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PROXIMINALITY OF CERTAIN SUBSPACES OF Cb(S;E) 

JOÄO B. PROLLA AND ARY O. CHIACCHIO 

Throughout this paper, 5 is a completely regular HausdorfF space and 
E is a Banach space. The vector space of all continuous and bounded 
functions / : S —• E, denoted by Cb(S;E), is equipped with the sup-
norm 

| | / | | = sup{ | | / (x ) | | ; xG5} . 

Recall that a closed subpsace V of a Banach space E is said to be 
proximinal if every a G E admits a best approximant from V', i.e., a 
point v G V for which 

||i; - a|| = inf{\\w - a\\;w G V} = dist(o; V). 

The set of best approximants to a from V is denoted by Py(a), and 
the set-valued mapping a —• Py(a) is called the metric projection. If 
V is proximinal, then a —• Py{a) # 0 for every a G E. If Py(a) is a 
singleton for each a G £ , then V is called a Chebyshev subspace of £ . 
If V is a proximinal subspace of E, then a map s : £ —> V such that 
s(a) belongs to Pv(a), for each a G -E1, is called a metric selection or a 
proximity map for V. 

The following notations are standard and will be used throughout 
this paper. If a G E and r > 0, B(a;r) = {v G E;\\v - a\\ < r} 
and B(a;r) — {v G E : \\v - a\\ < r}. For any s G 5, the bounded 
linear operator <5S : Cb(S;E) —• £ is defined by é s( / ) = / ( s ) , for all 
/ € Cfe(5; £ ) . If W is a closed vector subspace of Cb{S; E), then 6S\W 
denotes the restriction of S8 to W. Notice that 0 < ||ÓS|W|| < 1. 

Given a proximinal subspace V of a Banach space E, then clearly 
Cb(S; V) is a closed subspace of Cb(S; E). In this paper we shall study 
the following questions. 

QUESTION 1. Under what assumptions is Cb{S;V) proximinal in 
Cb{S;E)? 
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336 PROXIMALITY 

QUESTION 2. If V admits a continuous proximity map, under what 
conditions is the same true for Cb(S; V)? 

Notice that, if V admits a continuous metric selection, say s, then 
the mapping s*, defined by s*(f) = 5 0 / , for any / € Cb(S; E), clearly 
maps Ct,(S; E) onto Cb{S; V) and 

| | ** ( / ) - / | | = sup | | « ( / (x ) ) - / (x ) | | 

= supdist(/(x); V) < dist(/; Cb{S; V)). 
x€S 

Therefore s* is a proximity map for Cb{S; V), and Cb{S;V) is a 
proximinal subspace of Cb(S;E), but the question of continuity of s* 
remains. One case in which s* is continuous occurs when S is compact. 
For a proof, see Lemma 11.8 of Light and Cheney [7]. Another case 
in which s* is continuous happens when s is uniformly continuous on 
bounded sets. This follows from Lemma 1. 

LEMMA 1. Let s be a continuous map of a Banach space E into a 
Banach space V which is uniformly continuous on bounded sets. Then 
the map defined by s*(/) = s o / , for any f G Cb{S; E), is continuous 
fromCh{S-E) intoCb(S;V). 

PROOF. Let / € Cb{S;E) and e > 0 be given. The set B = {a € 
E; \\a—f(t)\\ < £, for some t G 5} is bounded. By our assumption, there 
is some 6 > 0, and we may assume 6 < e, such that \\x'—x"\\ < 6 implies 
lls(x') - s(x")\\ < £ for any x' and x" in B. Take now g e Cb(S;E) 
with \\g- f\\<6. UteS, then \\g(t) - f(t)\\ < 6 < e, and therefore 
g(t) e B. Clearly, f{t) belongs to B. Hence \\s(g(t)) - s(/(*))| | < e. 
This shows that \\s*(g) - s*(/)| | < £, and s* is continuous. D 

The remarks preceding Lemma 1 establish the following easy answer 
to Question 2. 

THEOREM 1. If s : E —• V is a continuous proximity map, which is 
umformly continuous on bounded sets, then Cb(S;V) is proximinal in 
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Cf,(S; E) and, in fact, the mapping s* defined by s*(f) = s o / , for any 
f € Cb(S;E), is a continuous proximity map for Cb(S;V). 

COROLLARY 1. If the Banach space E is uniformly convex with 
respect to V, then Cb{S; V) is proximinal in Cb{S; E) and has a 
continuous proximity map. 

PROOF. By Lemma 2.1, Amir and Deustch [1], V is a Chebyshev sub-
space of E and Py is uniformly continuous in the set 
{a e E; dist (a; V) < R}, for any R > 0. o 

COROLLARY 2. If E is uniformly convex, then Cb(S; V) is proximinal 
in Cb{S;E) and admits a continuous proximity map, for any closed 
vector subspace V of E. 

PROOF. For any closed subspace V C E, the space E is uniformly 
convex with respect to V. D 

To state our next result we need to recall the definition of the 1 lfo-
ball property: a closed subspace V of E has the 1 l/2-ball property in 
E if V H ~B(v;e) H B ( / ; r ) # 0, whenever v €_V, / e E, e > 0 and 
r > 0 are such that | | / - v|| < r + e and V n £ ( / ; r) ^ 0. This notion 
was introduced by D.T. Yost [9], who proved that when V has the 
1 V2-ball property in E, then V is proximinal and admits a continuous 
homogeneous proximity map s satisfying s(a + v) = s (a) + v, for all 
a e E, veV. 

Examples of subspaces with the 1 ^-bal l property include: M-ideals, 
any closed subalgebra of C(S;R) , for compact 5; the space K(ll,tl) 
of compact operators in i1 as a subspace of the space L(£l,tl) of all 
bounded linear operators in tl. 

COROLLARY 3. If V has the 1 y2-ball property in E, then Cb{S; V) 
is proximinal in Cb(S; E) and, for compact S, it admits a continuous 
proximity map. 
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THEOREM 2. Let E be a real Lindenstrauss space, 5, T and U compact 
Hausdorff spaces ir : T —> U a continuous surjection; V = {g o IT; 
g G C(U; E)}. Then C(S; V) is proximinal in C(S x T; E), and admits 
a continuous proximity map. 

PROOF. By Theorem 2.1, Yost [9], V has the 1 1/2-ball property 
in C(T\E). It remains to apply Corollary 3 and the identification 
C(S;C(T;E)) = C(S x T;E). Notice that, under this identification 
C(S;V) is the set of all continuous functions / : 5 x T —> E such that, 
for each s £ S, the map fs:T—*E (defined by fs(t) — f{s;t), for 
all t G T), factors through 7r, i.e., there exists gs G C(U;E) such that 
fs = gs 0 7T.U 

THEOREM 3. Let S,T,U and n be as in Theorem 2, and V — 
{g o n;g G C{U;C)}. Then C(S;V) is proximinal in C(S x T; C) 
and admits a continuous proximity map. 

PROOF. By Proposition 3.2, Fakhoury [5], V is proximinal in C{T; C) 
and admits a continuous homogeneous metric selection. D 

DEFINITION 1. Let V be a closed vector subspace of a Banach space 
E. We say that V has property (A) if, for every e > 0 and R > 0, there 
exists 6 > 0 such that, given / G E with dist(/; V) < R and w G V 
such that \\f — w\\< R + 6, there exists v G V such that \\f - v\\ < R 
and \\v - w\\ < e. 

Notice that, when proving that a subspace V has property (A), it 
suffices to consider w = 0 and R = 1. 

EXAMPLE l. If V has the 1 V2-ball property in E, then V has 
property (A). 

PROOF. Indeed, let € > 0 and fi > 0 be given. Choose 6 = e. Let 
/ G E and w G V be such that d i s t ( / ; ^ ) < R and | | / - w\\ < R + 5. 
Since 1/ is proximinal (Yost [9]), 1/ n B(f;R) ^ 0. By the 1 V^-ball 
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property, it follows that V D B(w;e) D B(f;R) ^ 0. Hence V has a 
property (A). D 

DEFINITION 2. A Banach space E is said to be quasi-uniformly convex 
(q.u.c) with respect to a closed subspace V if, for every 0 < e < 1, there 
exists 0 < 6 = 6(e) < e such that, given v £ V, there exists w £ V with 
IMI < e and such that ~B{v; 1 - 6) fiB(0; 1) C ~B{w; 1 - 6). 

This notion is due to Calder, Coleman and Harris [4]. 

EXAMPLE 2. If E is quasi-uniformly convex with respect to V\ then 
V has property (A) in E. 

PROOF. Let e > 0 and R > 0 be given. Without loss of generality 
we may assume R = 1 and e < 1. Choose e' > 0 such that e' < e/2. 
Then e' < 1/2. By Definition 2 there exists 77 = 6(sf) satisfying 77 < e' 
and the q.u.c. condition. Take 6 = 77/(1 - 77). Let f e E be given 
with dist(/; V) < 1 and | | / | | < 1 + ó. Since V is proximinal in E [2] 
Proposition 2.4, there is some v e V such that | | / - i?|| < 1. Notice 
that 1 = (1 + 6)(l - 77). Hence u = / / ( l + S) and y = v/(l + 6) are 
such that y eV, u £ E, \\u\\ < 1 and ||u - y|| < 1 - 77. By q.u.c. there 
exists z e V with ||^|| < e' and \\u - z\\ < 1 - 77. Let w = (1 -f é)c. 
Then w £ V, and | | / - w\\ < (1 4- «)(1 - r/) = 1. On the other hand 
IMI < (1 + 6)e' = ^ / ( l - 77) < 2er < £. Hence V has property (A) in 
E.ü 

REMARK. Since, for any Banach space E, V — E always has property 
(A) in E, any Banach space which is not quasi-uniformly convex (with 
respect to itself) gives a counter-example to (A) ==> q.u.c. infinite-
dimensional L1(/x)-spaces are not quasi-uniformly convex [2]. Corollary 
2.7. Example 2.5 of [2] gives a 3-dimensional space which is not quasi-
uniformly convex. 

EXAMPLE 3. If E is uniformly convex, then any closed vector 
subspace of E has property (A). 
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PROOF. If E is uniformly convex, and V C E is any closed subspace, 
then E is uniformly convex with respect to V, and then by Proposition 
2.2 of [2], E is q.u.c. with respect to V. G 

EXAMPLE 4. Let T be a compact Hausdorff space, and let V be a 
closed vector sublattice of E — C(T; R) such that 

A = i n f { | | ^ . | F | | ; x G T } > 0 . 

Then V has property (A). 

PROOF. Let R > 0 and e > 0 be given. Choose r? > 0 such that 7/ < A 
and then choose S = rje. Notice that we have S < e, because 77 < A < 1. 
Let f e E with dist(/; V) < R and | | / | | < Ä + 6 be given. Choose 
h e V such that | | / - h\\ < R. Since 1/ is proximinal (see Blatter [3]), 
this can be done. 

For each t G T, there is some gt € V such that 0 < gt < 1 and 
^ < 0t(O- Let Vf = {x G T;7/ < #/(x)}. By compactness, there are 
£ 1 , . . . , tn such that T is contained in the union of the Vtl (i = 1 , . . . , n). 
Let # = max{^ t l , . . . ,gtn}. Then # G V and, for each t G T, we have 
0 < *7 < g{t) < 1. Define v = £#. Then v G V, and 0 < 6 < v(t) < e, 
foralU G T. Let w = (uAfc)V(-v). Then w G ̂  and ||n;|| < ||v|| <e. 
We claim that \\f - w\\ < R. Let x G T be given. 

Case 1. \h(x)\ < v(x). Then u>(x) = h(x) and therefore 
|/(ar) - w(x)\ = | /(x) - h(x)\ < \\f - h\\ < R. 

Case 2. h(x) > v(x). Then w(x) = v(x) and we have 
-R < f(x) - h(x) < /(ar) - v(x) <R + 6- v(x) < R. 

Case 3. h(x) < —v(x). Then w(x) = —v(x) and we have 
-R = -(R + 6) + 6< f(x) + S< f(x) -f v(x) < f(x) - h{x) <R.ü 

If X is any set, we denote by (oc(X;'R) the Banach space of all 
bounded functions / : X —• R equipped with the sup-norm | | / | | = 
sup{\f(x)\;xe X} , for / G M * ; R ) -

EXAMPLE 5. Let V be a closed vector subspace of ^oo(T;R) such 
that, for each h G V and r > 0, the function (r A h) V (—r) belongs 
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to V. Then V has the 1 Vb-ball property in ^ ( T ; R ) . In particular, 
Q,(T;R) has the 1 1/2-ball property in ^ ( T ; R ) , for any topological 
space T. 

_ P R O O F . Let / G ex(T;R),R > 0 and r > 0 be given with V n 
B(f;R) # 0 a n d | | / | | < R + r. Choose h G F with | | / - f t | | < Ä. Let 
to = (r A /i) V (—r). Then w; G V and ||IÜ|| < r. An argument similar 
to that of Example 4 shows that | | / - w\\ < R. (Just make v(x) = r 
there, for all x G T). G 

REMARK. Let T = [-1,1] C R. Then V = {/ G C [ 0 , 1 ] ; / ( X ) = 
—/(—x)} satisfies the hypothesis of Example 5 but not of Example 4. 

DEFINITION 3. (LAU [6]). A closed subspace V of a Banach space 
E is said to be U-proximinal if there exists a positive function 6(e), 
defined for e > 0, with 6(e) —> 0 as s —> 0, satisfying 

((1 + e)B) n (1/ + B) C B + «(e)(fl n V) 

for all e > 0, where B denotes the closed unit ball of E. 

EXAMPLE 6. If V is a /7-proximinal subspace of E, then V has 
property (A). 

PROOF. Let e > 0 and fi > 0 be given. Choose TJ > 0 such that 
R • 6(77) < e and then choose 6 > 0 such that 6 < rj R. 

Let / G E and v G V be given with dist(/; V) < fi and | | / -
v\\ < R + 6. By Proposition 2.3, Lau [6], V is proximinal. Hence 
dist(/ -v;V) = dist(/; V) < fi implies that / - v belongs to V + fi£. 
Therefore ( / - v)/Ä belongs to ((1 + //)£) fl (V + B). 

Since V is [/-proximinal it follows that f -v belongs to RB+ R-6(r]) • 
(B Pi V), which is contained in fi £ + e(B D V). Hence f -v = u + z 
where ||u|| < fi and z G F with ||z|| < e. Let u> = v + 2. Then 
to G V, | | / - v\\ < R and ||t> - w\\ <e.n 

Examples of [/-proximinal subspace include: every closed sub-
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space of a uniformly convex space; A/-ideals; Cb(S;H) as a subspace 
of £3c(S;R); the space K(Ll(^),il) of compact operators is a U-
proximinal subspace of the space L(Ll(n),£l) of all bounded linear 
operators, for any cr-finite measure space (£},£,//). 

THEOREM 4. If the subspace V has property (A) in E, then Cb(S; V) 
is proximinal in Cb(S; E), for any paracompact Hausdorff space S. 

PROOF. Let / G Cb(S;E), with R = dist( f;Cb{S;V))_> 0 be given. 
Define a set-valued mapping ^ on 5 by ^(s) — V C\ B(f(s);R), for 
all s G S. Clearly, ip(s) is closed and convex, for each s G S. Since 
dist(f(s);V) < dist(f ;Cb(S; V)) = R, and since proprerty (A) implies 
proximinality, it follows that ip(s) ^ 0, for each s G S. 

We claim that ip is lower-semicontinuous. Let so G 5, a e E and 
r > 0 be given such that (p(s0)nß(a; r) ^ 0. Choose w in <^(so)ni?(a; r) 
and then choose t > 0 such that ||w — a|| < t < r. Let e = r — t > 0, and 
let 6 > 0 be given by property (A) applied to E > 0 and H > 0. Notice 
that dist(/(s0); V) < R and | | / (s0) -w\\< R< R + 6. By continuity 
there is a neighborhood N of So in S such that | | / (s) — w\\ < R -f- 6 for 
all s e N. Fix s e N. By property (A) there exists v,s G V such that 
l l / (s) -vÄ | | < fland||i;8-w|| < e. T h e n | | ^ - a | | = \\w-a + v8-w\\ < 
\\w - a\\ + e < t + e = r. Hence vs G <p(s) f) B(a;r). Consequently, 
ip(s) fi B(a; r) ^ 0 for all s e N, and </? is lower-semicontinuous. By 
Michael's selection theorem [8], there is some g G Cfc(5; V) such that 
\\g(s)-f(s)\\ < Ä for all s G 5. D 

COROLLARY 4. 7/5 is a paracompact Hausdor ff space, then Cb(S; V) 
is a proximinal subspace of Cb(S; E) in the following cases: 

(a) V has the 1 lJ2-ball property E; 

(b) V is an M-ideal of E; 

(c) V = K(l\el) andE = L(t1J1); 

(d) V is a U-proximinal subspace of E; 

(e) V = Cb(T;R) and E = lx(T;R); 

(f) V = K(Ll(fi),£l) and E = L(Ll(ii),£l), for any a-finite measure 
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space (îî,E,/i); and 

(g) E is quasi-uniformly convex with respect to V. 

THEOREM 5. Let S and T be compact Hausdorff spaces, and let V be 
a closed vector sublattice of C(T; R) such that 

A = inffllklVI|; xeT} >0. 

Then C(S; V) is proximinal in C(S x T; R) . 

PROOF. Identify the Banach spaces C{S x T; R) and C{S; C(T; R)). 
The result follows from Example 4 and Theorem 4. D 

COROLLARY 5. Let S and T be compact Hausdorff spaces, and let A 
be a closed subalgebra of C(T; R) such that, given t € T, there is v G A 
such that v(t) ^ 0. Then C(S; A) is proximinal in C(S x T; R) . 

PROOF. Since A is an algebra, | |6 r |A|| = 0 or | | ^ | ^ | | = 1, for every 
Ï G T . By hypothesis ||<y,4|| ^ 0 for all x eT. It is well known that 
any closed subalgebra of C(T; R) is a closed sublattice. D 

THEOREM 6. Let S and T be compact Hausdorff spaces, and let V 
be a closed subspace of C(T;K) as in Example 5. Then C(S;V) is 
proximinal in C(S x T; R) . 
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