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T-INVARIANT ALGEBRAS ON RIEMANN SURFACES II 

ANDRÉ BOIVIN 

1. Introductions. In [7], T.W. Gamelin has introduced a subclass 
of planar uniform algebras which are by definition invariant under the 
so-called Vitushkin localization operators T^. In [7, 8] (see also [5]) he 
has developed the theory and, in particular, he has proved that a planar 
T-invariant algebra always has the Banach approximation property. 

DEFINITION. A Banach space B has the Banach approximation prop
erty (BAP) if there exists a sequence {Pn}%Li of finite dimensional 
linear operators on B such that Pnf converges to / for all / G B. 

More recently, J.A. Cima and R.M. Timoney [4] have shown that all 
planar T-invariant algebras also have the Dunford-Pettis property. 

DEFINITION. A Banach space B has the Dunford-Pettis property 
(DPP) if, whenever {fn}^Li is a sequence in B* tending weakly to 
0, then 

lim Fn(/n) = 0. 
n—»oo 

We have, in [2], suggested a generalization of the Vitushkin oper
ators to arbitrary non-compact Riemann surfaces and we have then 
proceeded to outline the development of a theory of T-invariant alge
bras in this context. We now continue our study by establishing the 
BAP and the DPP for T-invariant algebras on Riemann surfaces. 

REMARK. In 1972, A. Sakai had already used the Behnke-Stein kernel 
(see [10]) in order to define a Cauchy transform and study some of the 
properties of the Tp-operators on non-compact Riemann surfaces. We 
would like to thank the referee who has brought this to our attention. 
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Notation. Following [2], R will denote an arbitrary non-compact 
Riemann surface, and K a cornpact subset of R. C(K) will be the 
set of all continuous functions on K with the topology of uniform 
convergence; Hol(/f ) will denote the set of all holomorphic functions on 
K, that is, holomorphic in a neighborhood of K, and M(K) will be the 
algebra of functions in C(K) which can be uniformly approximated on 
K by meromorphic functions on R with poles off K. If K is a compact 
subset of the complex plane C,M(K) is just the closure in C(K) of 
the rational functions with poles off K, usually denoted by R(K). 

For complex-valued functions / and <p on R, f bounded and (p smooth 
with compact support, define 

(TMq) = <p(q)f(q) + ^~ J j f(p)F(p,q) dip{p) A dp{p\ q G Ä, 

where p is a globally holomorphic but locally univalent function on R 
and F(p, q) is a Cauchy kernel on iï, that is, F is a meromorphic func
tion on R x R such that F(p,q) = -F(q,p) and the only singularities 
of F(-,q) are simple poles on the diagonal with residues -hi. For the 
existence of p and F , we refer the reader to [2]. 

DEFINITION. We say that a closed subalgebra A of C(K) is T-

invariant if it satisfies the following properties: 

(1) M(K) Ç A 

(2) Ttpf G A, for all / e A and all (p smooth with compact support. 
Here 7^ is regarded as an operator on C(K). In other words, / G C(K) 
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is extended to be zero off K, the operator T^ is applied to the extension 
and the result is restricted to K. 

The expression "planar T-invariant algebra" will refer to the case 
R = C, p — z, with the Cauchy kernel l/(z — w). Remark, however, 
that the definition of T-invariance is independent of a particular choice 
of p or F. It will nevertheless be convenient to let p be fixed and assume 
that all references to coordinate systems are made with respect to p. 

2. On the Banach approximation property. In this section we 
will prove 

THEOREM I. A T-invariant subalgebra of C(K) has the Banach 
approximation property (BAP). 

We will establish first a few simple lemmas, and proofs will be given 
for the sake of completeness. 

LEMMA 1. Let A be a T-invariant subalgebra of C{K) and let D be 
a closed parametric disk on R. Let A\ be the uniform closure on KCiD 
of the restriction of A to K H D (denoted by A\KHD)- Then A\ is a 
planar T-invariant algebra. (Of course, we are identifying p G K fi D 
and z = p(p) G C.) 

PROOF. First of all, we have to show that R(K n D) C A\. By 
Runge's theorem [1], R(K n D) = M(K D D), but, by [11], since 
no components of R\(K n D) are contained in K, every function in 
M(K C\D) can be approximated uniformly on K H D by meromorphic 
functions with poles off K, i.e., by functions in M(K)\KnD- Thus, by 
property (1), R(K nD)cAi.u 

Let us now introduce the following notation. T^ will denote, as above, 
the Vitushkin localization operator on C{K). T«j, will denote the same 
operator but now acting on C(K D D); in other words, / G C(K D D) 
is extended to be zero off K 0 D before the operator T^> is applied. 
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Finally, by 7 ^ , we will denote the operator defined by 

OnKDD, Tyf and T^f differ by 

(*) ^ If f{p)F{p,q)(dtpAdp){p). 
2TTZ JJK\D 

We remark that (*) is the Cauchy transform of a measure of the form 
hu;, where u is the area measure on R and h G L^(LJ). In particular, 
the support of h is contained in K\D and thus, by [2, Theorem 3.3], 
(*) G M(K H D). This implies, with property (2), that T*f G Au for 
all / G A and, by density, for all / G A\. 

Now we can assume that, on DDK, F is of the form l/(z—w)+h(z, w) 
where p,q G R and z = /?(p), w = /9(ç) G C are identified and where h 
is holomorphic. Thus T^ and T^ f differ only by 

±.jjf(z)h(z,w)^(z)dzAdz 

which is holomorphic on K n £> and so 7 ^ / G J4I for all / G J4I. D 

LEMMA 2. Le£ A be a T-invariant subalgebra ofC(K) and let D be a 
closed parametric disk on R. Let A\ be the uniform closure on K fi D 
of the restriction of A to K D D. Suppose f G A\ and ip is a smooth 
function with support contained in D. Then T^f G A. 

PROOF. We first extend / to be continuous on D and note that there 
exists a sequence {fn} of functions in A and continuous in D that 
converges uniformly on D to / . Then, by [2, Lemma 4.4], (X^/n)^ G A. 
But 

\Kf-TM\K = \\TM-fn)\\K 
= \K((f-fn)\D)\\K 
<\\f-fn\\D 

+ ii/-/niiD(^yy"iF(p>ç)iiôVAopi(p))> 
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where \\-\\K and 11 • 11D denote the sup norm on K and D respectively. 
Thus (T^/ n) |# converges uniformly on K to (T^f)]^- Since A is closed, 
this proves the Lemma. D 

LEMMA 3. Let A be a T-invariant subalgebra of C(K), let f E A 
and denote again, by f, a continuous extension of f with support in a 
pre-compact neighborhood V of K. Let {ipi,Di}fLx be a finite partition 
of unity ofV where each Di is a parametric disk on R, each function <pi 
is smooth with support contained in Di, 0 < pi < 1 and Yli=i <Pi ~ 1 
on V. The the equality 

N 

/fo) = £(r„j)(«) 

holds for all q G R. 

PROOF. By [2, Theorem 4.2], / - ET^,./ is holomorphic on R. But, 

i f ^ u j I i A , 
N 

1 = 1 

+ ^~ jjf(p)F(p,q)(d(^) A dp)(p)) 
= 0 

since supp/ G U^-D« and ö ( E ^ ) = 0 on supp/. D 

We need one more result which can be found in [8]. 

THEOREM A. (GAMELIN). Let Q be a compact subset of the complex 
plane C and let A be a planar T-invariant subalgebra of C(Q). Then 
A has the Banach approximation property. 

Before sketching the proof of Theorem A, let us introduce some 
notation. Let E be any subset of the complex plane. The partition 
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of unity {Aj,gj} is called a Vitushkin 6-cover of E if each Aj is a 
disk of radius 6 centered at a point Zj E E, each gj is supported on 
Aj,£#j = 1 in a neighborhood of E, \dgj/dz\ < c\/6 and no point z 
belongs to more than C2 of the disks, where c\ and C2 are some universal 
constants independent of E and 6. 

If / is analytic at infinity, define 

a(f) = lim z(f(z) - /(oo)). 

If moreover, / satisfies /(oo) = a(f) = 0, then define 

/?(/) = lim * 2 / (*)-

Let C* = C U {oo} denote the extended complex plane. If E is a 
bounded subset of C, then define 

OLA(E) = sup{|a(/) | : / e C (C*) , / analytic off a compact subset of 

EJ\QeA, l/l < 1 and/ (oo) = 0}, 

PA{E) = sup{|/?(/)| : / e C(C*), / analytic off a compact subset of 

EJ\Q e A, l/l < 1 and /(oo) - a(f) = 0}. 

We are now ready for: 

SKETCH OF PROOF, (of THEOREM A). Let f e A. We can extend 
/ in such a way that the extension is continuous on C, has compact 
support and depends linearly on / . Fix 6 > 0 and let {Aj,gj} be a 
Vitushkin 6-cover of supp/. Choose functions Fj,Gj e C(C*) such 
that \Fj\ < 1, \Gj\ < 1, FJ\Q G A, GJ\Q G A, Fj and Gj are analytic 
off a compact subset of Aj , Fj (oo) = Gj(oo) = a(Gj) = 0 and 

a(Fj) > aA{Aj)/2 

ß(Gj) > ßA(*j)/2. 

Set fj = T£f. Note that fj(oo) = 0. Finally put 

6j(f) = <*(fj)/<*(Fj) 

1>i(f) = ß(fi-8i(f)Fj)/ß(Gi). 
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Note that Oj and ijjj are continuous linear functional on A and that 
fj — OjFj — ipjGj has a triple zero at infinity. Set 

P6f = nOj(f)Fj + il>j(f)Gj). 

Then P^f is a continuous linear operator on A with finite dimensional 
range. The usual estimates (see for example [6, Chapter VIII]) show 
that 

\\f-Psf\\<cuf(2S), 

where c is a constant and Uf(b) = sup{|/(z) — /(C)| • z,QinC, \z — £| 
< 6} is the modulus of continuity of / . Consequently the Pj converge 
strongly to the identity operator as 6 tends to zero. D 

PROOF OF THEOREM I. Let f e A. Denote again by / an extension 
of / which is continuous and has compact support. Let {Di,ipi)^Lx be 
a finite partition of unity of the support of / such that each Di is a 
closed parametric disk. Let Ai be the closure of A\KnDj on KH Di. By 
Lemma 1, each A{ can be regarded as a planar T-invariant subalgebra 
of C(KnDi). By Theorem A, there exists for each i, a sequence P% of 
finite rank continuous linear operators which converges strongly to the 
identity operator on C(K Ci Di). Each Pl

b is of the form 

Mi 

k=l 

with each Hl
k E A{. Set 

N N Mi 

By Lemma 2, T^H^ G A. Thus Ps is a continuous linear operator on 
A with finite dimensional range and 

| |/-ft/Ik H I E W - E T ^ / H K 
= | | E T V , 1 ( / - ^ / ) | | K 

<E | | / - fS / | |KnD i | | T ( W l | | i f nD 4 . 
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This proves Theorem I. D 

3. On the Dunford-Pettis property. In this section, as an easy 
consequence of [3], [4] and [9], we will establish 

THEOREM II. Let A be a T-invariant subalgebra ofC(K). Then both 
A and A* have the Dunford-Pettis property (DPP). 

Let Q be a compact subset of the complex plane and let A be a planar 
T-invariant subalgebra of C(Q). In [4], J.A. Cima and R.M. Timoney 
have used a recent result of J. Bourgain [3] to show that both A and A* 
have the Dunford-Pettis Property. In [9], T.W. Gamelin has extended 
this result to all compactly tight algebras. 

DEFINITION, (see [5]). We say that a uniform algebra A on a compact 
Hausdorff space X is tight on X if the operators Sg : A —• C(X)/A 
defined by Sg(f) = gf + A are weakly compact for all g e C(X). We 
say that A is compactly tight if each of the operators Sg is compact. 

Let F be a subspace of C(X) and let the operators Sg be defined with 
respect to Y, i.e., for each g G C(X), the operator Sg : Y —• C(X)/Y 
is defined by Sg(f) = gf + Y. The double dual of Sg is the operator 
S*g* : F** -> C(X)**/y** given by S*g*{F) = gF + Y**. Following [4], 
define the Bourgain algebras with respect to Y to be 

YB = {g £ C(X) : fn e F, fu —• 0 weakly implies Sgfn —> 0 in norm}. 

Yb = {ge C(X) : Fn e F**, Fn - 0 weakly 

implies S**Fn —• 0 in norm}. 

THEOREM B. (BOURGAIN [3], [4, Theorem 3]). Let X be a compact 
Hausdorff space and Y a closed subspace of C(X). 

(i) If YB = C(X), then Y and Y* both have the Dunford-Pettis property. 

item(ii) lfYb = C{X), then Y has the Dunford-Pettis property. 

As an immediate consequence, we have 
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COROLLARY 1. (GAMELIN [9]. If A is a compactly tight algebra, then 
both A and A* have the DPP. 

PROOF. Since A is compactly tight, the operators Sg are compact 
operators and so, map weakly null sequences onto null sequences. Thus 
Aß (and A^) coincides with C(X). D 

To complete the proof of Theorem II, it thus suffices to establish the 
following. 

PROPOSITION. (See [5, Theorm 17.7]). Any T-invariant subalgebra 
A ofC(K) is compactly tight on K. 

PROOF. Let g be a smooth function supported on a compact subset 
of R and let / G A. Define 

(Rqf)(q) = ^-jjf(pMP,q)(d9Adp)(p), qeR. 

The same proof as in [5, Lemma 6.1] shows that the operator Rg is 
compact. Note that fg = Tgf — Rgf and that, by definition, Tgf £ A. 
Hence Sg is compact. Approximating an arbitrary g G C(K) uniformly 
by smooth functions, we see that each operator Sg is compact. D 
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