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A RANGE PROBLEM FOR HOMOGENEOUS, 
HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS 

CHARLES HAMAKER 

1. Introduction A range problem will be considered for the partial 
differential equation Pu = / where u(x; t) and f(x; t) are real-valued 

functions on R n x R and P = PI ^ - , . . . , ^ ~ , J^ J is linear, homoge
neous with constant coefficients, and hyperbolic with respect to t. The 
question to be considered is: if f is supported in the bounded set ft 
and u is known for values of t such that R n x {t} is disjoint from ft, 
can / be determined? For simplicity, it will be assumed herein that u 
vanishes when t < inf {r : ft fl (Rn x {r}) ^ 0}. For a physical system 
modeled by the classical wave equation, this question is equivalent to 
asking if a force of finite extent and duration can be found from the 
subsequent disturbance that it generates. 

One elementary observation regarding this question can be made 
immediately. Whereas u can be found from / by classical, explicit 
formulas, / is not uniquely determined by the values of u outside 
ft. Indeed, for v also supported in ft, / -f Pv yields a solution which 
coincides with those values of u. 

The main result of this paper is the following theorem. Lg(ft) will 
denote the square-integrable, real-valued functions having support in ft. 

THEOREM 1.1. Let ft be an open, convex, and bounded subset of 

R n x R , / G Lg (fi), and P = p( ^ , . . . , ^ , §-t J be linear with 

constant coefficients, homogeneous, and hyperbolic with respect to t. 
Suppose u(x; t) vanishes for large negative values of t and satisfies 
Pu = f. Then, for t > T = sup {r : ft fl (Rn x {r}) ^ 0}, a 
representative of the class [f] = {/ H- Pv : v,Pv G LQ(Ç1)} can be 
computed from the Cauchy data for u on R n x {t}. Furthermore, 
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this computation can be implemented from Cauchy data or, if t is 
large enough, partial data (e.g. the values of u, but not its normal 
derivatives) for u on a proper subset of its support in R n x {t}. 

The computations consist of two main steps. The first, described in 
§2, obtains the Radon transform of / in the characteristic directions for 
P from the Cauchy data for u on R n x {t}. The second step, outlined 
in §3, uses this Radon transform data to compute a representative of 
[f] via the Kaczmarz method, a sequence of projections in the Hilbert 
space L\ (O). Also an alternate to the Kaczmarz method is described 
in §3 for the case where Q, is the open unit ball in Rn x R. 

2. Calculations with the Radon Transform. The Radon 
transform on Euclidean space has been used extensively in studying 
hyperbolic linear partial differential equations, for example in [3] and 
[4]. Its standard properties that are listed and subsequently used here 
are discussed in [7]. 

A point in the Euclidean space R n x R will be denoted by (x; i) = 
( # 1 , . . . , xn, t). The standard inner product on either R n or R n x R will 
be denoted by the usual dot product notation (i.e., x-y or (x; t) • (y; s)). 
The norm of x 6 R n will be denoted by |x|. 

The Radon transform of an integrable function g : R n —• R is given 
by 

Rg(eis) = R0g(s) 

= I g(x)dx where s G R and 0 E £ n _ 1 = {|a:| = 1}. 
J{xG=s] 

That is, R$g(s) is the integral of g over the hyperplane {x • 0 = s} 
in R n which contains sO and is orthogonal to the direction 6. If the 
Fourier transform of g is defined to be 

g(0 = (27T)-"/2 / e-**<g{x) dx for C € R n , 

then the Fubini theorem shows that 

(2.1) ( A * ; ? ) » = (27r)(n-1)/2ff(T0) for r € R. 
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The action of the dual of R on h : Sn 1 x R -> R is given by 

R*h(x)= [ h{0,X'0)de f o r z G R n . 

If g is integrable and square-integrable, then 

(2.2) 2 " 1 ( 2 7 T ) - 1 A (n-1)/2
JR* A ^-^l2Rg = g where 

(2.3) (Ag)(C) =| C I 0(C). 

Note that A acts on Rg by fixing 0 as in (2.1). Partial differentiation 
and the Radon transform are related by 

The following calculations will use the Radon transform both of a 

function g(x;t) on R n x R « R n + 1 and of its restriction g(- ;£) to 

R n x {t} « R n . The latter transform will be denoted by Rog{s, t) with 

0 G S71"1 and s G R and the former by R<pg{s) with cp G Sn and s G R. 

Denote the symbol of p( ^ - , . . . , ^ ^ J byp(£;t) = p(£ i , . . . , 

£n,£). By "hyperbolic of order m with respect to £, it is meant that 
for each 0 G Sn~~1,p(6] ß) = 0 has nonzero real solutions ßi(6) < 
" ' < ßm(Q)> These conditions are often described by the term 
strictly hyperbolic. Thus, to each 0 G 5 n _ 1 , there correspond unit 
characteristic directions <Pi{0) — (l+/%(0)2)_1/2(0; /?»(0)), i = 1 , . . . , m. 
Where context permits, the dependence of ßi and <pi on 0 will not 
be explicitly denoted. The definition of hyperbolicity implies that 
m is even, ßi{6) = - ß m _ i ( - 0 ) , and tpiiß) = -<pm-i(-0)- Hence P 
has distinct characteristic cones Tj = {r^i : r G R, 0 G 5 n _ 1 } for 
z = 1 , . . . , ra/2. The union of these cones will be denoted by I\ 

The calculation begins by applying Re to Pu = / to obtain 

\d8'dt)À (2.5) fthr» 7* M M M ) = Ä * / ( M ) 
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where the symbol of Pe is po(a,ß) = p(a9;ß). Pe has order m and 
is hyperbolic with respect to t because pe(l,ßj) = p(6\ßj) = 0 for 
j = 1 , . . . , m. Thus Reu can be expressed in terms of Ref by a variant 
of the method of Herglotz [3] for n = 1 and an application of Duhamel's 
principle, as outlined below. 

Herglotz's method solves the Cauchy problem 

•(ê'I)8 Pe U-.-^i « = 0 

dv dm~2v 
(2.6) v(s,0) = —(s,0) = ---=-o^(s,0) = 0 

^(s,0) = h(s) 
dv 

where h is a rapidly decreasing function. For any sufficiently differen-
tiable function H of one variable 

Pe(J-s,^JH(s + ßit)=Pe(l,ßi)H^(s + ßit) = 0. 

Define k(s, t) = £™ x H{s + ßit)/^-(l, A). Then, by the identity 

V W ^ f l 3)-i° for£<m-l 
^ P i / dß{'Pl>~\p9(0,l)-1 îov£ = m-l 

it follows that 

Pe 

—^k(s, 0) = 0 for j = 1 , . . . , m — 2, and 
otl 

dtm-ik^°)- p , ( 0 > 1 ) 

The solution to (2.6) is obtained by setting H (s) = (pe (0,1)/ml) s™ 
sgn 5, where sgn 0 = 0 and sgn 5 = s/ \ s | if s ^ 0, and v(s,t) = 
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/ h"(y)k{s — y,t)dy. The (m — 1) order initial condition is satisfied 
because 

ßm—l /*oo 
O^vis, 0) = J h"(y) \s-y\dy = h(s). 

Using the solution in conjunction with Duhamel's principle gives the 
following solution to (2.5): 

x sgn (s - y + # (* - r)) cft/dr. 

Integrating by parts twice yields 

ft /»CO 

Ke^^T^kl I™ Ketty>TÌ (m - 2)! J_00 y . ^ 

V* (* - V + ßi(t - r))m~2 sgn ((« - y + ft(t - r)) 

i = l Ö& &(1>Ä) 
dydr. 

In order to complete the first step of calculation, assume that t > 
T = sup {r : OH (Rn x {r}) ^ 0}. For such t, repeated differentiation 
of (2.7) with respect to s and t shows that 

m—2—k Qk m ok çt 

dsm-,-k <**«(., 0 = Mo, i) g ^ j ^ / _ 

F [9+ßi(t-T) /»CO ] 
/ Ref{y, r)dy- I Ref(y, r) dy dr 

iJ-OO J8+ßi(t-T) J 

for k = 0 , 1 , . . . , m — 2, and therefore that 

ßm—l—k ßk 

gsm-i-k gtk 
(2.8) _m^ 0Rk ft 

Rou{s,t) 

2ßk r 

»=i a/3 U> w •'-oo 
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for k = 0 , 1 , . . . , ra — 1. 

Because Ref(a,r) = 0 for r > £ > T, the i t / l integral in (2.8) is, 
up to the factor (1 + ßf)~1^2

1 the integral of Ref{<r,r) along the line 
r = t — (a — s)/ßi. Thus, writing i ^ / as an integral over 0-1 and setting 

<Pi = (ß\ßi)f y/l + ßi, it follows by the Fubini theorems that 

(2.9) Jt^Ref{s + ßi{t-r),r)dr=^^Rvj(-^^\. 

Substituting (2.9) into (2.8) gives a system of linear equations 
(2.10) 

~~M£ft) 
fìm—l—k fìk m 

2 ^ ( 0 , 1 ) ^ / 1 ^ 3 ? 

for k = 0 , 1 , . . . , m — 1, which has matrix ( ß\ ) and is invert-

ible because the ßi are distinct and non-zero. Inversion of this system 
yields the following proposition. To see the validity of the proposition 
for / G LQ(O), observe that the integrals in (2.7) make sense for such 
a function and that the derivatives in (2.8) and (2.10) can be taken in 
the sense of distributions. 

PROPOSITION 2.11. For f e Ll(ft) and t > T, the Cauchy data for 
u on R n x {t} allows the computation of 

{Rvf : <p e r } . 

A closer examination of (2.10) allows a somewhat more precise state
ment. For 0 e S71'1 and t E R, let 0,^0^) = {(x;t) : minn{(2/;r) • 
<Pi} < (x;t) • <pi < maxo{(?/;r) • ipi}}; i.e., the strip Oj(0, t) is the 
intersection of R n x {t} with the union of all hyperplanes normal 
to (pi and meeting O. Because (fi(0) = — <£m_j(—#), it follows that 
Çti(Q,t) = Çlm_i(—Q,t). Furthermore, when t is sufficiently large, the 
Çli{6,t) are pairwise disjoint. 

LEMMA 2.12. Let 0 e S71-1 and t > T. 
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a) Fix 1 < i < m, and let Si be an open strip in R x {t} which 
contains 0^(0, t). Then there exists a neighborhood £* of (fi in Ti such 
that {R<pif ' (p% G Ei} can be computed from Cauchy data for u on Si. 

b) Ift is large enough so that the Çli(9,t) are pairwise disjoint, then 
R<Pifi « = 1,. • •, m, can be found from the values of j^u on the corre
sponding ^ ( 0 , t) for any fixed 0 < k < m — 1. 

PROOF. Since u has compact support K in R n x {£}, there in a 
neighborhood Ai of 9 in 5 n _ 1 such that for each 9 € Ai, fì»(0,£) D K 
is contained in Si. Let Ei = {(pi : 9 G Ai}. Cauchy data for u on Si 
allows the computation of RQU on each (n — 1) dimensional hyperplane 
in Çli(6,t) for each 9 G E^ and hence, via (2.10), of R&J throughout 
its support for each (pi G Ei. This establishes a). 

If the Q,i(9, t) are pairwise disjoint, then for each s G R and 0 < k < 
m— 1, at most one sum and on the right-hand side of (2.10) is non-zero. 
Varying s in the kth equation of (2.10) establishes b). 

The next lemma will be needed in the following section. While it fol
lows from well-known general results in partial differential equations, 
the preceding computations and a characterization of the range of the 
Radon transform establish it directly. 

LEMMA 2.13. Let P(^ ^ ) and ft be as in Theorem (1.1), and let 

f G LQ(ÇI) satisfy R^f = 0 for all (p G I \ Then there exists u G Ll(fl) 
with Pu = / . 

PROOF. Denote the right-hand side of (2.7) by g{6, s, t). If a function 
u(x\t) can be defined by Reu(s,t) = g(6,s,t), then Pu = f. To do so, 
g(9,5, t) must be in the range of R for each t. 

By the characterization of the range of R given in [7], it is sufficient 
to verify for / G LQ(ÇI) that 

(2.14a) g(015, t) vanishes when {(x; i) : x • 9 = s} is disjoint from the 
compact set Ctt = {(x;t) : {(x;t)-T)nÜ^ 0}, 

(2.14b) g is jointly even in 9 and 5, and for each 9 and t,h(s) — 
^((9,5, t) and A*11"1*/2/» are square integrable, and 
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(2.14c) for each K R and each non-negative integer j , J^ g{6, s, t) 
s^ds is the restriction to Sn~1 of a homogeneous polynomial of degree 
j . When these properties hold, g(9is,t) is the Radon transform with 
respect to 0 some function in L Q ( ^ ) - Because R$f satisfies these 
properties, it is straightforward to verify that g also does. Therefore, u 
is well defined by (2.7) and is square integrable with compact support 
in R n x {t} for each t. 

Clearly RßU and hence, by the Radon inversion formula (2.2), u van
ish when t < inf{r : Si H (Rn x {r}) # 0}. If R^f = 0 for all cp € I\ 
then (2.10) shows that Rgu and hence u have trivial Cauchy data when 
t > T. Hence, u{x\i) has compact support and is therefore square-
integrable on R n x R. An elementary lemma on page 80 of [2] then 
shows that u is supported in O. 

REMARK 1) If P is the classical linear wave operator, this lemma 
characterizes the forcing functions in LQ(Q.) which propagate no distur
bance beyond their support. 

2) Implicit in the proof of Lemma (2.13) is the fact that, given / 
square integrable with compact support, a solution to Pu = / is defined 
by (2.7) and the Radon inversion formula (2.2). Indeed, applying a 
variant of the Radon inversion formula to the solution v defined for 
(2.6) yields Herglotz's solution to the Cauchy problem for P given in 
[3]. 

3) Let K be compact in fì. The restriction to K of any g € CQ°(ÇI) 
can be extended by the following construction to a function / such that 
Rf = 0 on r as in (2.3). Let w be the solution to Pw = # (given by 
Herglotz's solution), and let h e CQ°(Ü) with h = 1 on K. Then let 
f = hg. 

3. Construct ing a Function in [f]. For / € £o(^)> t n e lemma 
(2.13) shows that [/] = {/ + g :g E Lg(O) and R^g = 0 for all (p € T}. 
Thus, the basic problem of finding / from Cauchy data for u on R n x {t} 
for t > T admits at best the partial solution of finding a function in [/]. 
Such a function / i € [/] can be constructed by the Kaczmarz method 
which is discussed extensively in [6] and [7]. This algorithm constructs 
/ i as the limit of a sequence of projections in LQ(Q) of an arbitrary 
g e LQ(Q,). If g = 0, then the result will be /0 , the function in [/] 
of minimum norm. The projections can be computed from the data 
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{Rtpf | (f G r } , as is noted in iii) of the following lemma. The proof of 
the lemma is elementary and essentially identical to that given in [1] 
for the case where ft is the unit disc in R2 . 

LEMMA 3.1. Let ft be a bounded, open subset of Rn x R, xn denote 
the characteristic function on Ç},cp G Sn

ìfi(p(s) = [R^xai8)]"1 > and 
Itp = closure {s G R : R^XfìC5) i=- 0}- Then 

i) R<p : LQ(ÇI) —• L'ci{I<p,ß^{s)ds) is a continuous operator with 
adjoint R^ given by 

o* h(/r. ,x _ J h((x; t) • (p)fi,p((x; t) • ip) for (x; t) G O 
n^n{x,t)-^Q for(ar; t )gî î , 

ii) The orthogonal complement of ker (R^), the null-space of R^, is 

N<p = {g G L2(0) : g(x-1) = g((x; t) • </?) for some g G L Q C ^ , /v(s)ds)}, 

iii) P^, tf/ie orthogonal projection ofL^iï) onto the translated subspace 
f + ker (R<p), is given by 

P^gix; t)=(g + R^(f - g)) (x; t) 

= f g(x; t) + [(Ryf - R^g)((x; t) • ^)^((a?; t) • y>)] if (a:; t) G ft 
\ 0 if (x; t) £ ft. 

Given a countable set of directions {(pi, <p2, v?3>... } in 5 n , let ft = 
^Vi ̂ 2 • • • P<Pk • The Kaczmarz method consists of constructing the 
sequence {P^g : j = 1,2,3,.. .} which converges in Lo(ft) to g^ the 
orthogonal projection of g onto / + fif=1 ker (R^). Conditions on the 
directions y?i,. . . , ^ and the domain ft which guarantee a geometric 
rate of convergence are given in [5]. 

It is an elementary exercise in Hilbert space theory to show that the 
sequence { f̂c}fe=i,2,3,... converges to go, the orthogonal projection of g 
onto Z + n?^! ker (Ä^J, and that projections of the initial choice g = 0 
yield gk and <?o which have the minimum norms possible. 

For integrable h supported in lì, the fact that h is real analytic and 
the identity (2.1) show that {ip G Sn : R^h — 0} is an analytic variety 
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in Sn. Therefore, if the directions {<pi,y>2»^3> • • •} a r e dense in an 
open subset of r , f)^ ker {R^) = fi<per ker ( i ^ ) , and consequently 
[/] = / + n^2.l ker (R^). Thus, the function go produced as the limit 
of the projections of the Kaczmarz method, which can be computed 
from the da ta {R^f : <p € T} and hence from the Cauchy data for u on 
R n x {t} for t > T, is in [/]. 

By Lemma (2.12), the data {R^f : (p G T} needed for finding 
a representative of [/] by the Kaczmarz method can be found from 
^ F on R n x {t} when t is sufficiently large and 0 < A ; < m — l i s 
fixed. It remains to establish the assertion of Theorem (1.1) that this 
computation can be performed from Cauchy data for ti, or partial data 
when t is large, on a proper subset of its support in R n x {t}. The 
argument below applies to either case. 

Let Si,i = l , . . . , r a / 2 , be strips as described in Lemma (2.12) 
(which may or may not correspond to different 6 G Sn~l), and let 
E», i = 1 , . . . , ra/2, be the neighborhoods in the I \ given in that lemma. 
Because each cone Ti is an irreducible variety, their union T is the an
alytic variety determined by E = Ei U • • • U E m / 2 . Thus fl{ ker (R^) : 
<p e T} = n{ ker (R^) : <p € E} and [/] = / + fi{ ker (R^) : ^ e S } . 
By lemma 2.12, the da ta {R^f-^ip € E} needed to compute [/] by the 
Kaczmarz method can be found from Cauchy data for u (or partial 
data when t is large) on S = Si U • • • U 5 m / 2 . 

REMARK. In the case that P is the wave operator, S is a single strip 
in R x { t } which need only be wider than ^ - ( d i a m e t e r ÇI). For general 
P , S can be confined to a half-space of R n x {t}. 

The special case f£ = Bn+1 = {| (x;t) \< 1} can be analyzed by 
calculations similar to those for n = 1 in [1]. In this case, 1^ = [—1,1] 
and ßv{s) = 0 ~ 1 ( l - 5 2 ) _ n / 2 where O n is the volume of Bn. Let Cm(s) 
denote the Jacobi polynomical of degree m with a = ß = ra/2, i.e., the 
Gegenbauer polynomial of appropriate index (see [8]). By construction, 
{Co, Ci , C 2 , . . . } is an orthonormal basis for L 2 ( [ - l , 1], (1 - s2)n/2ds) 
with Cm orthogonal to sk for each integer 0 < k < m. For ip € 5 n , let 

(3.3) <W*; t) = n-WCmttx; t) • ip). 

Then {C0, C 3 ^ , . . . } is an orthonormal basis for N^ = ker 
(Rip)1' = range R^. Using the orthogonality of Cm(s) and sk for any 
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k <m, direct calculations show that for <pi,(f2,€. S71, 

Cm(<Pl -<P2)t 

Cm( l ) 

Therefore the inner product of Cmj¥?1 and Ct^2 in L^B71*1) is 

( 0 if m ï £ 
= (£^lf1 *" = * 

These observations allow direct (rather than iterative) computation of 
approximations to the function in [/] of minimum norm. 

PROPOSITION 3.6 Let f0 be the function in [/] = / + n{ ker (Rp) : 
ip G T} of least norm. Then f0 = Y,m=o /o,™ where the /0>m are 
pairwise orthogonal and for each m there is a finite set of directions 

{v?i,..., <Pk(m)} C r with /o,m = Y%=i aj,mCm,,iPj • Furthermore, the 
coefficients aji7n can be computed directly from {R^f,..., R(pk(m)f}. 

PROOF: Because 7Vm, the span of {Cm?v3 : <£ G T}, is contained 
in the polynomials of degree m, ATm is finite dimensional, and there 
exist (pi,..., (fk(m) € r such that {Cmt<Pl,..., Cmiipk(rn)} is a basis for 
Nm. Let JV denote the orthogonal complement of fl{ ker R^ : </? € T}. 
Then AT is the closure of ]C<per^¥» an(* s o ^ follows from (3.5) that 
-W = Em=o^n* w ^ n ^n e -̂ w» pairwise orthogonal. Because /o is the 
orthogonal projection of the zero function onto / + fl{ ker (R^) : </? G 
r } , / - /o is in n{ ker (Ä^) : y? G T}, and / 0 is in N. 

Fix m and let /o,m denote the component of /o in JVm. Then for all 
(per 

Q _ / f _ f0ìCmì(p) 

(3.7) , i 
= / lÄ v / ( s )C m ( s ) r f s - {fo,m,Cm,vJ. 
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Write /o,m = S^£7i) aj,mCmiipj and recall (3.5). Setting cp = <^, 
i = l , . . . , fc(ra), in (3.7) yields the system of equations 

m „1 

(3.8) C U I ) " 1 YtCmiVi ' Vj)<*3,™ = / R^f{s)Cm{s)ds 

for i = 1 , . . . , k(m). 

The system (3.8) is clearly invertible because the set {Cm > v 3 l , . . . , 
Cm,v?fc(m)} is a basis for iVm. 

REMARK 3.9 An optimistic viewpoint would hold that a function in 
[/] ought to be constructible via some method which is more direct 
that the Kaczmarz method. Since any function can be obtained from 
its Radon transform in all directions via the Radon inversion formula, 
a direct method results if the data {R^f : if G T} can be extended to 
Rg for some g G LQ(ÇI) because then g G [/]. Constructing such an 
extension appears to pose a difficult problem. Equation (2.1) shows 
that in terms of Fourier transforms this problem is: given / | r , find a 
real-analytic extension g on R n x R which is square integrable and has 
complex analytic extension to C n + 1 of exponential type corresponding 
to H. 

The author wishes to thank several colleagues, particularly Todd 
Quinto and Pavel Szeptycki, for helpful discussions of and valuable 
comments on this work. 
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