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INSTABILITIES IN STEADY 
FLOWS OF TWO FLUIDS 

YURIKO RENARDY 

A B S T R A C T . Steady shearing flows and convection, involv­
ing two immiscible liquids separated by an interface, will be 
discussed with particular emphasis on the case when the flu­
ids have similar densities but different viscosities. Many in­
terface positions are theoretically allowed but only a few are 
observed experimentally, thus motivating a study of their sta­
bility. Numerical computations and asymptotic analyses for 
the stability of various arrangements will be discussed. 

1. Introduction. This paper is based on a lecture given at 
the Conference on Nonlinear PDE, and is a review of the author's 
involvement in the study of stability of flows of two immiscible fluids. 

Examples of two-fluid flows arise in a variety of contexts. In the 
pipeline transport of very viscous oils (which, in the simplest case, may 
be modelled by Hagen-Poiseuille flow), it has been observed that the 
addition of a small amount of water greatly reduces the pressure drop 
required for transportation [1]. The resistance to the flow is expected 
to arise mainly from friction at the pipe wall, so that replacing the 
viscous fluid by a less viscous immiscible one just along the wall would 
lower the work required to transport the viscous oil. For horizontal 
pipelining, such an arrangement was thought to be possible if the den­
sities of the fluids are similar. In fact, experiments showed that the 
water migrates to the pipe wall, thus shielding the oil from intense 
shearing [2]. Moreover, by using additives in the less viscous liquid, 
the pipe wall could be protected from corroding. A related example 
is the extrusion of two molten polymers vertically out of a pipe and 
cooling in air [3, 4, 5, 6]. Experimental data are variable for flows 
with equal volumes and for flows where there is a small amount of the 
less viscous fluid. Again, the less viscous fluid eventually encapsulates 
the more viscous fluid, when the fluids are otherwise similar (see Figure 
1): this appeared to be independent of the initial arrangement. Phe­
nomena of this type are of immediate application to the fiber industry, 
in the spinning of bicomponent fibers, which are important for their 
self-crimping characteristics. Another area of industrial importance is 
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the extrusion of multi-layer polymer melts through a slit die to form a 
film having the desired optical and mechanical properties [7]. 

Figure 1. Evolution of flat interface into the encapsulated arrangement 
Fluid 2 is the more viscous. 

The above pipe flows have been modelled by Hagen-Poiseuille flow 
with fluids of equal density. Mathematically, anti-plane shear flow (ex­
clusively axial flow with only one non-zero component of velocity which 
depends on the coordinates perpendicular to the axial coordinate) of 
two fluids at low Reynolds number in a cylindrical pipe of arbitrary 
cross-section has a continuum of solutions. Here, there is no flow within 
the cross-section perpendicular to the axis of the pipe, so the pressure 
must be a constant in each of the fluids. At the interface, the jump in 
the normal stress is the jump in the pressure, hence a constant, and this 
must equal the product of the surface tension with the principle radius 
of curvature. Therefore, if the surface tension is zero, any interface cur­
vature is allowed. If the surface tension is not zero, the curvature must 
be a constant so the interface is a circle or a circular arc terminating at 
the pipe wall (see Figure 2). In either case, there is an infinite number 
of possible interface positions. What has to be done here is to reconcile 
the theoretical non-uniqueness with the unique observed encapsulated 
arrangement. This dilemma turns out to be typical of steady density-
matched two-component flows. 

In the commercial area of ink-jet printing, one of the conventional 
methods is to force an electrically charged fluid out of a small nozzle 
under high pressure and to direct the flow with an electric field. Among 
some restrictions of this method is the clogging of the nozzle by pig-
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Figure 2. Some possible arrangements with surface tension. 

ments in the ink. To overcome this, a compoimd jet has been suggested 
[8]: a primary fluid jet emerges from a nozzle below the surface of a 
stationary secondary fluid (see Figure 3). The jet in air then consists of 
a core of the primary jet surrounded by a layer of the secondary fluid, 
having a parabolic velocity profile on leaving the nozzle. Experiments 
[8] detailing the instabilities of the compound jet show that it tends to 
be more stable if the outer thin layer is the less viscous of the fluids. 

compound jet 

PI 
secondary fluid 

nozzle 

Of 

Figure 3. 

The Earth's crust and mantle have been modeled [9] as a two-layer 
fluid system: heat sources in the crust induce convection in the entire 
mantle which is coupled back to the motion in the crust. Models of the 
Earth's mantle are sometimes based on the assumption that convection 
takes place in two chemically uniform layers [10, 11], the upper and the 
lower mantles. Earthquakes originate in the upper mantle: the scale of 
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convection cells in the lower mantle may determine the scale of flow in 
the upper mantle via viscous coupling. 

In rheological experiments on extensional flow, a lubricated planar-die 
rheometer [12] has been used to measure planar extensional viscosity. 
The boundaries of the rheometer are shaped so that a viscoelastic fluid 
can be forced into it from two opposing directions in the plane, meet in 
the center and leave through two exists perpendicular to the entrances 
(see Figure 4). Hyperbolic streamlines are desired, and the shape of the 
boundaries reflects this, but the no-slip condition at the walls prevents 
the desired velocity field. A small amount of a second less viscous fluid 
is introduced to the flow and this migrates to the walls, where most of 
the shearing takes place, and the more viscous test fluid then produces 
the desired flow field. Why the less viscous fluid stays next to the wall 
is not completely understood. 

Figure 4. Sketch of boundaries of a rheometer. Arrows show flow direction of a 
viscous test fluid. A less viscous lubricant flows next to the walls. 

The above examples cover a wide range of Reynolds numbers, from 
low to high, and the fluids may be highly elastic. In the shearing flows, 
the viscosity difference appears to play a key role in determining how 
the two fluids position themselves. 
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2. Shearing flows. 

2.1 Formulation of equations. We consider shearing flows com­
posed of two immiscible fluids with different viscosities pi and densities 
Pt, for which the general formulation is presented in detail by Joseph 
Nguyen and Beavers [13]. We concentrate on the effect of viscosity 
stratification. Each fluid is governed by the Navier-Stokes equations 
and assumed to be incompressible. In dimensionless form, these equa­
tions read 

(1) ^ [S + (~ ' V ) - l = ~V(P + F~2z) + V ' T' 
(2) V • u = 0, 

where 9^, (i = 1,2), is the Reynolds number of fluid f, u is the velocity, 
F is a Froude number, and T is the dimensionless extra stress tensor, 

(3) T = Vu + (Vu)T . 

If the fluids are viscoelastic, more complicated expressions for the extra 
stress tensor are applied. 

The interface between the two fluids is an unknown, at which the nor­
mal is denoted by n and the orthonormal tangential vectors are r_\ and 
r2 . The following interfacial conditions are expressed in dimensional 
form for the sake of compactness. Across the interface, the velocity 
and shear stresses are continuous: 

(4) [ u ] = 0 

(5) r £ . [ T ] . n = 0,/ = l ,2, 

where T is the dimensional extra stress tensor. The jump in the normal 
stress across the interface is balanced by surface tension S*: 

(6) n . [ T ] - n - [ p ] + 2#S* = 0, 

where p is the dimensional pressure and H is the sum of principal 
curvatures. The kinematic free-surface condition holds at the interface, 
i.e., if the interface is described by /(x(£), t) = 0, then 

(7) %+^f = ° 
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The volume ratio of the two fluids is given. Appropriate boundary 
conditions are imposed to complete the formulation, e.g., the no-slip 
condition at solid walls, periodicity in the unbounded direction. There 
are at least five dimensionless parameters: a Reynolds number, a 
surface tension parameter, volume ratio, the ratio of viscosities and 
the ratio of densities. A possible additional parameter is a Proude 
number for flows with gravity. 

The problem is to find out how the two fluids would arrange them­
selves, and what physical parameters govern the arrangement and se­
lection of interface shapes. A major problem in the theory of bicom-
ponent flows lies in their nonuniqueness: the position of the interface 
is one of the unknowns, but the equations of motion may permit an 
infinite number of different interface configurations. In experiments, 
on the other hand, only certain preferred interface positions have been 
observed. The question thus arises: which interface positions can be 
observed? 

2.2 Couette flow. 

Plate 

© 
interface 

\l 
V 

*x Plate 
Figure 5. Undisturbed two-layer flow. Fluid 1 occupies 0 < y < l\. 
Fluid 2 occupies t\ < y < 1. The fluids have viscosities /xt(i = 1,2) and 
densities p{. Upper plate speed is 1. 

In two-layer Couette flow (Figure 5), there are six dimensionless pa­
rameters: a viscosity ratio, m = /ii///2> density ration r = pi/p2, 
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dimensionless depth of lower fluid l\ — /*//*, a Froude number F given 
by F2 = U*2/gl* where g denotes the gravitational acceleration con­
stant and U* denotes dimensional upper plate speed, a surface tension 
parameter S = /„*^*\> where S* is the surface tension coefficient, and 
a Reynolds number £H = U*l*/i/ì where v\ is the kinematic viscosity 
of fluid 1. We denote I2 = 1 — h- We make distance, velocity, time 
and pressure dimensionless with respect to /*,[/*,/*/[/* and piU*2 re­
spectively. A steady shearing flow solution to the two-layer problem is 
given by a velocity (C/i(^),0), and a flat interface at z = /1, where 

= ^ - ^ + l f o r 4 < * < l . 
l+mi2 

We examine the linear stability of this solution by adding small distur­
bances, u = (u, v) to the velocity and h to the interface position, that 
are taken to be proportional to exp(iax + at). The resulting equations 
governing linear stability are: in Fluid i, 

(9) ^r-Au - £ ì ^ £ - vUtz(z) - Ux{z)iau = ou, 
J\% p% UX 

(10) ^ A v - ^ - i a v U l { z ) = ( T V i 

(11) V u = 0, 

where 9^ = t /*/ /^. 

The interface conditions, linearized at z = l\ yield: 

(12) kinematic free surface condition: v - hiaUi(h) — ho, 

(13) continuity of velocity: [v| = 0, 

(14) M + Mtfn('i)l=0, 

(15) continuity of shear stress: [AM ^—h -̂— )] = 0, 
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(16) 
M 2 ôv, , / a 2 5 1 / l ' 

balance of normal stress: • I — p-\ — —-1 = h ( ——— + —-r I — 1 
/ii 91 #2 V 9t F2 \r 

The boundary conditions are: 

(17) u = 0, t> = 0 at 2 = 0,1. 

Here [•] denotes the jump of • across the interface, or 1~2. For the 
one-fluid problem (r = l , m = l , S = 0) with no interface at z = / i , 
Romanov [14] has proved that the real parts of all eigenvalues o are 
negative at any Reynolds number and wave number a. The addition 
of an interface at z = l\ to the linear stability problem gives rise to an 
eigenvalue which was referred to as the "interfacial mode" by Yih [15]. 
This follows from the observation that if the two fluids have identical 
viscosity and density, and if there is no surface tension, then 

(18) u = 0, v = 0, h = exp(iax + at), a = — ial\ 

satisfies the above equations. In fact, on can think of the one-fluid 
problem as having an infinite number of neutrally stable eigenvalues, if 
each streamline is considered as an interface. When the two fluids have 
different properties, the interfacial eigenvalue can be unstable: this can 
occur at any Reynolds number. 

In [16], Hooper and Boyd have furnished a complete solution to the 
linear stability problem of two-dimensional plane Couette flow when 
the boundaries are an infinite distance apart and each fluid occupies a 
half-plane. They also obtained the short-wave limit of the interfacial 
eigenvalue in closed form both rigorously and with a formal method. 
A heuristic reason as to why the formal method applies to other 
two-layer parallel shearing flows is that the eigenfunction for a short­
wave disturbance dies out exponentially with distance away from the 
interface and is not aware of the presence of other boundaries. 

What is surprising is that in the absence of surface tension or a density 
difference, the interfacial mode is unstable for sufficiently short waves at 
any Reynolds number [16, 17]. For the problem in Figure 5, the growth 
rate Re(o-) of the interfacial mode, in the limit of short disturbance 
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wavelength a is essentially an expression consisting of three terms: 

9tim(l - m)(l - m2/r) m9ti(l - / r ) 
W ~ 2(h + m/ 2 ) 2 a 2 ( l + m)2 2(1 + m)c*F2 

2(1 + m ) as a —• oo. 

The term of 0(l/a2) involves a Reynolds number, and viscosities, 
densities, and depth ratios of the fluids. The term of 0(1/a) involves a 
Froude number, a Reynolds number, and the viscosities and densities 
of the fluids. The dominant term is O(a), involving surface tension, 
and is always negative in sign. Intuitively, one might have expected 
short waves to be damped by viscosity, but instead they are damped 
by surface tension. Density differences can also stabilize short waves 
(e.g., due to gravity, centrifugal force) but not as effectively as surface 
tension. 

The long-wave asymptotics has been investigated by Yih [15] who was 
one of the first to look at the question of stability of multi-layer flows. 
His method of expansion in the parameter a9i where 91 is a Reynolds 
number has now been applied to a variety of multi-layer shearing flows 
[18, 19, 20]. Since the effect of the boundaries is important in a 
long-wave analysis, the calculations can be done in closed form but 
computing is necessary. Yih showed graphs of results for the case of 
equal densities. We notice that they show that when the less viscous 
fluid is in a thin layer, the interfacial eigenvalue is stable to long waves. 
Recently, Hooper [21] considered the long-wave asymptotic when the 
upper fluid occupies a semi-infinite plane for the case of stable density 
stratification. She found that at leading order, the flow is linearly stable 
when the lower fluid is the less viscous, and unstable if it is the more 
viscous. 

We conclude from the above that for the case of equal density, there is 
a rule of thumb for finding a linearly stable arrangement. We stabilize 
long waves by putting the less viscous fluid in a thin layer, and stabilize 
short waves by including surface tension. What happens when there 
is a density difference is that this arrangement can be linearly stable 
even when the upper fluid is the heavier! We call this the 'thin-layer 
effect'. Figure 6 is an example of such a situation for which the eigen­
values were computed numerically. We use a spectral method based 
on Chebyschev polynomials to discretize the dependent variables [22]: 
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this approximates C°° functions with infinite-order accuracy. We have 
applied this discretization method to the numerical study of linear sta­
bility of other flows described below. 
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Figure 6. Growth rate versus a. 9Ì for lower fluid =10, viscosity ratio 
MI /M2 = 0.01, density ratio pi/p2 = 0.95, surface tension coefficient 
/fJ>2U* = 0.1, U* = dimensional plate speed. U2/gl = 0.1, £ dimensional 
plate separation. 

In Figure 6, the upper more viscous fluid is slightly more dense than 
the lower fluid: surface tension is sufficient to stabilize short waves. 
The Froude number is chosen not too small, otherwise long waves will 
be destabilized by gravity, and the Reynolds number in each fluid is 
low. The parameter /i(0 < h < Ï) measures the depth of the lower 
fluid. We note that for small h (e.g., h = 0.05,0.1), the growth rate 
Re(cr) is negative for all wavelengths of the disturbance a. For larger 
/ i , instabilities arise from the long wave end, due to gravity. 

We remark that it is not always possible in this problem to extrapo­
late the long and short wave asymptotics to make a conclusion about 
the linear since there may be instabilities which have nothing to do with 
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either of the asymptotics. In fact, a numerical study [17] has revealed 
such instabilities. 

2.3 Pipe flow. For density-matched pipe flow, we investigated nu­
merically the linear stability of the concentric arrangement for various 
volume ratios [23]. In the basic flow, fluid 1 occupies r < Ri and fluid 
2 occupies R\ <r < R2 where R2 is the radius of the pipe. The axial 
velocities W% in fluid i are parabolic: 

Wx = — [mRl + (1 - m)R\ - r2} for r < Rt 

(20) £ 
W2 = —{Rl - r2) for Rx < r < R2, 

where \Xi are the viscosities, m = /zi//i2? and G is the applied pressure 
gradient. Long wave asymptotics of the interfacial eigenvalue for the 
case in which the less viscous fluid is encapsulated by the more viscous 
fluid [18] showed this to be unstable at all Reynolds numbers. 

We find that the arrangement with a thin layer of the less viscous 
fluid next to the wall is linearly stable: this is the arrangement which 
is observed in experiments. If there is too much of the less viscous fluid 
or if the viscous fluid is at the wall, then the arrangement is unstable 
(see Figure 7). 

Figure 7. 

An open problem for vertical pipe flow is to look at the effect of 
density stratification in addition to viscosity stratification: one would 
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expect the more dense fluid to move to the center in order to fall faster, 
but this effect may be countered by the viscosity stratification. 

2.4. Taylor flow. 

outer cylinder fixed 

interface 

inner cylinder 

Figure 8. 

->* 

Two fluids lie concentrically between two cylinders with the outer 
cylinder fixed and inner cylinder rotating [24] (see Figure 8). In the 
unperturbed flow, fluid 1 occupies R\ < r < D, fluid 2 occupies 
D < r < Ri and the azimuthal velocity field is given by 

(21) Vi(r) = Air + Bi/r, i = 1,2, 

/ (R\ R\\ R\\, 
,Rl 

A - Rî 

Bi = -1/q, B2 = -m/q, m = ßi/n2, 

(Ri R\\ Ri , 

A linearly stable configuration for fluids of equal density is again 
the one in which the less viscous fluid occupies a thin layer next to a 
solid. Contrary to intuition, it has been found [24] numerically that it 
is possible for the more dense fluid to lie inside, despite the centrifu­
gal force, provided that it is the less viscous fluid, is in a sufficiently 
thin layer, the rotation rate is not too fast, and there is an adequate 
amount of surface tension. Here, the centrifugal force plays the role of 
gravity in the thin-layer phenomenon for Couette flow (see §2.3 above). 
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There is another 'thin-layer' effect in the Taylor problem. In contrast 
to the Hagen-Poiseuille and Couette flows discussed in §2.2 and §2.3, in 
which the corresponding one-fluid problem is linearly stable, the one-
fluid Taylor flow has a criticality. We therefore examined the effect of 
the introduction of a second fluid on the onset of that first instability 
[24], Figure 9 illustrates the effect. The infinitesimal disturbance is 
proportional to exp(iaz + in 0 + at) where z is the axial direction and 
0 is the azimuthal direction. The inner cylinder has radius 1 and the 
outer cylinder has radius 2. The interface radius on the horizontal axis 
varies from 1 to 2. The parameters were chosen so that if the outer fluid 
occupies the entire flow (i.e., interface radius is 1), then the one-fluid 
problem is at criticality. A more viscous fluid is then introduced next 
to the inner cylinder, and we see how the growth rate changes as the 
interface radius increases. Intuitively, one expects that there should be 
stability as the interface radius increases because then the amount of 
the more viscous or stabilizing fluid is increased. However, all modes 
first become unstable as the interface radius is increased. We have also 
looked at the case when a less viscous fluid is introduced next to the 
inner cylinder, in which case all modes became stable as the interface 
radius was increased from 1. We conclude that the onset of Taylor 
instability is delayed by the addition of thin layer of a less viscous fluid 
next to the inner cylinder and promoted by the addition of a thin layer 
of more viscous fluid next to the inner cylinder. 

The thin-layer effect (stabilization due to viscosity stratification even 
in the presence of adverse density stratification) is absent if there is 
no shearing in the basic flowfield. For example, we have examined the 
stability of the rigid-body rotation of two fluids where the geometry is 
the two-layer Taylor flow but with both cylinders rotating at the same 
rate. The viscosity difference has been found to be irrelevant to the 
linear marginal-stability criterion [25]: criticality depends on the cen­
trifugal terms and surface tension, as would be expected from seeing 
a centrifuge work. Here, the stability of the interface is governed by 
a variational principle and we have derived criteria for the concentric 
interface to be a local or global minimizer. 

2.5 Thin-Layer effect. In the study of two-layer shearing flows, of 
particular interest is the role played by viscosity stratification, which 



468 YURIKO RENARDY 

Re(o) 

0.04 

0.02 

0 

-0.02 

0.04 

0.06 

0.08 

—r 

"T~ 

i_ 

_ 9 . 

^=?r 1 — 
0 \ 

20 \ 

^N>2 "T 

l \ J 

__j i 

a = 3 . 1 
— I 1 

2 l _ 

7/ 

_ _ i » 

6 
— i — 

1 

i 

1 1 

_ 20 

9 

0 " ' 1 

1 1 

H 

J 

_l 1 
1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 

Interface radius {D/Rx) 
1.8 1.9 2.0 

Figure 9. Growth rates when the less viscous fluid lies next to the outer 
cylinder. \1\I\12 — 1.08, pi = p2, zero surface tension. Numbers next to 
graphs denote azimuthal mode numbers. The amount of the less viscous 
fluid decreases as D/R\ increases but various modes are unstable except 
when most of the gap is occupied by the more viscous fluid. At D/R\ = 1 
mode 0 is at the first criticality and mode 1 is slightly below. 

has an especially pronounced effect when one of the fluids is in a thin 
layer. We have seen in §2.2 to §2.4 that it is even possible to have 
stable arrangements in the presence of an adverse density stratifica­
tion. In order to look at the thin-layer effect analytically, the two-layer 
Couette flow has been studied for the particular case when the fluids 
have similar properties [26]. This is a perturbation problem in which 
the basic unperturbed problem is the two-layer Couette flow where the 
fluids have identical properties. Here, we know what the eigenvalues 
are. In the perturbed problem, the viscosities and densities of the flu­
ids differ by an order e, the surface tension is also of order e, and we 
seek an expansion of the interfacial eigenvalue for small e. This leads 
to a regular perturbation of simple eigenvalue and we can write down 

file:///1/I/12
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the leading terms in closed form. They involve Airy functions. We 
then analyze the thin-layer limit of the interfacial eigenvalue in closed 
form, i.e., let Zi(0 < l\ < 1) measure the depth of one of the fluids, and 
assume h is small compared with any other parameter which measures 
length in the problem. We find that the growth rate Re(<j) consists of 
two terms at leading order: a term proportional to the viscosity dif­
ference at 0{el\) which is stabilizing if the less viscous fluid is in the 
thin layer and destabilizing otherwise, and at an order l\ smaller come 
the terms with the density difference and surface tension. This shows 
the dominant effect of viscosity stratification for the stability of thin 
layers. This result is to be interpreted for wavelengths that are not too 
short. 

2.6 Nonlinear effects. What happens when the interface becomes 
unstable? The answer depends crucially on surface tension. If there is a 
sufficient amount of surface tension, then linear instability, if it occurs, 
involves long or order one waves. If periodic boundary conditions are 
assumed, then this is the type of instability to which bifurcation theory 
applies. On the other hand, if there were no surface tension, then 
waves of arbitrarily short wavelengths are linearly unstable. In this 
case, standard methods of bifurcation theory are not applicable, and it 
seems possible that no smooth interface, steady or unsteady, would be 
stable. This may be a mechanism for the formation and sustenance of 
emulsions. 

Yih had conjectured in 1967 that finite amplitude waves may occur on 
the interface. Hooper and Grimshaw [27] have done a formal analysis 
of weakly nonlinear interaction of long waves for the two-layer Couette 
flow in the presence of surface tension. They use multiple scaling to find 
that the amplitude is governed by the Kuramoto-Sivashinsky equation. 
From this equation, they deduce that for equal density, the convective 
nonlinearity causes a sinusoidal disturbance to deform into a traveling 
wave with a steep front face and a long gradual tail. The final state 
maybe either apparent chaotic oscillatory motion or a steady state 
involving only a few harmonics. Ooms et al., [28] use an order of 
magnitude argument to derive an equation for the evolution of finite 
amplitude long waves. They choose a symmetric sinusoidal wave as an 
initial value and compute periodic sawtooth shaped waves that travel 
with a constant velocity in the streamwise direction and appear not to 
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change after a certain time. 

A Hopf bifurcation theorem [29] has been proved for two-layer Cou­
ette flow with surface tension, showing that when one mode becomes 
unstable, there exist new bifurcating solutions which are traveling in­
terfacial waves. The main part of this work was to derive coercive 
estimates for the underlying partial differential equations. Also, an al­
gorithm for computing the bifurcating solutions is given. These have 
yet to be computed and the question of whether they are stable is open. 

Bifurcation theory is useful for studying the solution close to the on­
set of instability. For a more global understanding of the behavior of 
solutions, work needs to be done to compute the fully nonlinear evolu­
tion of interfaces as an initial value problem [30, 31]. 

3. Convection. 

3.1 Formulation of equations. We consider the effect of heating in 
systems composed of two fluids with different viscosities /i^, densities 
Pi, coefficients of cubical expansion c^, thermal diffusivities /q, and 
thermal conductivities fy. 

Temperature differences are assumed to be small. In addition to the 
formulation of §2. above, the linear heat equation 

(22) ^ r = K A e ' 

where K denotes thermal diffusivity and © the temperature, and the 
Boussinesq approximation [32] are applied. Across the interface, addi­
tional jump conditions are the continuity of heat flux and temperature: 

(23) [/en - V e ] = 0, 

(24) iej = o, 

where k denotes the thermal conductivity. 

On top of the dimensionless parameters in §2. above, there are at 
least five more: a Rayleigh number which is a measure of the temper­
ature differences in the system, a Prandtl number which measures the 
relative effect of momentum diffusivity versus thermal diffusivity for 
one of the fluids, and ratios of the thermal properties of the fluids. 
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Figure 10. 

3.2 Bénard problem. 
We consider the two-layer Bénard problem of Figure 10. The lower 

plate, at z = 0, is kept at a higher temperature than the upper plate 
at z = 1. A solution to the equations is the rest state with a linear 
temperature gradient and a flat interface. To look at the linear stability 
of this, we add a small disturbance to the velocity and the interface 
position proportional to exp(iax + at). 

In the Bénard problem for one fluid, "exchange of stabilities" (i.e., 
a is real) holds for a variety of boundary conditions [32], whether the 
fluid is bounded by walls or by stress-free surfaces, or by a wall be­
low and by a gas above. The consideration of additional effects can, 
however, introduce "overstability" (i.e., a is imaginary at criticality). 
Overstability occurs, e.g., if there are temperature-dependent surface 
tension gradients [33], if there is a temperature-dependent solute gra­
dient [34, 35], in mixtures of superfluids [36], or in the situation where 
two fluid layers, each having a gradient of a different solute, are super­
posed [37, 38]. On the other hand, previous to the work of [39], the 
Bénard problem with two fluid layers having different thermal and me­
chanical properties, but without surface tension gradients or solutes, 
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had not been examined [40] for the possibility of over stability. 

For the linear stability analysis, only two-dimensional disturbances 
need to be considered because of the rotational symmetry about the 
vertical axis. In [39], it is shown that the equations of the two-layer 
Bénard problem are not-self-adjoint, so that complex eigenvalues are 
possible. A time-periodic instability may occur as follows. There may 
be a convective instability in one or both of the fluids, counteracted by 
a stable interface. In fact, we have found a situation where the marginal 
eigenvalues are a purely imaginary conjugate pair of multiplicity two 
(the same eigenvalues appear for negative wavenumbers). Marginal 
eigenvalues of this type are associated with Hopf bifurcation from the 
motionless state to either a pair of traveling waves or a standing wave 
[41]. According to Ruelle [41], both the traveling and standing waves 
are solutions to the nonlinear problem. The question of which one is 
stable or whether either is stable is still open. 

Figure 11 is an example of a Hopf bifurcation [39]. The vertical axis 
is the growth rate Re(cr) and the horizontal axis is the wavenumber 
of the disturbance. The densities were chosen so that there is no 
buoyancy instability at the interface, and this choice also stabilized 
the short waves. There are 5 branches to the graph. Branches 1, 3, 
and 5 belong to the interfacial mode. Branches 2, 3 and 4 belong 
to a mode that comes from the one-fluid problem. The a is real on 
branches 1 and 2. They coalesce to form branch 3, on which they are 
a complex conjugate pair. They reach criticality before a = 5, then 
eventually split to form branches 4 and 5. Branch 4 decays very fast for 
short waves: this is typical of a stable one-fluid mode. The shortwave 
behavior of the interfacial mode on branch 5 has been obtained in closed 
form [39]. Differences in density, coefficients of cubical expansion, and 
surface tension are important in the short-wave limit of the interfacial 
mode. In the long-wave limit, the volume ratio, and differences in the 
thermal conductivity, density, and coefficients of cubical expansion are 
important [42, 43]. If the Rayleigh number is raised slightly, then 
branch 3 comes up and crosses the line Re(a) = 0, yielding a time-
periodic instability. 

The above example was found numerically. In order to look for 
instabilities systematically in a problem such as this where there are 
lots of parameters, it is not feasible to do so numerically. We therefore 
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Figure 11. Growth rate versus wavenumber. Rayleigh number of fluid 1 
is 1695.7, Prandtl number of fluid is 1; MI/M2 = 1.1,^i = 0 .4 ,diAT = 
0.001, AT = dimensional temperature difference between plate, 0:1/02 = 
0.9, surface tension = 0. 

analyzed the case when the two fluids have only slightly differing 
mechanical and thermal properties. This is a perturbation of the case 
when the two fluids are identical. In addition, we replaced the no-slip 
condition with the stress-free condition. Although the slip condition 
is physically unrealistic, it has the advantage that the eigenvalue and 
eigenfunction at the critical Rayleigh number and critical disturbance 
wavenumber of the unperturbed problem are known in closed form. 
The unperturbed problem is the linear stability analysis of the two-
layer Bénard problem when the fluids are identical. 

There are two cases to look at. First, the Rayleigh number is below 
that of the criticality of the one-fluid problem [43]. The equations 
are real, so that the perturbed interfacial eigenvalue is also real; 
hence, overstability does not occur. When the interface is unstable, 
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one would expect the fluids to go into a different arrangement. For 
example, if the instability results from the upper fluid being the heavier, 
one would expect that it should fall and the fluids should exchange 
positions. However, there are more subtle cases, such as a "thin-layer" 
effect described below. In [43], the thin-layer asymptotic limit of the 
interfacial mode is derived. 

In the second case, the Rayleigh number and wavenumber are such 
that if the interface were absent, the one-fluid problem is at the first 
criticaJity. The analysis therefore concerns the regular perturbation 
of a double zero eigenvalue (the interfacial mode and the first critical 
mode of the one-fluid problem) of Riesz index 2. The leading terms in 
the perturbation expansion are calculated in closed form. It is found 
that whether the eigenvalue splits into real values or complex conju­
gates depends on the coefficients of thermal conductivity, densities, 
volume ratio and surface tension. When an oscillatory instability oc­
curs, the ensuing flow is expected to look like the convection cells of 
the one-fluid problem. If the bifurcation results in the interface being 
a standing wave, the cells would turn slightly clockwise for one period, 
then anticlockwise the next period (see Figure 12). In the case of bi­
furcation to a traveling wave solution, the cells would keep turning in 
one direction and would travel through the fluid. 

(oscillating' interface! r * 
I 

Figure 12. 

3.3 Thin-Layer effect. In the equations governing the two-layer 
Bénard problem, the ratio of the coefficients of thermal conductivity 
appears in roles similar to those of the viscosity ratio in the equations 
governing shearing flows. Hence, a "thin-layer" effect also occurs in 
the Bénard problem [43]: depending on the thermal conductivities, 
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and surface tension, it is possible to find linearly stable arrangements 
with the more dense fluid on top! 

3.4 Nonlinear effects. In 3-d, even the one-fluid Bénard problem 
has lots of possible solutions such as hexagons, rolls and cells. The 
two-fluid problem is further complicated by the oscillatory nature of 
the instabilities. This leads to interesting questions of pattern selec­
tion which need to be investigated. The bifurcation analysis is related 
to that of double diffusion [35]. Double diffusion involves one fluid and 
the properties of the fluid vary continuously throughout the domain. 
In [35], there are still some aspects of the stability of the bifurcated 
solutions that are left unresolved, e.g., the stability with respect to all 
types of perturbations, not only those with the same symmetry as the 
bifurcated solutions themselves. 
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