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1. Introduction. Let 7rT
r
ri and 7rT

c
n be respectively the sets of 

polynomials of degree at most ra, with real and complex coefficients. 
For any pair (m,n) of nonnegative integers, <„ r i and <„ „, then 
respectively denote the sets of rational functions of the form p(x)/q(x), 
where p e < „ « „ ) and where q G < « ) . Let / denote the real 
interval [— 1, -hi] and let || • ||/ denote the supremum norm on / , i.e., 
11/11/ := sup x e / | / (x) | . If Cr(I) denotes the set of all continuous real-
valued functions on / , then for / G C r(7), we set 

(2 y Ki.n(f) : = inf{||/ - 011/ : 9 e <„.„}, 

Efn.M): = inf{\\f-9\\i:ge<n.n}. 

For / e C r(7), it is known (cf. Meinardus [3, p. 161]) that there is a 
unique g e <„ n such that E^nn(f) = \\f - g\\j, while in the complex 
case, there is also a g e <„>n for which £?„.„(/) - | | / - g\\i, but g is 
in general not unique (cf. Lungu [2], Saff and Varga [4], and [6].) 

Since < „ „ c <„>7,, then evidently ££,.„(/) < £?„.„(/) for any 
/ E C r(7), and it was shown in [4] that, for each (ra,n) with n > 1, 
there is an / e Cr{I) for which 

<L2) ^ . n ( / ) / ^ , „ ( / ) < l . 

Thus, on setting 

(1.3) 7 m .„ := inf { £ £ , „ ( / ) / £ ; , „ ( / ) •• f € £ " • ( / ) / < „ , } , 
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Saff and Varga [4] asked in essence how small the ratios of (1.2) could 
be for each pair (ra, n) of nonnegative integers with n > 1. 

Recently, two major results on the precise determination of 7,n,n have 
appeared. First, Trefethen and Gutknecht [5] established, by means of 
a direction construction, the surprising result that 

7m.TI. — O7 f° r each pair (m, n) of nonnegative integers 

with n > m + 3. 

Then, Levin [1] established the complementary result that 

7m n = -> for e a c n P a i r (171,71) of nonnegative integers 
(1.5) ' 2 

with m + 1 > n > 1. 

Levin's proof of (1.5) consisted of a direction construction to show that 
7m.n < 1/2, and an algebraic method to show that 7m>n < 1/2 was 
impossible when m + 1 > n > 1. 

Thus, to complete the precise determination of all 7m ,n (ra > 0, n > 
1), it remains only to determine the 7m.n 's on the "missing diagonal", 
i-e-1 7m.m+2(^ ^ Q). It turns out that Levin's direct construction 
applies also in this case, so that 

(1.6) 7m.m+2 ^ 70 for each integer m > 0. 

(We remark that some mathematicians have privately speculated that 
7m.m+2 = 0 for each m > 0.) 

Our object here is to show that 

(1.7) 77n,m+2 ^ r , for each integer m > 0, 

which improves (1.6). What may be of independent interest is that 
our direct construction to establish (1.7) is quite different from the 
direction constructions of Trefethen and Gutknecht [5] and Levin [1]. 

2. Main result. We have the 
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THEOREM. For each nonnegative integer m, 

(2-1) lm.m+2 < 77-

PROOF. First, suppose that m is an arbitrary (but fixed) even 
nonnegative integer, and suppose that e is any number satisfying 
0 < e < l / ( r a + 1). For any complex number z, set 

(2.2) tj{z) = ej(z;e,m)~ 3—— , j = 0 , 1 , . . . ,ro + 1. 

* - l + 7&Ì ~ ei 

It is evident from (2.2) that 

for j = 0 , 1 , . . . , m + 1. 

Since £j(z) is a linear fractional transformation, it maps the real axis 
-oo < x < +00 onto some (generalized) circle in the complex plane. 
As (j(oo) = 0, this (generalized) circle necessarily passes through the 
origin. Moreover, as the pole of £j(z), namely 1 - ^ y + eu when 

reflected in the real axis, is the point Wj := 1 - ^ y " ° ' t h e n from 

(2.2), 

ij(wj) = ±(-lY, j = 0 , l , . . . , m + l. 

Thus, the image of the real axis under lj(z) is the circle with center 
\{-l)j and radius 1/3 (since this circle passes through the origin). It 
is then geometrically clear that 

2 1 
(2.4) IK/ll(-oc.+3c) =3> a n d HIm^'ll(-^.+Dc) = ^ 

j = 0 , 1 , . . . , m-hl, 

where, for any subset K of the infinite interval (-oo, -I-CXD), we use the 
notation \\f\\K := supx€K \f(x)\. 

To extend the statements of (2.4), consider the real intervals h(m), 
defined by 

(2.5) / A . ( m ) : = f i _ H * ± l , i - H * z i l n / , fc = 0 , l , . . . , m + l, 
' K ' L m + l m + l J 
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so that these intervals cover / := [—1,4-1]; that is, 

Ul"=
+

1
I/ fc(m) = 7. 

From the definitions of ij{x) and him), it follows (as m is fixed) that 

(2.6) \\tj\\ik(m) = 0(e), a s e - 0 ( fc# j ) , 

and from (2.3) that 

(2.7) \\ij\\ij{m) = 3 , a n d | | I m ^ | | / . ( m ) = - , j = 0,l m + l. 

Next, consider the complex rational function g(x) defined by 

m+1 

(2.8) g(x) = g(x;e,m):= £ M * ) -

On rationalizing g(x), 

=r r^i-iy m+o{* -1+& - «} 
(2.9) g(x) = — , 

IK^-I+^T-«} 
so that g is at least an element of nfn+1<m+2- However, the numerator 
of ^(x) of (2.9) is 

- 2 o r n ' + 1 ì 
~T~\xm+l Yl(_1^ + lower terms in xS(° - s - m M * 

j=o 

But, since m is assumed even, it follows that JZJ^o ("~^V = 0, which 
shows that g(x) is an element in flfw<m+2- More precisely, it can be 
verified from the above definition that the coefficient of Xm in the 
numerator of g(x) is 

2(m + 2)gz 

3(m + l) 

so that ^(x) is not an element of 7rÄ,m+2 for any s < m. (We remark 
that the representation of g(x) in (2.8) is just the partial fraction 
decomposition of g(x).) 
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Consider now the real continuous function s(u) on (-00, +00) defined 
by 

(2.10) S ( U ) : = ( Ï T £ ' - 1 < U < + 1 , 

^ 0, otherwise, 

so that s(0) = 1, s (± l ) = 0, and 0 < s{u) < 1 for 0 < \u\ < 1. Recalling 
that 0 < e < l /(ra -f 1), set 

(2.11) 5 ( x ) : = i ^ ( - l ) ^ ( J ^ 1 ) ' - o o < x < o o . 
j=0 

It follows from (2.11) that S(x) is a real continuous function on 
(—00,+00), with 

/o m. S(l —) = - ( - l ) j and s ( l ^ - r W ) = 0> 
(2.12) V ra+1/ 3V ; V m + 1 - / 

j = 0 , l , . . . , r a + l. 

Geometrically, we note that S(x) has m + 2 alternating spzfces on 

With the above definition of S(x) and <?(.r), set 

(2.13) f(x) = f(x;e,m):=S(x) + Beg(x) (x € / ) , 

so that / (x ) € C r(7). From (2.3), (2.6), (2.8), and (2.12), 

(2.14) / ( l ^—)=(-iy+0(s), a s £ - 0 (j = 0 , l , . . . , m + l). 
V m -f 1/ 

Now, for e > 0 small, (2.14) asserts that / (x) has m + 2 near 
"alternants" in the distinct points {1 - ^ ^ V of / . On choosing 
the identically zero function in KT

m m + 2 , an application of the de la 
Vallée-Poussin Theorem (cf. Meinardus [3, p. 161]) gives us that 

(2-15) ^ , m + 2 ( / ) = l + 0 ( £ ) , a s £ - 0 . 

To determine an upper bound for Ec
mm+2(f), note from (2.13) that 

(2.16) f{x)-g(x) = S(x)-ihng(x) (x e I). 
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On considering the particular interval him), it follows from (2.6)-(2.7) 
that 

(2.17) S{x) - ilmg{x) = S{x) - ilm£k{x) + 0(e) , x G Ik{m). 

Moreover, a short calculation shows that 

\\S{x) - ilm/ fc(x)|| / fc (m) = - + O(e), * = 0 , 1 , . . . ,m -f 1, 

so that with (2.16) and (2.6), 

(2.18) \\f-g\\i = \\S-ihng\\I = ± + 0(e). 

Then, since g(x) is an element of 7r̂ l,m_j_2* 

(2.19) £Si .m + 2 ( / ) < 11/ - d l / = I + 0(e), as e - 0, 

from (1.1) and (2.18). With (2.15), we see that £ ^ m + 2 ( / ) / £ ^ m + 2 ( / ) < 
1/3 + O(e). Letting e —• 0 then gives 

(2.20) 7m.m+2 < £, 

which establishes the desired result of (2.7) when m is an even nonneg­
ative integer. 

For the case when m is an odd positive integer, the above discussion 
is easily modified. Set 

(2.21) tjiz) = d3{z,e, m) := ? _ L , j = 0 , 1 , . . . , m + 1, 
z - 1 + 7Ï+Î - eW 

where {fij}™^1 are any m + 2 fixed positive numbers satisfying 0 < 
/ij < 1 and 

m+l m+1 

(2.22) £ ( - 1 ) ^ , = 0, and £ j ( - l ) ^ ± 0. 
j=0 j=0 
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With (2.22), it follows that J ^ J ; 1 £3{z) is an element of TTW .W + 2 , but 
not an element of 7rs.m+2 for any s < m. Then exactly the same 
construction can be carried out to deduce the desired result that 
lm.m+2 < 1/3 in the case when m is an odd positive integer. D 

To conclude, we conjecture that 

(2.23) 
7m.m+2 = - for each nonnegative integer m, 

o 
i.e., we conjecture that the upper bound of (2.1) is sharp for each 
nonnegative integer m. If this conjecture is true, then the "missing 
diagonal" 7m ,m+2 is, in fact, structurally different from the remaining 
cases treated in [5] and [1]. 
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