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A COEFFICIENT ESTIMATE FOR 
NONVANISHING HP FUNCTIONS 

JOHNNY E. BROWN AND JANICE B. WALKER 

ABSTRACT. The Krzyz conjecture asserts that if f(z) = 
oo + a\z + a>2Z2 + ••• is a nonvanishing analytic function 
with l/l < 1 in |*| < 1, then \an\ < 2/e (n = 1 ,2 , . . . ) . 
Hummel, Scheinberg and Zalcman more generally conjectured 
that | a n | < (2/e)*/2 for all nonvanishing / 6 Hp with 
ll/llp < 1(!/P + 1/g = 1,1 < p < oo). We prove the latter 
conjecture for n = 2 and n = 3 for a natural subclass of 
nonvanishing Hp functions. We also point out a relationship 
between the two conjectures for this subclass. Our main tool 
in this investigation is the Pontryagin Maximum Principle. 

1. Introduction. Let Bv denote the set of all nonvanishing Hp 

functions f(z) = oo + a\z + e ^ 2 + ••• with | | / | | p < 1. Hummel, 
Scheinberg and Zalcman [4] conjectured that 

/2\1/q 

(1) sup \an\ = I - J , for all n > 1, 
BP \ej 

where 1 < p < oo and 1/p + 1/q — 1. If true, the bound is attained by 

H^=[—2— ) (exp(?q^)) 
and its rotations eluHn(e

%tlz), where v\i G R. To date, the only-
evidence supporting (1) is given in [1] where the conjecture was verified 
for n = 1 and for arbitrary n > 2 provided am = 0 for all 1 < m < 
(n + l ) /2 . In this paper we prove the conjecture for n = 2 and n = 3 
for a certain natural subclass of nonvanishing Hp functions which we 
now describe. 

It is well-known (see [2] for example) that if / is a nonvanishing Hp 

function then 

(2) f(z) = eiXÜ(z)I(z), 

Received by the editors on April 18, 1986. 

Copyright ©1988 Rocky Mountain Mathematics Consortium 

707 



708 J.E. BROWN AND J.B. WALKER 

where O(z) and I(z) are the outer and inner factors of / , respectively, 
and A € R. For n > 2, let Bp(n) denote those functions / € Bp of the 
form (2) with îî'(0) = • • • = Q (n-1}(0) = 0. Observe that Hn £ Bp(n) 
for each n > 2 and that the classes Bp(n) are nested in Bp. We can 
now state our main result. 

THEOREM I . Leti <p < oo. 

(a)Iff£Bp(2)9ihen\a2\<(l)1f2. 

(b ) / / /6 f l p (3 ) , ttcn |a3| < (f ) ^ . 

Equality holds only for H2 and H3, respectively, and their rotations. 

The conjecture (1) is a generalization of the Krzyz conjecture which 
asserts that 

2 
(3) sup \an\ = - , for all n > 1. 

Boo 3 

This conjecture has been proved only for n = 1,2,3,4 [4, 6, 7]. We 
point out a connection between the conjecture (1) for Bp(n) and the 
Krzyz conjecture. Subordination methods maybe used to study the 
Krzyz conjecture but seem to be of little use in studying the more 
general problem (1). We will make use of the Pontryagin Maximum 
Principle here. This appears to be the most effective tool in consider­
ing the conjecture (1). 

2. Preliminaries. Any function f € Bp has the form (2). Since 
the inner function J belongs to #00 in order to prove our theorem 
we need sharp estimates for coefficients of functions in B^. Suppose 
g(z) = 60 + b\z + Ò222 + • • • 6 -BQO and 60 = e~* for. some 0 < t < 00. 
In [4], or directly, we obtain 

(A\ \h\^l2t 0<t<2 
[V I 60 I I 2(*2 - *) 2 < t < ex). 

Bounds for |&3/6o|were also obtained in [4], but not all were sharp. 
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Prokhorov and Szynal [6] obtained the following sharp bounds: 
(5) 

(2y = F1{t) 0<t<t! 

^ ( 2 t - l ) 3 / 2 = F2(t), h<t<t2 

< < &(2t2 - 6t + 3)(t - 2)3/2(* - 3)-V2 = F3(t), t2<t<t3 

&t(2t - 3)V2(-t26t - 6 ) - 1 / 2 = F4(t), t3<t<t4 

{ lt(2t2-6t + 3) = F5{t)i 

where tx = 1.65495-•• ,t2 

3.82287 • • • are roots of 
3.22474-•• , t3 

£4 < t < 00, 

3.47568 • • •, and U = 

16t3 - 33t2 + 12t-2 

2t2 - St + 5 = 0 

2t3 - 12t2 + 21t - 12 : 

2t2 - 10t + 9 = 0 

respectively. 

Finally, we mention that the outer and inner functions in (2) have 
the form 

(6) 

and 

(7) 

îï(z) = exp (— J ^ - )ogw(0)dß) 

J(*) = « p ( - j f -^Tsdi0)), 

where a; is a nonnegative measurable function with logo; € L1, ||Ü;||LP = 
| |/ | |p and ß is a bounded nondecreasing function with //(#) = 0 a.e.. 
Note also that w(0) = \f{eie)\ a.e.. 

3. Proof of Theorem 1. For any fixed n > 2, the class Bp(n) U {0} 
is compact and if / belongs to Bp(ri), then so does e%vf(elßz). Hence 
it is enough to consider 

(8) max Re {an\ = Jv(n) 
Bp(n) 
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and we may assume /(0) = a0 > 0. Let Fn(z) = ^2^=0AkZk be 
an extremal function for (8). Then clearly | |F n | | p = 1. Indeed, if 
H^nllp < 1> then there exists a A > 1 such that ||AFn | |p = 1. Hence 
XFn G Bp(n) with larger coefficients. Summarizing, it suffices to 
consider (8) over all f(z) = Sl(z)I(z) G Bp(n) with /(0) > 0 and 
| |/ | |p = 1. Let B*(n) denote this class. Hence we have 

(9) Jv(n) = m a x Re {uni-

For convenience put 

-i r27r %e , oo 
(10) ä?/0 ^b-z^^{9)d9 = Y.ckz

k 

and 

(11) I(z) = b0 + hz + b2z
2 + --- , 

with 6o = e~l for some t > 0. Hence we have 

1 f27r 

(i2) Co = 2W logujde 

and 

1 f2lz 

(13) ck = ̂ ~ 2e-ike\ogu{9)d0, k > 1. 

If / (z) = a0 + aiz + a22;2 + • • • = ft(z)I(z) e B*(n), then 

(14) ao = eCo6o = ec°-* 

and 

(15) an=ec^-1(cn+
b^\. 

(Since ft'(0) = • • • = ^("-^(O) = 0 we have Cl = • • • = c„_i = 0.) 
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2ir 

upd6 = 1 
0 

(17) 

We want to maximize Re {an} given by (15). Now as Q(z) and I(z) 
can vary independently, it is apparent from (15) that sharp bounds on 
11^|, when bo = e _ t , are needed. This is precisely what is done in 
resolving the conjecture (3). 

Let M denote the set of all nonnegative functions u) with log UJ € L1 

satisfying 

<16> hi 
and 

1 f2n 

ck = — / 2e~ike logu(0)dO = 0, 1 < ife < n - 1. 
2TT J0 

It follows from the above and (15) that 

(18) Jp(n) = max max max Re {ec°~*(cn + bn/bo)}, 
j(0) = e - * 

where c0 = & f£* w(0)d0. 

We consider the inner maximum first. Since there exists an extremal 
function Fn for (9) there exists a function ujn maximizing the inner 
functional (indeed, u)n{0) = |Fn(e*ö)|. a.e.). Our goal is to identify the 
form an extremal wn must have. Fix such a function ujn and let 

c*0 = ^ J \ogu;n(e)de 

and 

2TT J0 

2TT 

2e~ike logun{6)d6, k > 1. 

(CI = 0 f o r < f c < n — 1). Now, since ujn maximizes the inner functional 
in (18) we have 

In fact, if we let M* denote all functions LJ € M such that Co = 
1.2ir f0* logu(O)d0 = c^, then u)n is also extremal for the simple 
problem 

(19) max Re {cn}. 
UJ€M* 
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The extremal problem (19) leads to the following isoperimetric problem: 

max < — / cos nO log u{9)d0 \ 

such that 

/ cosfc(91ogu;(<9)d<9 = 0 (1 < k < n - 1) 
Jo 

/•27T 

/ smk6\ogu(0)d6 = 0 (1 < k < n - 1) 

^ J \oguj{0)dO = cl 

1 f2* 

where the maximum is taken over all nonnegative measurable functions 
uj satisfying the stated constraints. The vanishing of the 2n—2 integrals 
above are the constraints (17). This problem, which has a solution un, 
is a simple problem in control theory. Let us define the functions Xj (t) 
as follows: 

1 f* 
xo(t) = / cos nO log uj(0)d9 

n Jo 
xk(t) = J cos kOloguj{0)dO (1 < k < n - 1) 

Jo 

Xk+n-xit) = I sink9loguj(e)dO (1 < jfc < n - 1) 

1 fl 

x2n-1(t) = —j \oguj(0)de 
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Then we have the problem of determining a control UJ of the system of 
equations 

xo(t) = —cosnt\oguj(t) = Go{uj,t) 
7T 

xk(t) — cosfc£logu;(£) = Gk{w,t) (1 < k < n — 1) 

xk+n-i(t) = $mht\ogu)(t) = Gk+n-i(u,t) (1 < k < n - 1) 

^2n-i(*) = — loga;(t) = G 2 n - i (^ , t ) 

X2n(t) = ^-UJP(t) = G2n(uJ,t) 
Z7T 

that takes it from the initial point (#o(0),... ,#2n(0)) = 0 to the 
final point (#o(27r),#i(27r),... ,#2n(0)) under the condition that Xo(t) 
attains its minimum at the final time t = 2K. We can apply the 
Pontryagin Maximum Principle which asserts that an optimal ujn must 
satisfy ^j\u,n = 0, where H = YlkLo ^kGk a n d where ipk are solutions 
to the conjugate system 

dH 
^ = - • 5 — , 0<k<2n. 

oxk 

(See [5, 8, 1].) Since the functions Gk (hence H) are independent of 
XQ, # I , . . . , X2n we see that ipk are all constants. Hence in our case 

n - l 

H = Ao(cos nt log CJ) + \ J (A& cos H + JIK sin &£) log a; 
k=i 

+ Ana; + / i n ^ p , 

where \k and /j,k are constants. Now since ^7 Im = 0,it follows that an 
extremal ujn must have the form 

n - l 

(20) ^n(^) = «o + ßo cos nt -f y ^ (afe cos H + ßk sin fc£), 
k=i 

for some ak,ßk 6 R. Now as u;n > 0, from (20) we see that UJ% is 
a nonnegative trigonometric polynomial of degree n, and, invoking an 
old result of Fejer and Riesz, we conclude that 

(2D "£(*) = I E l f I2, 
fc=0 
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for some 7^ G C. Note that our extremal function Fn(z) = Q,n(z)In(z) 
and that 

r 1 t e™ + z Ì 
«„(*) = e x p { — / p y f - l o g a ^ » ) , » } 

fc=0 

for some dk € C. Now, since ||o;n||z,p = 1 we get ^£=0 |7fe|2 = 1 and so 
E L o \dk\2 = 1- Since n;(0) = n"(0) = . . . = n{n~1](0) = 0, we must 
have d1 = d2 = • • • = d n - i = 0. Also note that On(0) = e00 = C?Q/P > 0. 
Hence we obtain 

(22) nn(z) = (do + dnz
n)2/p, 

where d2, + \dn\
2 = 1 and \dn\ < do. The last result follows since 

nn(z) ^ 0 in \z\ < 1. 

If Fn(z) = ^2<kL0AkZk = Q,n(z)In(z) is an extremal function for (9) 
with In(z) = bo + b\z + &2̂ 2 + * * • (fro = e _ t for some t > 0) and f£n 

given by (22), then 

(23) Jp(n) = Re {An} = Re { ^ " e - * ( ^ + ^ ) } . 

It remains to maximize the right-hand side of (23) over do, dn with 
\dn\ < do,do + |dn |2 = 1, and over functions in B^ with òo = e~* for 
some 0 < t < oc. The connection with the conjecture (3) is now clear. 

At the present there are only sharp bounds for | ̂  | and 1I3-1 as pointed 
out in §2. Hence we now restrict our attention to n = 2 and n = 3. 

For n = 2 we see that (23) becomes 

(24) W-B. {<M£(!) +(£))}• 
Let u = | ^ | and note that since d§ + |c?212 = 1 and |c?21 < do, w e n a v e 

d2
0

/p = (1 + u 2 ) _ 1 / p and 0 < 1. Using (4) we see that (24) implies 

(25) Jp(2) < (1 + u 2 ) " 1 / ^ - * ( — + </>(*)) = <j>{u, t), 
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where 
.,,. J2t, 0 < t < 2 

^ = \ 2 ( * 2 - * ) , 2 2 < t < oo * 

For 0 < t < 2, it is easy to see that (j>(u,t) < (2/e)1^q with equality 
if and only if u = 1 and t = 1/q. Suppose next that 2 < t < 3. Hence 
we have 

(26) ^(u, *) = (! + w 2 ) - 1 ^ - * (— + 2{t2 - t)). 

Now since t2 - t < 3.7t - 5 when 2 < * < 3 we obtain 

<t>{u, t)<(l+ u 2 ) - 1 / ^ - ' (— + 7.4 - IO) s <t>*(u, t). 

It follows that (j)*(u,t) < <f>*(u,to), where to = | | — ,3" <, and hence 

<£(M) < 0*(M) < <£*(Mo) 

= e"87/37(7-4K(TT^)) 
, e0.14/3.7 x i / p 

< ( 0 - 7 1 ) (ÎT(OW) (0.13) 

< 0 . 7 3 < = < ( § ) 
2 / o x 1 / ^ 

e 

Finally, suppose £ > (3 + \/5/2 = 2.61803 • • •. Note that this overlaps 
the interval [2,3] just considered. It is easy to see that (£(u, t) given by 
(26) is a decreasing function of t for t > (3 + \/5)/2. Hence we obtain 

i / « 

This completes the proof for the case n = 2. 

The case n = 3 is similar to n = 2 and so, as above from (23), we 
have the estimate 

(27) Jp(3) < (1 + u2)-1'^-* (— + VW) = <t>(u, t), 
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where ip(t) = Fk{t),tk-i < t < tk for 1 < k < 5, and the functions Fk 
and constants tk are given by (5) (to = 0 , ^ = oo). 

If 0 < t < ti then, as above, it is easy to check that (f)(u,t) < ( | )1 /9 

with equality only for u = 1 and t = 1/g. Since the functions F& are a 
little involved we have to consider smaller intervals. 

If h < t < 1.8, then we get F2(t) < 3.05£ - 1.5, and so 

0(u, t) < (1 + u 2 ) " 1 / ^ - * (— + (3.05* - 1.5)) 

< (1 + t z 2 ) - 1 / ^ - 1 - 6 5 (— + 3.55) = M L 

For 1.8 < t < 1.9, then F2(t) < 3.16£ — 1.57, and so a calculation gives 

</>(u, t) < (1 + u 2 ) - 1 / ^ " 1 - 8 (— + 4.12) = M2. 

If 1.9 < t < 2, then F2(t) < y/Sß(2t - 1) and hence 

0(ti, * ) < ( ! + î z 2 ) - 1 / ^ " 1 ^ — + 4.58) = M3. 

If 2 < t< t2i then 

0(w, t) < cj>(u, 2) < (1 + w 2 ) " 1 / ^ 2 (— -f 4.9) = M4. 

For t2 < t < £3, we have the simple estimate F3(t) < 17.2 and so 

# t i , i ) < (1 + u 2 ) 1 / ^ - 3 2 2 ( — + 17.2) = M5. 

Now, for £3 < £ < £4, we see that, since (2y - 3)3 / (-£2 + 6£ - 6) is 
increasing, we get F4(t) < \/8/3£(6.62) < 6.3*. Thus we obtain 

0(u,t) < (l + u 2 ) " 1 / ^ - 3 - 4 ^ — + 22) = M 6 . 

If £4 < t < 4.4, we can easily estimate F^(t) as follows: 

( 30, £4 < £ < 
< 37, 4 < t < 
{ 45, 4.2 < t <_ 

30, U < t < 4 
ftM < <( 37, 4 < £ < 4.2 

<4.4. 
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Hence, in these appropriate intervals, we conclude that 

{ (1 + î x
2 ) " 1 / P e 3 - 8 2 ( ^ + 3 0 ) s Mr 

(l + u 2 ) - 1 / ^ - ^ ^ + 37) = M8 

(1 + W 2 ) - l / p e - 4 . 2 ( ^ + 4 5 ) = M g 

Finally, if 4.4 < t < oo we see that 0(u, £) is a decreasing function of t 
and so </>(w, £) < Mg. 

If we now let ß{u,p) = (1 + u2)~1/pe~c(2u/p + m), where c and m 
are fixed constants and m > 2, then it is easy to check that ß attains 
its maximum when p = 1 and w = (—m + y/m2 + 4)/2. Thus we see 
that M* < 0.733 for 1 < k < 9, and, since Jp(3) < maxi<fe<0 Mfc < 
0.733 < f < (2/e)1/9) w e are done. 

The statement of equality follows from the fact that in (4), for 
0 < t < 2, equality occurs only for exp(—t((l — z2)/(l + z2)) and 
its rotations; while in (5) equality holds when 0 < t < t\ only for 
exp(-*((l - z3)/(l + z3))) and its rotations. (See [4 and 6].) a0 

4. Remarks. Finally we should point out that the Pontryagin Max­
imum Principle can be used to investigate the more general problem 

(28) max Re {an}, n > 2,1 < p < oo. 
Bp 

In fact, we are again led to a certain isoperimetric problem and we 
conclude that any extremal function F must have the form 

F(z)=(J£dkz
k)2/PI(z), 

where dk € C satisfy ]££=o \d>k\2 = 1 and $̂ fc=o dkZk 7̂  0 in \z\ < 00. 
Since the inner function I(z) has the form 

(29) I(z)=exp(- - + ^ ( 0 ) ) , 

for some bounded non-decreasing p with /i'(0) = 0 a.e., the Goluzin 
variation [3] (see also [4]) may be applied to (29) for the problem (28) 
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with fixed ft(z). One then easily obtains 

THEOREM 2. If F is an extremal function for (28), then 

fc=0 fc=l 

where dk € C satisfy ^2%=0 \dk\2 = 1 and $^L 0 d^zk ^ 0 in \z\ < l,t > 
0, A > 0 with £ A* = 1 and 6k e R. 

This result, whenp = oo, is given in [4]. Although our result gives the 
form of an extremal function F for the conjecture (1), hence greatly 
simplifying the problem, there are difficulties that arise in trying to 
maximize the coefficients of F. Even the case n = 2 presents some dif­
ficulties. Nevertheless, it is hoped that Theorem 2 in conjection with 
other results will eventually lead to a proof of the conjecture (1). 
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