IDEALS DIFFERENTIAL UNDER HIGH ORDER DERIVATIONS

ROLAND M. BOMMER

ABSTRACT. In this paper we prove the following theorem: Let A be an R-algebra, S a multiplicatively closed set in A, \mathcal{U} a subset of $\operatorname{Der}_{R}^{\infty}(A)$ and I an ideal of A. If I is \mathcal{U} differential, then S(I) is \mathcal{U} -differential as well. This implies that the nonembedded primary components of a differential ideal are differential. Nevertheless we give an example of an \mathcal{U} -differential ideal which has no \mathcal{U} -differential embedded primary component.

0. Introduction. Let A be a commutative noetherian ring, \mathcal{U} a subset of all derivations of any order n from A into A and I an Udifferential ideal in A (i.e., $d(I) \subset I$ for all $d \in \mathcal{U}$). In this note we are concerned with the question of whether other ideals related to I, especially its primary components, are \mathcal{U} -differential. In his paper [6, Theorem 1] A. Seidenberg proved that if A is a noetherian algebra containing the rational numbers and I an ideal differential under a subset \mathcal{U} of all derivations on A of order n = 1, then every $P \in Ass(A/I)$ is differential and I can be written as an irredundant intersection $Q_1 \cap \cdots \cap Q_s$ of \mathcal{U} -differential primary ideals. Simple examples show that the elements of Ass(A/I) are not differential in general if n > 1 or even if n > 1 and $Q \subseteq A$. In this note we show that the nonembedded primary components of an \mathcal{U} -differential ideal I are always \mathcal{U} -differential but no embedded primary has to be \mathcal{U} -differential in general. To do so, we shall prove the following theorem: Let A be a commutative ring, S any multiplicatively closed set in A and \mathcal{U} a subset of all derivations of any order n from A into A. If an ideal I of A is \mathcal{U} -differential, then its S-component S(I) is \mathcal{U} -differential as well. Furthermore we give an example for an \mathcal{U} -differential ideal I where no embedded primary component is \mathcal{U} -differential (i.e., I cannot be written as an intersection of \mathcal{U} -differential primary ideals).

AMS(MOS) Subject Classification (1970): Primary 13H05.

Key Words and Phrases: nth order derivation, differential ideals, primary components, S-components. Received by the editors on October 13, 1986.

Copyright @1989 Rocky Mountain Mathematics Consortium

1. Preliminaries. Throughout this paper we assume all rings are commutative and have an identity.

For a ring R and an R-algebra A and an A-module M we define a pairing ϕ : Hom_R(A, M) × A \rightarrow Hom_R(A, M) by

$$(f, x) \rightarrow [f, x] : A \rightarrow M$$

 $y \rightarrow f(xy) - xf(y) - yf(x).$

DEFINITION. An element δ of Hom $_R(A, M)$ is called an R-derivation of order 1, if $[\delta, x] \equiv 0$ for all $x \in A$ and a derivation of order n > 1, if $[\delta, x]$ is a derivation of order n - 1 for all $x \in A$.

For more information on high order derivations we refer the interested reader to [5] and [1].

We shall let $\operatorname{Der}_{R}^{n}(A)$ be the A-module of all R-linear derivations of order n from A into A, and $\operatorname{Der}_{R}^{\infty}(A) = \bigcup_{n=1}^{\infty} \operatorname{Der}_{R}^{n}(A)$.

DEFINITION. If \mathcal{U} is a subset of $\operatorname{Der}_{R}^{\infty}(A)$ and I an ideal of A, then we shall say that I is \mathcal{U} -differential, if $\delta(I) \subseteq I$ for all $\delta \in \mathcal{U}$.

REMARK. If an ideal I is δ -differential, then I is also $[\delta, x]$ -differential for any $x \in A$, since $[\delta, x](y) = \delta(xy) - yd(x) - xd(y) \in I$ for all $y \in I$. Therefore if I is \mathcal{U} -differential we always can replace the subset \mathcal{U} by the submodule generated by \mathcal{U} and all [d, x] with $d \in \mathcal{U}$ and $x \in A$.

DEFINITION. If S is a multiplicatively closed set in A and I an ideal, then the ideal $S(I) = \{x \in A | \text{ there exists an } s \in S \text{ such that } sx \in I\}$ is called the S-component of I.

2. S-components of differential ideals.

THEOREM. Let A be an R-algebra, S a multiplicatively closed set in A, U a subset in $Der_R^{\infty}(A)$ and I an ideal in A. If I is U-differential, then S(I) is U-differential.

PROOF. Let $y \in S(I)$ and $\delta \in \mathcal{U}$. We have to show $\delta(y) \in S(I)$.

We prove this by induction on the order of $\delta: \delta = 1: \delta(sy) = s\delta(y) + y\delta(s) \in I$, hence $s^2\delta(y) \in I$ and so $\delta(y) \in S(I)$. $\delta = n + 1: \delta(sy) = s\delta(y) + y\delta(s) + [\delta, s](y) \in I$. By the induction assumption we know $[\delta, s](y) \in S(I)$, therefore there exists an element t of S such that $t[\delta, s](y) \in I$, hence $ts^2\delta(y) \in I$ and we obtain again $\delta(y) \in S(I)$. \Box

COROLLARY 1. (W.C. Brown [3]). Let D be a higher derivation on A, I a D-ideal of A, and y an arbitrary element of A, then $J = \bigcup_{n=0}^{\infty} (I: y^n)$ is a D-ideal of A.

PROOF. Consider $S = \{y^n | n \in \mathbb{N}_0\}$, then S(I) = J. \Box

COROLLARY 2. If S is a multiplicatively closed set in A, then $\ker(\varphi: A \to A_S)$ is always $\operatorname{Der}_{B}^{\infty}(A)$ -differential.

PROOF. Ker $(\varphi : A \to A_s) = S(0)$.

COROLLARY 3. Let A be a ring, P a prime ideal. and I an ideal such that $P \supset I$, $P \cap I = 0$. Then P is a $\text{Der}_{R}^{\infty}(A)$ -differential. (For derivations of order 1, see H. Matsumura [4].)

PROOF. Let $x \in I, x \in P$. $S = \{x^n | n \in \mathbb{N}_0\}$, then P = S(0).

3. Primary components of differential ideals.

PROPOSITION. Let A be an R-algebra and U a subset of $\text{Der}_{R}^{"}(A)$. If I is an U-differential ideal in A and Q a nonembedded primary component, then Q is U-differential.

PROOF. Let $P = \operatorname{rad}(Q)$ and $S = A \setminus P$. Then we have Q = S(I) because P is nonembedded. \Box

COROLLARY 1. (W.C. Brown [2]). If I is a U-differential radical ideal and P an element of Ass (A/I), then P is U-differential.

COUNTEREXAMPLE FOR THE EMBEDDED PRIMARY COMPONENTS. We construct a δ -differential ideal I such that no embedded primary component Q of I is δ -differential.

Let k be a field of characteristic 0 and A = k[X, Y] the polynomial ring in X and Y over k. We define a k-derivation δ of order 2 from A into A by $\delta(XY) = XY$, $\delta(X^2) = X^2$, $\delta(Y^2) = 2Y$, $\delta(X) = X$, $\delta(Y) = 1$. Let I be the ideal in A defined by $I = (X^2, XY)$. Possible primary decompositions of I are $I = (X) \cap (X, Y)^n$, $n \ge 2$. The ideal I has the following two properties:

1. *I* is δ -differential (respectively *I* is \mathcal{U} -differential where \mathcal{U} is submodule of Der $_k^2(A)$ generated by $\{\delta, [\delta, x] | x \in A\}$).

2. No embedded primary component is δ -differential.

PROOF. 1. Since *I* is generated as a *k*-module by elements of the form X^nY^m , $n \in \mathbf{N}$, $m \in N_0$ and $n + m \geq 2$, we have to show $\delta(XY^m) \in I$ for all $n \in \mathbf{N}$, $m \in \mathbf{N}_0$. (Note that it is not enough to show $\delta(X^2)$ and $\delta(XY)$ are in *I* for derivations of order n > 1.) We make induction on n + m. $n + m = 2, 3 : \delta(X^2), \delta(XY),$ $\delta(XY^2) = X\delta(Y^2) + 2Y\delta(XY) - 2XY\delta(Y) - Y^2\delta(X)$ and $\delta(X^2Y) =$ $Y\delta(X^2) + 2X\delta(XY) - 2XY\delta(X) - X^2\delta(Y)$ are elements of *I* by definition of δ .

Now we assume $\delta(X^nY^m) \in I$ for $n + m = s \ge 3$. We have to prove $\delta(X^nY^m) \in I$ for $n + m = s + 1 \ge 4$.

$$\begin{aligned} Case \ 1. \ n &= 1, 2, \ (\text{i.e.}, \ m \geq 2) \\ \delta(X^n Y^m) &= \delta(X X^{n-1} Y^{m-1} Y) \\ &= X \delta(X^{n-1} Y^m) + X^{n-1} Y^{m-1} \delta(XY) + Y \delta(X^n Y^{m-1}) \\ &- X^n Y^{m-1} \delta(Y) - X^{n-1} Y^m \delta(X) - XY \delta(X^{n-1} Y^{m-1}) \end{aligned}$$

Case 2. n > 2.

$$\delta(X^{n}Y^{m}) = \delta(X^{2} \cdot X^{n-2}Y^{m})$$

= $X^{2}\delta(X^{n-2}Y^{m}) + X^{n-2}\delta(X^{2}Y^{m}) + Y^{m}\delta(X^{n})$
- $X^{n}\delta(Y^{m}) - X^{2}Y^{m}\delta(X^{n-2}) - X^{n-2}Y^{m}\delta(X^{2})$

In either case using the induction assumption and the power rule for derivation of order 2 (Y. Nakai [5]), we find that each monomial on the right hand side is in I, therefore $\delta(X^nY^m) \in I$.

2. Let Q be an embedded component of I, then $Q \supseteq m^n = (X, Y)^n$ for a suitable $n \in \mathbb{N}$. Therefore $Y^n \in Q$ for an $n \in \mathbb{N}$. Let m be the smallest number with $Y^m \in \mathbb{N}$, then

$$\delta(Y^m) = \begin{cases} 1 & \text{if } m = 1\\ \binom{m}{2} Y^{m-2} \delta(Y^2) - m(m-2) Y^{m-1} \delta(Y) \\ = \binom{m}{2} Y^{m-2} \cdot 2Y - m(m-2) Y^{m-1} \\ = m \cdot Y^{m-1} & \text{if } m > 1 \end{cases}$$

hence $\delta(Y^m) \in Q$. This shows Q is not δ -differential.

REMARK. Since $\delta(I) \subseteq I$, δ induces a second order derivation $\overline{\delta}$ on A/I. The ideal $(\overline{0})$ is of course $\operatorname{Der}_{k}^{n}(A)$ -differential for all $n \in \mathbb{N}$ (resp. $\operatorname{Der}_{k}^{\infty}(A)$ -differential) but no embedded primary component of $(\overline{0})$ is $\operatorname{Der}_{k}^{n}(A)$ -differential for $n \geq 2$ (resp. $\operatorname{Der}_{k}^{\infty}(A)$ -differential).

REFERENCES

1. R.M. Bommer, High order derivations and primary ideals to regular prime ideals, Arch. Math. 46 (1986), 511-521.

2. W.C. Brown, Differentially Simple Rings, Journal of Algebra 53 (1978), 362-381.

3. ———, A note on higher derivations and on ordinary points of curves, Rocky Mountain J. Math. **14** (1984), 397-402.

4. H Matsumura, Noetherian rings with many derivations, Contributions to Algebra, Academic Press, 1977.

5. Y. Nakai, High order derivations, Osaka J. Math. 7 (1980). 1-27.

6. A. Seidenberg, Differential ideals in rings of finitely generated type, Am. J. Math. 89 (1967), 22-42.

DEPARTMENT OF MATHEMATICS, MICHIGAN STATE UNIVERSITY, EAST LANSING, MI 48824