$
F=\left\{x: \varphi_{n}(x) \geq \delta\right\} \text { and } G=\left\{y: \psi_{n}(y) \geq \delta\right\}
$$

then $\lambda(F)>0, \lambda(G)>0$.
Then we may find $\varepsilon>0$ with

$$
\int s_{n}(x, z) s_{n}(z, y) \lambda(d z) \geq \varepsilon
$$

provided that, for $x \in F, y \in G$,

$$
\begin{aligned}
& \lambda_{1}\left(\left\{z: s_{n}(x, z)<1 / n\right\}\right)<1-\delta \\
& \lambda_{1}\left(\left\{z: s_{n}(z, y)<1 / n\right\}\right)<1-\delta .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\lambda_{1}\left(\left\{z: s_{n}(x, z)\right.\right. & \left.\geq 1 / n\} \cap\left\{z: s_{n}(z, y) \geq 1 / n\right\}\right) \\
& \geq 1-(2-2 \delta)=2 \delta-1 .
\end{aligned}
$$

Thus

$$
\lambda\left(\left\{z: s_{n}(x, z) \geq 1 / n\right\} \cap\left\{z: s_{n}(z, y) \geq 1 / n\right\}\right)=\varepsilon^{\prime}>0 .
$$

Put $\varepsilon=\varepsilon^{\prime} / n^{2}$.

The above argument was used in [12].

Theorem 2.4. Let P be Harris. There exists an integer N and two non-negative non-trivial functions h, u. such that

$$
1 / N \sum_{k=1}^{N} P^{k} \geq h \odot w
$$

Proof. Let $s_{n}=\sum_{j=1}^{n} q_{j}$. By Lemma 2.3.

$$
\begin{aligned}
\varepsilon 1_{F}(x) 1_{G}(y) & \leq \int\left(\sum_{j=1}^{n} q_{j}(x, z)\right)\left(\sum_{i=1}^{n} q_{i}(z, y)\right) \lambda(d z) \\
& \leq \sum_{i . j=1}^{n} q_{i+j}(x, y) \leq n \sum_{k=1}^{2 n} q_{k} .
\end{aligned}
$$

Put $N=2 n, h=\frac{\varepsilon}{2 n^{2}} 1_{F}, w^{\prime}=1_{G}$.

REmARK. We used $\sum_{1}^{x} q_{n}>0$. One may prove Theorem 2.4. for nonconservative operators.

In Chapter 6 we shall need a third version of Orey`s Lemma:

Theorem 2.5. Let P satisfy:

$$
P 1=1 ; \lambda(A)>0 \Rightarrow P 1_{A} \geq \alpha(A)>0
$$

where $\alpha(A)$ is a constant. Then

$$
P^{5} \geq 1 \odot u
$$

where $w \geq 0$ and $w \frac{1}{\tau} 0$.

Proof. Let $\lambda_{1} \sim \lambda$ and $\lambda_{1}(X)=1$.
(a). There exists an $\varepsilon>0$ such that

$$
\lambda_{1}(A) \geq 1-\varepsilon \Rightarrow P 1_{A} \geq \varepsilon
$$

Otherwise, find sets A_{n} with

$$
\lambda_{1}\left(A_{n}\right) \geq 1-1 / 2^{n}, \lambda_{1}\left(\left\{x: P 1_{A_{n}}(x)<1 / 2^{n}\right\}\right) \neq 0 .
$$

Put $A=\cap_{n=2}^{\infty} A_{n}$. Then $\lambda_{1}(A) \geq 1 / 2$ and hence $\lambda(A)>0$. Also $\lambda_{1}\left(\left\{x: P 1_{A}(x)<1 / 2^{n}\right\}\right) \neq 0$, thus

$$
\lambda\left(\left\{x: P 1_{A}(x)<1 / 2^{n}\right\}\right) \nLeftarrow 0
$$

a contradiction. (This argument was used in [7]).
(b). Let $K_{0} f=\int f d \lambda_{1}$. Then

$$
\begin{aligned}
& \left(P \wedge K_{0}\right) 1 \geq \varepsilon \\
& \left(P \wedge K_{0}\right) 1=\inf \left\{P 1_{A}+\lambda_{1}\left(A^{\prime}\right)\right\}
\end{aligned}
$$

If $\lambda_{1}(A) \geq 1-\varepsilon$, then $P 1_{A} \geq \varepsilon$ by (a). If $\lambda_{1}(A)<1-\varepsilon$, then $\lambda_{1}\left(A^{\prime}\right) \geq \varepsilon$.
(c) $Q_{1} 1 \geq \varepsilon$. NY [3, Chapter V] $P \wedge K_{0}$ is an integral kernel, hence $P \wedge K_{0} \leq Q_{1}$.
(d) $q_{2}(x, y)>0$ a.e. $\lambda^{2} . q_{2}(x, y) \geq\left[q_{1}(x, \cdot) P\right](y)$ by [4, p. 28]. It suffices to prove that if $0 \leq u \in L_{1}$ and $u \frac{1}{\tau} 0$, then $u P(x)>0$ a.e.: Given A with $\lambda(A)>0$, then

$$
\left\langle u P, 1_{A}\right\rangle=\left\langle u . P 1_{A}\right\rangle \geq \alpha(A)\langle u, 1\rangle \neq 0 .
$$

(e). There exist two non negative non trivial functions h and w^{\prime} with $q_{4}(x, y) \geq h(x) w^{\prime}(y)$: Apply Lemma 2.3 to $s_{n}=q_{2}$.
(f) $P^{5} \geq 1 \otimes w$ where $w \geq 0, w \frac{1}{\tau} 0: P^{5} \geq P Q_{4} \geq(P h) \otimes w^{\prime} \geq 1 \otimes w$ where $w=\alpha(h) w^{\prime}$.

In all the three versions of Orey's Lemma we have

ASSUMPTION 1. There exist $a_{1}, a_{2}, \ldots, a_{N}$ with

$$
a_{n} \geq 0, a_{N} \frac{1}{\tau} 0, \sum_{1}^{N} a_{n}=1
$$

such that

$$
S=\sum_{n=1}^{N} a_{n} P^{k}=h \bigcirc w+T
$$

where $T \geq 0$, the functions h, w are nonnegative and nontrivial..
Moreover S is conservative and ergodic.

We need to prove only the last statement. S is conservative by [4, Theorem 2.7]. For ergodicity:
(1). If $S=1 / N \sum_{n=1}^{N} P^{n}$, then, whenever $S 1_{A}=1_{A}, P 1_{A}(x)=0$ for all $x \in A^{\prime}$. Thus $P 1_{A} \leq 1_{A}$; hence, since P is conservative and ergodic, A is trivial.
(2). If $P 1=1$ and $\lambda(A)>0 \Rightarrow P 1_{A} \geq \alpha(A)>0$, then $S=P^{5}, P^{5} 1=1$ and

$$
\lambda(A)>0 \Rightarrow P^{5} 1_{A} \geq \alpha(A)>0
$$

(3). $S=P^{r} \geq h \otimes w$. For any k,

$$
P^{r+k} \geq\left(P^{k} h\right) \otimes u
$$

It suffices to show that P^{j} is ergodic for some $j \geq r$. By $[\mathbf{6}]$ and $[4$, Theorem 3.5], there exists a fixed integer d such that

$$
\sum_{i}\left(p^{j}\right) \subset \sum_{i}\left(P^{d}\right)
$$

for every integer j. Choose $j \geq r$ with $(j, d)=1$. Let $n j+m d=1$. If $n \leq 0$, then, whenever $A \in \sum_{i}\left(P^{j}\right)$, we have

$$
1_{A}=P^{m d} 1_{A}=P P^{-n j} 1_{A}=P 1_{A}
$$

Thus A is trivial.

3. Existence of an invariant measure.

Lemma 3.1. Let Assumption 1 hold. Then $T^{n} 1 \downarrow 0$.

Proof. Let $T^{\prime \prime} 1 \downarrow g$. Then

$$
0 \leq g \leq 1, \quad T g=g
$$

Thus $S g \geq g$, therefore by Theorem 1.1. $g=$ Const. Hence $\langle w, g\rangle=0$ or $g=0$.

Lemma 3.2. Let Assumption 1 hold. Then

$$
\sum_{0}^{\infty} T^{n} h=1 /\langle w, 1\rangle
$$

Proof.

$$
\begin{aligned}
\langle w, 1\rangle \sum_{n=0}^{N} T^{n} h & =\sum_{n=0}^{N} T^{n}(h \otimes w) 1=\sum_{n=0}^{N} T^{n}(S-T) 1 \\
& =1-T^{N+1} 1 \uparrow 1
\end{aligned}
$$

\square
NOTATION. $v=\sum_{n=0}^{\infty} w T^{n}$.

Corollary. $\langle v, h\rangle=1$.

$$
\langle v, h\rangle=\left\langle\sum_{0}^{\infty} w T^{n}, h\right\rangle=\left\langle w, \sum_{0}^{\infty} T^{n} h\right\rangle .
$$

Let us show that $v<\infty$. In fact a stronger result is valid, i.e., $0 \leq u \in L_{1} \Rightarrow \sum_{0}^{\infty} u T^{n}<\infty:\left\langle\sum_{0}^{N} u T^{n}, 1-T^{k} 1\right\rangle \leq k$. Hence

$$
\sum_{0}^{\infty} u T^{n}<\infty \text { on } \cup_{k}\left\{x: T^{k} 1(x)<1\right\}=X
$$

Theorem 3.3. Let Assumption 1 hold. Then

$$
v S=v, 0<v(x)<\infty
$$

Proof. $v S=v T+v(h \otimes w)=\sum_{1}^{x} w T^{n}+\langle v, h\rangle w=v$ by Corollary to Lemma 3.2. Finally, $v(x)>0$ by Theorem 1.1.

Theorem 3.4. (HARRIS' Theorem). If Assumption 1 holds, then

$$
v P=v
$$

Proof. $v P^{N} \leq a_{N}^{-1} v S=a_{N}^{-1} v M \infty$. If $0<f \in L_{\infty}$ satisfies $\left\langle v P^{N}, f\right\rangle<\infty$, then

$$
\left\langle v P^{i}, P^{N-i} f\right\rangle<\infty, \quad 0 \leq i \leq N
$$

Now $\left(P^{N-i} f\right)(x)>0$:

$$
\lim _{n \rightarrow \infty}\left(P^{N-i}(n f)\right)(x) \geq P^{N-i} 1(x)=1
$$

Hence $v P^{i}(x)<\infty$, for $0 \leq i \leq N$. Thus $v_{1}=\sum_{n=1}^{N} a_{n} v(I+\cdots+$ $\left.P^{n-1}\right)<\infty$ and

$$
0=v-v S=v_{1}(I-P)
$$

Finally, $v_{1}=v_{1} P$ implies $v_{1}=v_{1} S$ and v_{1} is a multiple of v, by Theorem 1.1. Thus $v=v P$. \square

4. The Ornstein-Metivier-Brunel Theorem.

Theorem 4.1. Let Assumption 1 hold. If

$$
\sum_{0}^{\infty} T^{n}|f| \in L_{\infty} \text { and }\langle v, f\rangle=0
$$

then

$$
f \in \operatorname{Range}(I-P)
$$

hence

$$
\left\|\sum_{n=0}^{N} P^{n} f\right\| \leq \text { Const }
$$

Proof. Let us check that $\langle v| f,\rangle<\infty$:

$$
\left.\langle v,| f\left\rangle=\left\langle\sum_{0}^{\infty} w T^{n},\right| f\right|\right\rangle=\left\langle w, \sum_{0}^{\infty} T^{n}\right| f| \rangle<\infty
$$

Put $g=\sum_{0}^{\infty} T^{n} f$. Then $g \in L_{\infty}$ and

$$
\begin{aligned}
(I-S) g & =(I-T) g-\left\langle w, \sum T^{n} f\right\rangle h=(I-T) g-\langle v, f\rangle h \\
& =(I-T) g=\lim _{N \rightarrow \infty}\left(f-T^{N+1} f\right)=f
\end{aligned}
$$

This last step was by Lemma 3.1. Now

$$
f=(I-S) g=(I-P) \sum_{n=1}^{N} a_{n}\left(I+\cdots+P^{n-1}\right) g=(I-P) g_{1}
$$

Finally, if $f=(I-P) g_{1}$, then

$$
\left\|\sum_{0}^{N} P^{n} f\right\| \leq 2\left\|g_{1}\right\|
$$

\square
Remarks. Put

$$
\Omega=\left\{e: e \geq 0 \text { and } \Sigma T^{n} e \in L_{x}\right\}
$$

By Lemma 3.2, $h \in \Omega$. If $e \in \Omega$, then $S e=T e+\langle w, e\rangle h \in \Omega$. Thus if $0 \leq e \leq \Sigma S^{j} h$, then $e \in \Omega$. If $e \in \Omega$ and $A=\{x: e(x) \geq \delta>0\}$, then $1_{A} \leq \delta^{-1} e$ so $1_{A} \in \Omega$.
Therefore, there exists a sequence of sets A, such that

$$
A_{k} \uparrow X, 1_{A_{k}} \in \Omega
$$

Let $1_{A} \in \Omega$. If support $f \subset A$ and $\langle v, f\rangle=0$, then $f=(I-P) g_{1}$ where

$$
\begin{aligned}
\left|g_{1}\right| & =\left|\sum_{n=1}^{N} a_{n}\left(I+\cdots+P^{n-1}\right) \sum_{j=0}^{\infty} T^{j} f\right| \\
& \leq\|f\|\left(\sum_{n=1}^{N} a_{n}\left(I+\cdots+P^{n-1}\right) \sum_{j=0}^{\infty} T^{j} 1_{A}\right) \\
& \leq \text { Const } .\|f\| .
\end{aligned}
$$

The constant depends on the set A but not on the function f. Thus

$$
\left\|\sum_{0}^{N} P^{n} f\right\| \leq 2\left\|g_{1}\right\| \leq 2 \text { Const } .\|f\|
$$

where the constant depends on A alone.
If we write $f=f_{1}-f_{2}$ where support $f_{1} \subset A$, support $f_{2} \subset A$ and $\left\langle v, f_{1}\right\rangle=\left\langle v, f_{2}\right\rangle$, then

$$
\left\|\sum_{0}^{N} P^{n} f_{1}-\sum_{0}^{N} P^{n} f_{2}\right\| \leq 2 \text { Const } .\left(\left\|f_{1}\right\|+\left\|f_{2}\right\|\right)
$$

This leads to "Ration Limit Theorems".

Let us conclude this Chapter with a dual result.

Theorem 4.2. Let Assumption 1 hold. If

$$
\sum_{0}^{\infty}|u| T^{n} \in L_{1}, \quad\langle u, 1\rangle=0
$$

then

$$
u \in \operatorname{Range}(I-P)
$$

Hence

$$
\left\|\sum_{0}^{N} u P^{n}\right\|_{1} \leq \text { Const }
$$

Proof. Put $s=\sum_{0}^{\infty} u T^{n}$. Then, by assumption, $s \in L_{1}$. Now $s(I-S)=s(I-T)-\langle s, h\rangle w$. But

$$
\langle s, g\rangle=\left\langle\sum_{0}^{\infty} u T^{n}, h\right\rangle=\left\langle u, \sum_{0}^{\infty} T^{n} h\right\rangle=0
$$

by Lemma 3.2. Moreover,

$$
s(I-T)=\lim _{N \rightarrow \infty}\left(u-u T^{N+1}\right)=u
$$

Finally,

$$
s(I-S)=\left(\sum_{1}^{n} a_{n} s\left(I+\cdots+P^{n-1}\right)\right)(I-P)=s_{1}(I-P)
$$

REMARK. Let

$$
\Omega_{1}=\left\{y: y \geq 0 \text { and } \sum_{0}^{\infty} y T^{n} \in L_{1}\right\}
$$

We do not know if $\Omega_{1} \frac{1}{T}\{0\}$ unless $v \in L_{1}$ (in which case $w \in \Omega_{1}$ and Ω_{1} is invariant under S).

5. Doeblin's Theorem.

THEOREM 5.1. Let P_{1} be a Markov operator satisfying

$$
P_{1} 1=1, \lambda(A)>0 \Rightarrow P_{1} 1_{a} \geq \alpha(A)>0
$$

Then P_{1}^{n} converges in the operator norm.

Proof. By Theorem 2.5.,

$$
P_{1}^{5}=1 \otimes w+T, T \geq 0
$$

By Theorem 3.4., if $v=\sum w T^{n}$ then $v P=v$. Note that

$$
\begin{aligned}
T 1 & =1-\langle w, 1\rangle<1 \\
\left\|T^{n}\right\| & \leq(1-\langle w, 1\rangle)^{n}
\end{aligned}
$$

Recall that, by Corollary to Lemma 3.2., $\langle v, 1\rangle=1$. Put

$$
E f=\langle v, f\rangle
$$

Then $\|E\| \leq 1, E^{2}=E=E P=P E$. Now

$$
P^{5 n}=T^{n}+1 \otimes w+1 \otimes(w T)+\cdots+1 \otimes\left(w T^{n-1}\right)
$$

We know this for $n=11$ let us prove, by induction,

$$
\begin{aligned}
P^{5} P^{5 n} & =P^{5} t^{n}+1 \otimes w+\cdots+1 \otimes\left(w T^{n-1}\right) \\
& =T^{n+1}+1 \otimes\left(w T^{n}\right)+1 \otimes w+\cdots+1 \otimes\left(w T^{n-1}\right) .
\end{aligned}
$$

If $0 \leq f \leq 1$, then

$$
\begin{aligned}
\left|P^{5 n} f-E f\right| & =\left|T^{n} f+\sum_{j=0}^{n-1}\left\langle w T^{j}, f\right\rangle-\sum_{j=0}^{\infty}\left\langle w T^{j}, f\right\rangle\right| \\
& \leq\|T\|^{n}+\sum_{j=n}^{\infty}\left\langle w T^{j}, 1\right\rangle \leq\|T\|^{n}\left(1+\|w\|_{1} \sum_{0}^{\infty}\|T\|^{n}\right) \\
& =2(1-\langle w, 1\rangle)^{n} .
\end{aligned}
$$

Thus $\left\|P^{5 n}-E\right\| \leq 4(1-\langle w, 1\rangle)^{n} \rightarrow 0$ as $n \rightarrow \infty$. Finally

$$
\left\|P^{k} p^{5 n}-E\right\|=\left\|P^{k} P^{5 n}-P^{k} E\right\| \leq\left\|P^{5 n}-E\right\| \rightarrow 0 .
$$

\square

Lemma 5.2. Let P satisfy

$$
P 1=1, \quad \lambda(A)>0 \Rightarrow \sum_{n=1}^{N(A)} P^{n} 1_{A} \geq \alpha(A)>0
$$

Then there exists a function v with $0<v \in L_{1}, v P=v$ and

$$
\text { Range }(I-P)=\{f:\langle v, f\rangle=0\} \text {. }
$$

Proof. Put $P_{1}=\sum_{n=1}^{\infty} 1 / 2^{n} P^{n}$. The operator P_{1} satisfies the assumptions of Theorem 5.1.

If $v=v P_{1}$, then

$$
0=\left(\sum_{1} 1 / 2^{n} v\left(I+\cdots+P^{n-1}\right)\right)(I-P)=v_{1}(I-P) .
$$

But $v_{1}=v_{1} P$ implies $v_{1}=v_{1} P_{1}$ and, by Theorem 1.1., v_{1} is a multiple of $v: v=v P$. Put

$$
E f=\langle v, f\rangle ; L=\{f:\langle v, f\rangle=0=\{f: E f=0\} .
$$

Then $P_{1} E=E P_{1}=E$, so $P_{1} L \subset L$.
By Theorem 5.1.,

$$
\left\|P_{1}^{j} / L\right\| \leq\left\|P_{1}^{j}(I-E)\right\|=\left\|P_{1}^{j}-E\right\| \rightarrow \text { as } j \rightarrow \infty
$$

If $\left\|P_{1}^{j} / L\right\| \leq 1$, then the restriction of $I-P_{1}^{j}$ to L is invertible. Thus $L \subset$ Range $\left(I-P_{1}^{j}\right)$. Now

$$
I-P_{1}^{j}=\left(I-P_{1}\right)\left(I+P_{1}+\cdots+P_{1}^{j-1}\right)
$$

or Range $\left(I-P_{1}^{j}\right) \subset$ Range $\left(I-P_{1}\right)$. Finally

$$
\left(I-P_{1}\right)=(I-P) \sum_{n=1}^{\infty} 1 / 2^{n}\left(I+\cdots+P^{n-1}\right)
$$

or Range $(I-P) \subset$ Range $(I-P)$. Thus $L \subset$ Range $(I-P)$.
Conversely, if $g=(I-P) f$, then

$$
\langle v, g\rangle=\langle v, f\rangle-\langle v P, f\rangle=0
$$

\square
The next Theorem is Horowitz's version of Doeblin's Theorem, see [9]. A similar result is proved in [15].

THEOREM 5.3. Let $P 1=1$. The following conditions are equivalent:
(1) $\lambda(A)>0 \Rightarrow \sum_{0}^{N(A)} P^{n} 1_{A} \geq \alpha(A)>0$.
(2) There exists $v, 0<v<L_{1}$, and

$$
\text { Range }(I-P)=\{f:\langle v, f\rangle=0\}
$$

(3) There exists $v, 0<v \in L_{1}$, and if $E f=\langle v, f\rangle$, then

$$
\left\|1 / N \sum_{0}^{N-1} P^{n}-E\right\| \rightarrow 0
$$

(4) There exists $v, 0<v \in L_{1}$, and

$$
\left\|1 / N \sum_{0}^{N-1} P^{n} f-\langle v, f\rangle\right\| \rightarrow 0
$$

for every $f \in L_{x}$.
(5) There exists $v, 0<v \in L_{1}$, and

$$
\text { Closure Range }(I-P)=\{f:\langle v, f\rangle=0\} \text {. }
$$

Proof. $(1) \Rightarrow(2)$. Lemma 5.2.
$(2) \Rightarrow(3)$. By the Closed Graph Theorem there exists a constant C such that

$$
\langle v, f\rangle=0 \Rightarrow f=(I-P) g \text { and }\|g\| \leq C\|f\| .
$$

Thus

$$
\begin{aligned}
\left\|1 / N \sum_{0}^{N-1} P^{n} f-\langle v, f\rangle\right\| & =\left\|1 / N \sum_{0}^{N-1} P^{n}(f-\langle v, f\rangle)\right\| \\
& =\left\|1 / N \sum_{0}^{N-1} P^{n}(I-P) g\right\| \leq 2\|g\| / N \\
& \leq 2 C / N\|f-\langle v, f\rangle\| \leq 4 C / N\|f\|
\end{aligned}
$$

$(3) \Rightarrow(4)$. Obvious.
$(4) \Rightarrow(1)$. Take $f=P 1_{A}$. Then

$$
1 / N \sum_{1}^{N} P^{\prime \prime} 1_{A}-\left\langle v, 1_{A}\right\rangle \geq-1 / 2\left\langle v, 1_{A}\right\rangle
$$

if N is large enough. Thus

$$
\sum_{1}^{N} P^{n} 1_{A} \geq N / 2\left\langle v, 1_{A}\right\rangle=\alpha(A)>0
$$

Now $(2) \Rightarrow(5)$ is clear.
(5) \Rightarrow (4). Put $P_{N}=\frac{1}{N} \sum_{0}^{N-1} P^{n}$. Now

$$
P_{N} f=P_{N}(f-\langle v, f\rangle)+\langle v, f\rangle \rightarrow\langle v, f\rangle
$$

since $P_{N} g \rightarrow 0$ when $g \in$ Closure Range $(I-P)$.
6. Pointwise convergence. Let P be a conservative and ergodic operator with a σ finite invariant measure μ :

$$
d \mu=v d \lambda, v P=v
$$

By [3, Chapter VII],

$$
\begin{aligned}
\int|P f| d \mu & \leq \int|f| d \mu \\
\int|P f|^{2} d \mu & \leq \int|f|^{2} d \mu
\end{aligned}
$$

Thus P is a contraction on $L_{2}(\mu)$.
Given $u \in L_{1}(\lambda)$, then $u=u_{0} v$ where $u_{0} \in L_{1}(\mu)$. Define

$$
\left(u_{0} v\right) P^{*}=v \cdot P u_{0}\left(u P^{*}=v \cdot P(u / v)\right)
$$

If $0 \leq u \in L_{1}(\lambda)$, then $0 \leq u_{0} \in L_{1}(\mu)$ and

$$
u P^{*} \geq 0, \quad \int u P^{*} d \lambda=\int P u_{0} d u_{o} d \mu \leq \int_{0} u_{0} d \mu=\int u d \lambda
$$

If $u \in L_{1}(\lambda)$, put $u=u^{+}-u^{-}$. Then

$$
\int\left|u P^{*}\right| d \lambda \leq \int u^{+} P^{*} d \lambda+\int u^{-} P^{*} d \lambda \leq \int\left(u^{+}+u^{-}\right) d \lambda=\int|u| d \lambda:
$$

P^{*} is the dual of a Markov operator.
Let us compute $P^{*} f$:

$$
\begin{aligned}
\left\langle u_{0} v, P^{*} f\right\rangle & =\left\langle\left(u_{0} v\right) P^{*}, f\right\rangle=\int P u_{0} \cdot v f d \lambda \\
& =\left\langle u_{0} v, 1 / v[(v f) P]\right\rangle
\end{aligned}
$$

THEOREM 6.1. Let P be a conservative and ergodic operator with a σ finite invariant measure $\mu(d \mu=c d \lambda)$. Define

$$
P^{*} f=1 / v[(v f) P]
$$

Then P^{*} is a Markov operator and

$$
\left(u_{0} v\right) P^{*}=v \cdot P u_{0}, \quad u_{0} \in L_{1}(\mu)
$$

The operator P^{*} is conservative and ergodic, too, and $v P^{*}=v$. Now $P^{* *}=P$ and P, P^{*} are adjoint operators on $L_{2}(\mu)$.

Finally

$$
P^{r} \geq h \otimes w \Rightarrow P^{* r} \geq(w / v) \otimes(v h)
$$

Proof. Let $0 \leq f \in L_{\infty}$ be such that $0 \underset{\tau}{\neq f} \in L_{1}(\lambda)$. Then

$$
\infty=\sum_{0}^{\infty}(v f) P^{n}=v \sum_{0}^{\infty} P^{* n} f
$$

Thus P^{*} is conservative and ergodic, too. Now

$$
\begin{gathered}
v P^{*}=v P 1=v \\
P^{* *} f=1 / v\left[(f v) P^{*}\right]=P f .
\end{gathered}
$$

If $f, g \in L_{1}(\mu) \cap L_{\infty}(\lambda)$, then

$$
\int P f \cdot g d \mu=\langle v g, P f\rangle=\langle 1 / v[(v g) P], v f\rangle=\int f \cdot P^{*} g d \mu
$$

Finally, if $P^{r} \geq h \otimes w$, then, for every $f \geq 0$, we have

$$
\begin{aligned}
P^{* r} f & =1 / v\left[(f v) P^{r}\right] \geq 1 / v[(f v) h \otimes w] \\
& =\left(\int f v h d \lambda\right) w / v=((w / v) \otimes(v h)) f
\end{aligned}
$$

Let us quote Theorem A and B of [3, Chapter VIII]. Define

$$
\sum_{k}=\left\{A: \int\left(p^{n} 1_{A}\right)^{2} d \mu=\int\left(P^{* n} 1_{A}\right)^{2} d \mu=\mu(A)<\infty \text { for all } n\right\}
$$

Then
(1) \sum_{K} is a field. If $A_{n} \in \sum_{K}$ and $A_{n} \uparrow A$ where $\mu(A)<\infty$, then $A \in \sum_{K}$.
(2) If $A \in \sum_{K}$, then $P 1_{A}$ and $P^{*} 1_{A}$ are characteristic functions of sets in \sum_{K}.
(3) If K^{\prime} is the subspace of $L_{2}(\mu)$ generated by \sum_{K}, then K is invariant under P and P^{*}, and if $f \in K$, then

$$
P^{*} P f=P P^{*} f=f
$$

(4) If $\int_{A} f d \mu=0$ for every set $A \in \sum_{K}$, then

$$
\left(v P^{n} f, g\right) \rightarrow 0,\left\langle v P^{* n} f, g\right\rangle \rightarrow 0
$$

for every $g \in L_{2}(\mu)$.
Let us use the main result of [6]:
(5) If P is Harris, then either $\sum_{K}=\{\emptyset\}$ or \sum_{K} contains an atom.

Let $\sum_{K} \frac{1}{\tau}\{\emptyset\}$ and let A_{0} be an atom of $\sum_{K^{\prime}}$. Put $1_{A_{j}}=P^{j} 1_{A_{0}} . A_{j}$ is again an atom of \sum_{K}. We can not have $A_{0} \cap A_{j}=\emptyset$ for all $j \geq 1$ since $\sum P^{j} 1_{A_{0}} \equiv \infty$. Let d be the first integer such that $A_{d}=A_{0}$.

If $0 \leq i<j \leq d-1$, then

$$
A_{i} \cap A_{j}=\emptyset\left(A_{0} \cap A_{j-i}=\emptyset\right) .
$$

Finally, the set $\cup_{i=0}^{d-1} A_{i}$ is invariant under P, so must be X. Hence

$$
\mu(X)=d \mu\left(A_{0}\right)<\infty .
$$

Conversely, if $\mu(X)<\infty$, then $X \subset \sum_{K}$ contains an atom. \square
Let us summarize.

Theorem 6.2. Let P be a Harris operator with an invariant measure $\mu(d \mu=v d \lambda)$.
(1) If $\mu(X)=\infty$, then $\sum_{K}=\{\emptyset\}$; hence

$$
\begin{aligned}
\left\langle\left(u_{0} v\right) P^{n}, f\right\rangle & \rightarrow 0 \text { as } n \rightarrow \infty, \\
\left\langle v P^{n} u_{0}, f\right\rangle & \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

whenever $u_{0} \in L_{1}(\mu), f \in L_{2}(\mu) \cap L_{\infty}(\lambda)$.
(2) If $\mu(X)<\infty$, then $\sum_{K}=\left\{A_{0}, A_{1}, \ldots, A_{d-1}\right\}$ so that the sets A_{i} are disjoint.

$$
\begin{aligned}
P 1_{A_{i}} & =1_{A_{i+1}}\left(A_{d}=A_{0}\right) \\
\left(v 1_{A_{i}}\right) P & =v 1_{A_{i-1}}\left(A_{-1}=A_{d-1}\right)
\end{aligned}
$$

If $u_{0} \in L_{1}(\mu)$, and $f \in L_{x}(\lambda)$ and

$$
\alpha_{i}=\mu\left(A_{i}\right)^{-1} \int_{A_{i}} u_{0} d \mu
$$

then

$$
\begin{aligned}
\left\langle\left(\left(u_{0}-\sum_{i=0}^{d-1} \alpha_{i} 1_{A_{i}}\right) v\right) P^{n}, f\right\rangle & \rightarrow 0 \\
\left\langle v P^{n}\left(u_{0}-\sum_{i=0}^{d-1} \alpha_{i} 1_{A_{i}}\right), f\right\rangle & \rightarrow 0
\end{aligned}
$$

Proof. (1). If $\mu(X)=\infty$, then $\sum_{K}=\{\emptyset\}$. Thus

$$
\begin{aligned}
\left\langle\left(u_{0} v^{\prime}\right) P^{\prime \prime}, f\right\rangle & \rightarrow 0 \\
\left\langle v P^{\prime \prime} u_{0}, f\right\rangle & \rightarrow 0
\end{aligned}
$$

whenever $u_{0} \in L_{2}(\mu)$ and $f \in L_{2}(\mu)$.
Fix $f \in L_{2}(\mu) \cap L_{x}(\lambda)$. Then by continuity, we may take $u_{0} \in L_{1}(\mu)$.
(2). We showed that, if $\mu(X)<\infty$, then

$$
\begin{aligned}
X & =\cup_{i=0}^{d-1} A_{i}, A_{i} \cap A_{j}=\emptyset, \quad 0 \leq i<j<d \\
P 1_{A_{i}} & =1_{A_{i+1}}\left(A_{d}=A_{0}\right)
\end{aligned}
$$

Now

$$
\left(v 1_{A_{i}}\right) P=\left(v 1_{A_{i}}\right) P^{* *}=v \cdot P^{*} 1_{A_{i}}=v 1_{A_{i-1}}
$$

since $P^{*} 1_{A_{i}}=P^{*} P 1_{A_{i-1}}=1_{A_{i-1}}$. By the choice of a_{i},

$$
u_{0}-\sum_{0}^{d-1} \alpha_{i} 1_{A} \text { is orthogonal to } \sum_{K} .
$$

By (4),

$$
\begin{aligned}
\left\langle\left(\left(u_{0}-\sum_{i=0}^{d-1} \alpha_{i} 1_{A_{i}}\right) v\right) P^{n}, f\right\rangle & \rightarrow 0 \\
\left\langle v P^{n}\left(u_{0}-\sum_{\dot{n}=0}^{d-1} \alpha_{i} 1_{A_{i}}\right), f\right\rangle & \rightarrow 0
\end{aligned}
$$

if $u_{0} \in L_{2}(\mu)$ and $f \in L_{2}(\mu)$.
Fix $f \in L_{\infty}(\lambda)$. Then, by continuity, we may take $u_{0} \in L_{1}(\mu)$ in the above equations.

In the rest of this paper we elaborate on results of Horowitz [10].

ASSUMPTION 2. Let P be a conservative and ergodic Markov operator such that there exists an integer r with

$$
P^{r} \geq h \otimes w
$$

where h, w are non negative and non-trivial.

Recall Theorem 3.4.: There exists v with $0<v(x)<\infty$ and $v P=v$.

Note. If P is Harris and \sum is separable, then Assumption 2 follows from Orey's Lemma (Theorem 2.1.).

Now

$$
P^{r}=h \otimes w+T, T \geq 0
$$

Let us show that

$$
P^{r n}=T^{n}+\left(P^{r(n-1)} h\right) \otimes w+\cdots+h \otimes\left(w T^{n-1}\right)
$$

Let us prove by induction:

$$
\begin{aligned}
P^{r(n+1)} & =P^{r} T^{n}+\left(P^{r n} h\right) \otimes w+\cdots+\left(P^{r} h\right) \otimes\left(w T^{n-1}\right) \\
& =T^{n+1}+h \otimes\left(w T^{n}\right)+\left(P^{r n} h\right) \otimes w+\cdots+\left(P^{r} h\right) \otimes\left(w T^{n-1}\right)
\end{aligned}
$$

Lemma 6.3. Let Assumption 2 hold. If $u_{0} \in L_{1}(\mu)$, then
(1) $\left\langle\left(u_{0} v\right) P^{n}, h\right\rangle \rightarrow 0 \Rightarrow\left(u_{0} v\right) P^{n} \rightarrow 0$.
(2) $\left\langle P^{n} u_{0}, w\right\rangle \rightarrow 0 \Rightarrow P^{n} u_{0} \rightarrow 0$.

Proof. (1). Let $u=u_{0} v$, where $u_{0} \in L_{1}(\mu)$.

$$
\begin{gathered}
\left(u P^{k}\right) P^{r n} \leq\left|u P^{k}\right| T^{n}+v \max _{1 \leq i \leq k}\left|\left\langle u P^{r(n-i)+k}, h\right\rangle\right|+\|u\|_{1}\|h\|_{\infty} \sum_{i=k} w T^{i} . \\
\left|u P^{k}\right| T^{n} \rightarrow 0(\text { as } n \rightarrow \infty) \text { since } \sum_{n=0}^{\infty}\left|u P^{k}\right| T^{n}<\infty . \\
\sum_{i=k}^{\infty} w T^{i} \rightarrow 0(\text { as } k \rightarrow \infty) 0 \text { since } \sum_{i=0}^{\infty} w T^{i}<\infty . \\
\left\langle u P^{n}, h\right\rangle \rightarrow 0(\text { as } n \rightarrow \infty) \text { by assumption. }
\end{gathered}
$$

(2). $P^{* r} \geq(w / v) \otimes(v h) ;$ hence, by (1),

$$
\left\langle\left(u_{0} v\right) P^{* n}, w / v\right\rangle \rightarrow 0 \Rightarrow\left(u_{0} v\right) P^{* n} \rightarrow 0
$$

Or

$$
\left\langle P^{n} u_{0}, w\right\rangle \rightarrow 0 \Rightarrow P^{n} u_{0} \rightarrow 0
$$

Theorem 6.4. Let Assumption 2 hold. Let $u_{0} \in L_{1}(\mu)$. Then:
(1) If $\mu(X)=\infty$, then

$$
\begin{aligned}
& \left(u_{0} v\right) P^{n} \rightarrow 0 \\
& P^{n} u_{0} \rightarrow 0
\end{aligned}
$$

(2) If $\mu(X)<\infty$ let $X=\cup_{i=0}^{d-1} A_{i}$ as in Part (2) of Theorem 6.2. Put

$$
\alpha_{i}=\mu\left(A_{i}\right)^{-1} \int_{A_{i}} u_{0} d \mu
$$

Then

$$
\begin{aligned}
& \left(\left(u_{0}-\sum_{i=0}^{d-1} \alpha_{i} 1_{A_{i}}\right) v\right) P^{n} \rightarrow 0 \\
& P^{n}\left(u_{0}-\sum_{i=0}^{d-1} \alpha_{i} 1_{A_{i}}\right) \rightarrow 0
\end{aligned}
$$

REFERENCES

1. A. Brunel, Chaines abstraites de Markov vérifiant une condition de Orey, Z . Wahr. 19 (1971), 323-329.
2. W. Doeblin, Éléments d'une théorie générale des chaines simples constantes de Markoff, Ann. Sci. École Norm. Sup. 57 (1940), 61-111.
3. S.R. Foguel, The ergodic theory of Markov Processes, Van Nostrand, (1969).
4. -, Harris operators, Israel J Math. 33 (1979), 281-309.
5. - New proofs for classical results on Markov operators, Semesterbericht Funktionalanalysis Tübingen (1984/85).
6. Singular Markov operators, Houston J. of Mathematics, 11 (1985), 485-498.
7. -_ and N. Ghoussoub, Ornstein-Métivier-Brunel Theorem revisited, Ann. Inst. H. Poincare Sect. B 15 (1979), 293-301.
8. T.E. Harris, The existence of stationary measures for certain Markov processes, 3rd Berkeley symposium, Math. stat., vol. II (1956), 113-124.
9. S. Horowitz, Transition probabilities and contractions of $L_{\infty}^{\infty}, \mathrm{Z}$. Wahr. 24 (1972), 263-274.
10. -, Pointwise convergence of the iterates of a Harris recurrent Markov operator, Israel J. Math, 33 (1979), 177-180.
11. M. Metivier, Existence of an invariant measure and an Ornstein's ergodic theorem, Ann. Math. Stat. 40 (1969), 79-96.
12. J. Neveu, Potential markovien récurrent des Chaines de Harris, Ann. Inst. Fourier 22 (1972), 85-130.
13. S. Orey, Limit theorems for Markov chain transition probabilities, Van Nostrand, 1971.
14. D.S. Ornstein, Random walks I, II, Trans. Amer. Math. Soc. 138 (1969), 1-60.
15. K. Yosida and S. Kakutani, Operator theoretical treatment of Markoff's process and mean ergodic theorem, Ann. Math. 42 (1941), 188-228.

[^0]: Received by the editors on June 2, 1986 and in revised form on November 14, 1986.

