LINEAR COMBINATIONS OF HYPONORMAL OPERATORS

JOHN B. CONWAY AND WACLAW SZYMANSKI

1. Introduction. It is well known that if N_{1} and N_{2} are two normal operators such that their linear span consists of normal operators, then N_{1} and N_{2} commute [8]. This paper addresses the question whether this is true for hyponormal and subnormal operators. The answer is no. Two noncommuting hyponormal operators are given in this note such that their linear span consists entirely of hyponormal operators. What is true (Proposition 2.3)is that if A and B are two hyponormal operators and if $A B^{*}=B^{*} A$, then the linear span of A and B consists of hyponormal operators and both $A B$ and $B A$ are hyponormal.
The linear span of two normal operators consists entirely of normal operators if and only if the operators commute. There are, however, examples of subnormal operators A and B such that $A B=B A$ but neither $A+B$ nor $A B$ is hyponormal [7] (also see pages 23-24 of [5]). Since half of this result for normal operators fails to generalize to the hyponormal case it is not too surprising that the other half also fails to generalize. The counterexample demonstrating this (Example 2.4) arises by constructing hyponormal operators A and B such that $A B^{*}=B^{*} A$, but $A B \neq B A$. In light of the result mentioned above, this shows that $\operatorname{span}\{A, B\} \equiv\{a A+b B: a, b \in \mathbf{C}\}$ consists of hyponormal operators even though A and B do not commute.
This leads to a consideration of the question, "If A and B are hyponormal operators and $A B^{*}=B^{*} A$, when does $A B=B A^{\prime \prime}$? That is, when is the converse of Fuglede's Theorem valid for hyponormal operators? It is well known that Fuglede's Theorem does not extend to hyponormal operators or even subnormal operators. Moreover, as mentioned above, the possible generalization of the converse of

[^0]the Fuglede Theorem to hyponormal operators, though previously overlooked, is also false. In $\S 2$ of this paper, conditions are given under which the linear span of two hyponormal operators consists of only hyponormal operators. Example 2.4 illustrates that the question raised at the beginning of this paper has a negative answer. Included in $\S 2$ is one necessary and sufficient condition (Proposition 2.5) which is used to show that if A is a hyponormal operator and N is a normal operator, then the linear span of A and N consists entirely of hyponormal operators if and only if $A N=N A$. A similar result is established for a subnormal operator A (Proposition 2.9). These results are far from the ultimate answer to this question and indicate the need for further work. In fact, this question is one more indication that our understanding of hyponormal and subnormal operators has much further to go.

In $\S 3$ a number of situations will be given in which the converse of Fuglede's Theorem does hold. It will be shown that it often happens that if A and B are hyponormal and $A B=B A$ and $A B^{*}=B^{*} A$, then either A or B is normal. In particular, this is the case when A is a finitely multicylic hyponormal operator.

The remainder of the present section is devoted to setting the notation and some preliminaries. The notation and terminology used here will usually conform to that of [3] and [4]. For the convenience of the reader some terminology is recalled here. An operator A on a Hilbert space \mathcal{H} is said to be hyponormal if $A^{*} A-A A^{*}$ is a positive operator; A is cohyponormal if A^{*} is hyponormal.
In this paper $\mathcal{B}(\mathcal{H})$ denotes the algebra of bounded linear operators on the Hilbert space \mathcal{H}. The basic facts concerning hyponormal and subnormal operators can be found in [3]. If X and Y belong to $\mathcal{B}(\mathcal{H})$, the commutator of X and Y is defined as $[X, Y]=X Y-Y X$. The self-commutator of an operator A is $\left[A^{*}, A\right]$.
Recall that, for $1 \leq n \leq \infty, \mathcal{H}^{(n)}$ denotes the Hilbert space formed by taking the direct sum of \mathcal{H} with itself n times (a countable number of times if $n=\infty$). Say that a set of operators is hyponormal (respectively, subnormal) if each operator in the set is hyponormal (respectively, subnormal).
2. The linear span of two hyponormal operators. This section will explore conditions under which span $\{A, B\}$ is hyponormal. The
proof of the next lemma is straightforward.

Lemma 2.1. If A and B belong to $\mathcal{B}(\mathcal{H})$, then span $\{A, B\}$ is hyponormal (respectively, subnormal) if and only if, for every a in \mathbf{C} both A and $a A+B$ are hyponormal (respectively, subnormal).

Note that if $w \in \mathbf{C}$ and $T=w A+B$, then

$$
\begin{equation*}
\left[T^{*}, T\right]=|w|^{2}\left[A^{*}, A\right]+\left[B^{*}, B\right]+2 \operatorname{Re}\left(w\left[B^{*}, A\right]\right) \tag{2.2}
\end{equation*}
$$

Proposition 2.3. If A and B are hyponormal and $A B^{*}=B^{*} A$, then:
(a) span $\{A, B\}$ is hyponormal;
(b) $A B$ and $B A$ are hyponormal.

Proof. Since $A B^{*}=B^{*} A,\left[B^{*}, A\right]=0$. The result (a) is now immediate from Lemma 2.1 and Equation 2.2. To prove (b) note that $A B(A B)^{*}=A B B^{*} A^{*} \leq A B^{*} B A^{*}=B^{*} A A^{*} B \leq B^{*} A^{*} A B=$ $(A B)^{*} A B$; thus $A B$ is hyponormal. Similarly, $B A$ is also hyponormal.

The condition of Proposition 2.3 is not necessary for $\operatorname{span}\{A, B\}$ to be hyponormal Indeed, if $A=B=$ the uniliateral shift of multiplicity one, then span $\{A, B\}$ is hyponormal but $A B^{*} \neq B^{*} A$.
The next example shows that it is possible for $\operatorname{span}\{A, B\}$ to be hyponormal without having $A B=B A$, thus answering the question posed at the beginning of this paper.

EXAMPLE 2.4. If A is the unilateral shift of infinite multiplicity, then there is a hyponormal operator B such that $A B^{*}=B^{*} A$, and so span $\{A, B\}$ is hyponormal, but $A B \neq B A$.

Let U be the unilateral shift of multiplicity one and let \mathcal{K} be an infinite dimensional Hilbert space. Thus $A=I_{\mathcal{K}} \otimes U$ is a unilateral
shift of infinite multiplicity. Let $B=X \otimes 1+Y^{*} \otimes U^{*}$ for some X and Y in $B(\mathcal{K})$. Clearly $A B^{*}=B^{*} A$ but $A B \neq B A$. Computing shows that

$$
\begin{aligned}
& B^{*} B=X^{*} X \otimes 1+X^{*} Y^{*} \otimes U^{*}+Y X \otimes U+Y Y^{*} \otimes U U^{*}, \\
& B B^{*}=X X^{*} \otimes 1+X Y \otimes U+Y^{*} X^{*} \otimes U^{*}+Y^{*} Y^{*} \otimes 1
\end{aligned}
$$

Assume for the moment that X and Y can be found such that $X Y=$ $Y X$. Then

$$
\left[B^{*}, B\right]=\left(X^{*} X-X X^{*}-Y^{*} Y\right) \otimes 1+Y Y^{*} \otimes U U^{*}
$$

So in order to get B hyponormal and satisfying the other conditions stipulated in the example, it suffices to find operators X and Y such that $X Y=Y X, Y \neq 0$, and $X^{*} X-X X^{*}-Y^{*} Y \geq 0$.
To do this let \mathcal{L} be any Hilbert space of dimension at least 2 and put $\mathcal{K}=\mathcal{L}^{(\infty)}$ (the direct sum of \mathcal{L} with itself countably many times). Thus operators on \mathcal{K} can be represented as infinite matrices with entries from $\mathcal{B}(\mathcal{L})$. Let P be a proper projection on $\mathcal{L}(P \neq 0$ or 1$)$ and define X and Y by

$$
X=\left[\begin{array}{cccc}
0 & 0 & 0 & \cdots \\
P & 0 & 0 & \cdots \\
0 & 1 & 0 & \cdots \\
\cdots & & &
\end{array}\right] \quad Y=\left[\begin{array}{cccc}
0 & 1-P & 0 & \cdots \\
0 & 0 & 0 & \cdots \\
0 & 0 & 0 & \cdots
\end{array}\right]
$$

If follows that

$$
\begin{gathered}
X^{*} X=\left[\begin{array}{ccccc}
P & 0 & 0 & 0 & \cdots \\
0 & 1 & 0 & 0 & \cdots \\
0 & 0 & 1 & 0 & \cdots \\
\cdots & Y^{*} Y=\left[\begin{array}{l}
*
\end{array}\right]\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 & \cdots \\
0 & P & 0 & 0 & \cdots \\
0 & 0 & 1 & 0 & \cdots \\
\cdots &
\end{array}\right] \\
\\
0 & 1-P & 0 & \cdots \\
\cdots & 0 & 0 & \cdots
\end{array}\right] .
\end{gathered}
$$

Thus

$$
X^{*} X-X X^{*}-Y^{*} Y=\left[\begin{array}{cccc}
P & 0 & 0 & \cdots \\
0 & 0 & 0 & \cdots \\
0 & 0 & 0 & \cdots \\
\cdots & & &
\end{array}\right]
$$

and $X Y=Y X=0$. This concludes the example.

The next result is a necessary and sufficient condition for span $\{A, B\}$ to be hyponormal, though in practice it is difficult to verify. Its main virtue is that it is the natural approach to obtain Corollary 2.8.

Proposition 2.5. If A and B are hyponormal, then $\operatorname{span}\{A, B\}$ is hyponormal if and only if, for every h in \mathcal{H} such that $\left[B^{*}, A\right] h \neq 0$, the inequality

$$
\left|\left\langle\left[B^{*}, A\right] h, h\right\rangle\right|^{2} \leq\left\langle\left[A^{*}, A\right] h, h\right\rangle\left\langle\left[B^{*}, B\right] h, h\right\rangle
$$

holds.

Before proving this proposition, a lemma about complex numbers is necessary.

LEMMA 2.6. If a and b are non-negative real numbers and c is a non-zero complex number, then

$$
|z|^{2} a+b+2 \operatorname{Re}(z c) \geq 0
$$

for all complex numbers z if and only if $|c|^{2} \leq a b$.

Proof. Suppose $|z|^{2} a+b+2 \operatorname{Re}(z c) \geq 0$ for all z in C. For an arbitrary real number t, if $z=t \bar{c}$, then $t^{2}|c|^{2} a+b+2 t|c|^{2} \geq 0$. An examination of the discriminant of this quadratic expression shows that $|c|^{4} \leq|c|^{2} a b$. For the converse, if μ is any number in \mathbf{C} with $|\mu|=1$, then $\operatorname{Re}(\mu c)^{2} \leq|c|^{2} \leq a b$. Hence $t^{2} a+b+2 t \operatorname{Re}(\mu c) \geq 0$ for every t in R. Since every complex z can be written as $t \mu$ with t real and $|\mu|=1$, this completes the proof.

Proof of Proposition 2.5. Let w be any complex number and put $T=w A+B$. It follows from Equation 2.2 that

$$
\left\langle\left[T^{*}, T\right] h, h\right\rangle=a|w|^{2}+b+2 \operatorname{Re}(c w)
$$

where $a=\left\langle\left[A^{*}, A\right] h, h\right\rangle, b=\left\langle\left[B^{*}, B\right] h, h\right\rangle$, and $c=\left\langle\left[B^{*}, A\right] h, h\right\rangle$. The proposition is now immediate by Lemma 2.6.

COROLLARY 2.7. If A and B are hyponormal, $A B^{*} \neq B^{*} A$, and $\operatorname{span}\{A, B\}$ is hyponormal, then neither A nor B is normal.

Proof. The preceding proposition implies that if either A or B is normal then $\left\langle\left[B^{*}, A\right] h, h\right\rangle=0$ for all vectors h in \mathcal{H}. But this is equivalent to the condition that $\left[B^{*}, A\right]=0$, contradicting the hypothesis.

The next corollary completely answers the question raised at the beginning of this paper in the case that one of the operators is normal.

COROLLARY 2.8. If A is a hyponormal operator and N is normal, then $\operatorname{span}\{A, N\}$ is hyponormal if and only if $A N=N A$.

Proof. First assume that span $\{A, N\}$ is hyponormal. It is immediate from the preceding corollary that $A N^{*}=N^{*} A$. By Fuglede's Theorem, A and N commute. The converse is immediate by Fuglede's Theorem and Proposition 2.3.

There is a corresponding result for subnormal operators. Part of this next result is in the folklore of subnormal operator theory and is presented here for completeness.

PROPOSITION 2.9. If S is a subnormal operator and N is a normal operator on \mathcal{H}, then the following statements are equivalent.
(a) S and N commute.
(b) $\operatorname{span}\{S, N\}$ is subnormal.
(c) $\mathcal{A}(S, N)$, the algebra generated by S and N, is subnormal.
(d) S and N have commuting normal extensions.

Proof. It is clear that (d) implies (c) and (c) implies (b). The fact that (b) implies (a) is an immediate consequence of Corollary 2.8. It remains to show that (a) implies (d). To do this, a result of Ito (Theorem 1 of [6]) that generalizes the Halmos-Bram criterion to families of operators will be used.
Let $\left\{h_{m n}\right\}$ be an arbitrary finite family of vectors in \mathcal{H}. By Fuglede's Theorem

$$
\begin{aligned}
\Omega & \equiv \sum_{m, n, j, k}\left\langle S^{m} N^{n} h_{j k}, S^{j} N^{k} h_{m n}\right\rangle \\
& =\sum_{m, n, j, k}\left\langle S^{m} N^{* k} h_{j k}, S^{j} N^{* n} h_{m n}\right\rangle .
\end{aligned}
$$

If $f_{j} \equiv \Sigma_{k} N^{* k} h_{j k}$, then

$$
\Omega=\sum_{m, j}\left\langle S^{m} f_{j}, S^{j} f_{m}\right\rangle
$$

and so, by the subnormality of S and the Halmos-Bram condition, $\Omega \geq 0$. If now follows by the result of Ito referred to above that S and N have commuting normal extensions.
3. The converse of Fuglede's Theorem. As seen in the preceding section, there is a close relationship between the questions "When is span $\{A, B\}$ hyponormal"? and "When does $A B^{*}=B^{*} A$ "? Attention will now be shifted to the latter question. To do this, some initial preparation is necessary. The proof of the first lemma in this process is left to the reader.

LEmma 3.1. Hilbert spaces \mathcal{H} and \mathcal{K}, assume that $P \in \mathcal{B}(\mathcal{H}), Q \in$ $\mathcal{B}(\mathcal{K})$, and $C: \mathcal{K} \rightarrow \mathcal{H}$ is a bounded operator. If an operator X in $\mathcal{B}(\mathcal{H} \oplus \mathcal{K})$ is defined by the matrix

$$
X=\left[\begin{array}{cc}
P & C \\
C^{*} & Q
\end{array}\right]
$$

then the following statements hold:
(a) The operator X is positive if and only if for all h in \mathcal{H} and k in \mathcal{K},

$$
\langle P h, h\rangle+\langle Q k, k\rangle+2 \operatorname{Re}\langle C k, h\rangle \geq 0
$$

(b) If $X \geq 0$, then $P \geq 0$ and $Q \geq 0$.
(c) If either P or Q is 0 and X is either positive or negative, then $C=0$.

Lemma 3.2. For $1 \leq n \leq \infty$ and $A_{i j} \in \mathcal{B}(\mathcal{H})$, for $1 \leq i, j \leq n$, let $X=\left(A_{i j}\right) \in \mathcal{B}\left(\mathcal{H}^{(n)}\right)$.
(a) If $X \geq 0$, then $A_{i i} \geq 0$ for all i.
(b) If X is either positive or negative and $A_{i i}=0$ for all i, then $X=0$.

Proof. This follows by an application of the preceding lemma.

PROPOSITION 3.3. For $1 \leq n<\infty$ and $1 \leq i, j \leq n$, let $T_{i j} \in \mathcal{B}(\mathcal{H})$ and assume that $T=\left(T_{i j}\right)$ is a bounded operator on $\mathcal{H}^{(n)}$. If each $T_{i j}$ is hyponormal and Tis cohyponormal, then T is normal.

Proof. Let $X=T^{*} T-T T^{*}=\left(A_{i j}\right)$. It must be shown that $X=0$. By assumption, $X \leq 0$. According to the preceding lemma, to show X is 0 it suffices to show that the diagonal entries of X are all 0 .

A computation shows that

$$
A_{k k}=\sum_{j=1}^{n}\left(T_{k j}^{*} T_{k j}-T_{j k} T_{j k}^{*}\right)
$$

Since T is cohyponormal, $A_{k k} \leq 0$ for all k. Thus, by rearranging the order of the terms in the sum, it follows that

$$
0 \leq \sum_{k=1}^{n} A_{k k}=\sum_{k=1}^{n} \sum_{j=1}^{n}\left(T_{k j}^{*} T_{k j}-T_{j k} T_{j k}^{*}\right)=\sum_{k=1}^{n} \sum_{j=1}^{n}\left(T_{k j}^{*} T_{k j}-T_{k j} T_{k j}^{*}\right)
$$

But, by hypothesis, each $T_{k j}$ is hyponormal and so $T_{k j}^{*} T_{k j}-T_{k j} T_{k j}^{*} \geq 0$. Hence $\sum_{k=1}^{n} A_{k k} \geq 0$. This implies that $\sum_{k=1}^{n} A_{k k}=0$. But $A_{k k} \geq 0$ for each k and so $A_{k k}=0$ for each k. By the preceding lemma, $X=0$ and T is normal.

Note that the proof of the preceding proposition also shows that each $T_{i j}$ is normal since $A_{k k}=0$ for all k and each $T_{j k}$ is hyponormal. Also the preceding proposition is false for infinite matrices of operators. In fact, for $T=$ the backward unilateral shift of multiplicity 1 , a cohyponormal operator that is not normal, the standard matrix representation of T has as its entries non-negative operators on the one dimensional Hilbert space \mathbf{C}.

Corollary 3.4. Let $A \in \mathcal{B}(\mathcal{H})$ and assume its commutant, $\{A\}^{\prime}$, is hypernormal. If $1 \leq n<\infty, I_{n}$ is the identity on an n dimensional Hilbert space \mathcal{H}_{n}, and B is a hypernormal operator in $\mathcal{B}\left(\mathcal{H} \otimes \mathcal{H}_{n}\right)$ satisfying $B^{*}\left(A \otimes I_{n}\right)=\left(A \otimes I_{n}\right) B^{*}$, then $B\left(A \otimes I_{n}\right)=\left(A \otimes I_{n}\right) B$ and B is normal.

Proof. Because $\left\{A \otimes I_{n}\right\}^{\prime}$ consists of the n by n matrices with entries from $\{A\}^{\prime}$, it is an immediate consequence of the preceding proposition that B^{*} and hence B, is normal. The remainder of the corollary follows from Fuglede's Theorem.

The preceding corollary shows that the construction in Example 2.4 is not possible for a shift of finite multiplicity. The next result is another instance where $A B^{*}=B^{*} A$ implies that $A B=B A$.

Proposition 3.5. If $A, B \in \mathcal{B}(\mathcal{H}), A$ commutes with both B^{*} and $B^{*} B$, and B commutes with $A^{*} A$, then $A B=B A$. In particular, if A and B are isometries and $A B^{*}=B^{*} A$, then $A B=B A$.

Proof. Under the hypothesis, $(A B-B A)^{*}(A B-B A)=B^{*} A^{*} A B-$ $B^{*} A^{*} B A-A^{*} B^{*} A B+A^{*} B^{*} B A=0$. Thus $A B-B A=0$. The statement about isometries is immediate, since in this case $A^{*} A$ and $B^{*} B$ are the identity operator.

One might wonder whether the infinite multiplicity was essential in Example 2.4. If A is a hyponormal operator which is finitely multicyclic and B is a hyponormal operator such that $A B^{*}=B^{*} A$, must it
be that $A B=B A$? Note that if this is true, then B is a hyponormal operator that commutes with both A and A^{*}. Thus $B \in W^{*}(A)^{\prime}$, the commutant of $W^{*}(A)$, the von Neumann algebra generated by A. As the next result shows, this implies that B would have had to be normal so that Fuglede's Theorem would have sufficed.

Proposition 3.6. If A is a pure essentially normal operator and A_{0} is a normal operator of finite multiplicity, then the only hyponormal operators in $W^{*}\left(A \oplus A_{0}\right)$ are the normal ones.

Proof. It is known ([1], also see [3; p. 296]) that an essentially normal operator can be written as the direct sum of irreducible ones and a normal operator. Therefore, because A is pure,

$$
A=A_{1}^{\left(n_{1}\right)} \oplus A_{2}^{\left(n_{2}\right)} \oplus \cdots
$$

where each A_{j} is irreducible and A_{i} and A_{j} are not unitarily equivalent for $i \neq j$. Note that $\left[A^{*}, A\right]=\left[A_{1}^{*}, A_{1}\right]^{\left(n_{1}\right)} \oplus\left[A_{2}^{*}, A_{2}\right]^{\left(n_{2}\right)} \oplus \cdots$. Since A is essentially normal, it follows that each A_{j} is essentially normal and that each $n_{j}<\infty$.
Suppose that A_{j} acts on the Hilbert space \mathcal{H}_{j} and A_{0} acts on \mathcal{H}_{0}. Since A_{j} is irreducible, $W^{*}\left(A_{j}\right)=\mathcal{B}\left(\mathcal{H}_{j}\right)$. It is a standard consequence of Schur's Lemma and the fact that each n_{j} is finite that the commutant of $W^{*}\left(A_{0} \oplus A\right)$ is spatially isomorphic to

$$
W^{*}\left(A_{0}\right)^{\prime} \oplus\left[M_{n_{1}} \otimes 1_{\mathcal{H}_{1}}\right] \oplus\left[M_{n_{2}} \otimes 1_{\mathcal{H}_{2}}\right] \oplus \cdots
$$

where M_{n} denotes the n by n matrices. If B is a hyponormal operator in the commutant of $W^{*}\left(A_{0} \oplus A\right)$, then $B=B_{0} \oplus B_{1} \oplus B_{2} \oplus \cdots$, where each B_{j} is hyponormal, $B_{0} \in W^{*}\left(A_{0}\right)^{\prime}$, and, for $j \geq 1, B_{j}$ corresponds to a hyponormal element of $M_{n_{j}}$. Thus B_{j} is normal for all $j \geq 1$. Because of the finite multiplicity of A_{0}, multiplicity theory for normal operators (see, for example, [4, p. 307]) implies that B_{0} is the direct sum of finite matrices with entries from the L^{∞} space of some measure supported on a compact subset of the plane. Thus the entries in these matrices are normal operators and so, by Proposition 3.3, B_{0} is a normal operator. Therefore B must be normal.

COROLLARY 3.7. If A is a finitely multicyclic hyponormal operator and B is a hyponormal operator such that $A B=B A$ and $A^{*} B=B A^{*}$, then B is normal.

Proof. This is an immediate consequence of the preceding result and the Berger-Shaw Theorem [2] which implies that A is essentially normal.

REFERENCES

1. H. Behncke, Structure of certain nonnormal operators, J. Math. Mech. 18 (1968), 103-107.
2. C.A.Berger and B.I. Shaw, Self commutators of multicyclic hyponormal operators are trace class, Bull. Amer. Math. Soc. 79 (1973), 1193-1199.
3. J.B. Conway, Subnormal Operators, Pitman Publ. Co. London, 1981.
4. - A Course in Function Analysis, Springer-Verlag, New York, 1985.
5. - A survey of some results on subnormal operators, in Operators and Function Theory, Edited by S.C. Power, D. Reidel Publ. Co., Dordrecht, Holland (1985), 19-37.
6. T. Ito, On the commutative family of subnormal operators, J. Faculty Sci. Hokkaido Univ. 14 (1958), 1-15.
7. A. Lubin, Weighted shifts and products of subnormal operators, Indiana Univ. Math. J. 26 (1977), 839-845.
8. H. Radjavi and P. Rosenthal, On invariant subspaces and reflexive algebras, Amer. J. Math. 91 (1969), 683-692.
Indiana University, Bloomington, IN 47405
West Chester University, West Chester, PA 19383

[^0]: The first author was partially supported by NSF grant MCS 83-20426.

 Part of this research was done while the second author was visiting Indiana University. He would like to express his gratitude for the hospitality shown him during that time.

 Received by the editors on July 11, 1986.

