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STRUCTURE PARAMETERS IN ROTATING 
COUETTE-POISEUILLE CHANNEL FLOW 

GEORGE H. KNIGHTLY AND D. SATHER 

1. Introduction. It is well-known that a number of steady state 
problems in fluid mechanics involving systems of nonlinear partial 
differential equations can be reduced to the problem of solving a single 
operator equation of the form 

(1.1) v + XAv + XB(v) = 0, veH.XeR1, 

where H is an appropriate (real or complex) Hilbert space. Here A is 
a typical "load" parameter, e.g., the Reynolds number A is a linear 
operator and B is a quadratic operator generated by a bilinear form. 
In this setting many bifurcation and stability results for problems in 
fluid mechanics have been obtained, the reader is referred to [1, 10, 
11, 21] and the bibliographies therein for a detailed account of such 
results. 

In fact, there may be considerably more structure in a nonlinear 
stability problem in fluid mechanics than that implied by an operator 
equation such as (1.1). As shown in a recent series of papers by the 
authors [12, 13, 19], a "structure" parameter, say 7, also may be 
present so that equation (1.1) may be actually of the form 

(*) u - \{L - -)M)u - F(u) - ~iG{u) = 0, u £ # , A e R 1 , 7 É R 1 , 

where H is again an appropriate Hilbert space, L and M are linear op
erators, and F and G are generated by bilinear operators. Equations of 
the form (*) are derived in [12, 13] for Bénard-type convection prob
lems and in [19] for the Taylor problem. It is the purpose of the present 
paper to describe a setting in which it is possible to determine a com
plete set of bifurcation equations for an operator equation of the form 
(*) by using the structure parameter 7 as an "amplitude" parameter 
rather than regarding 7 as merely a constant to be incorporated into the 
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operators M and G in (*). Complete bifurcation diagrams are obtained 
by such an approach because, e.g. the "reduced" bifurcation equations 
contain linear as well as both quadratic and cubic terms. This is in 
contrast to many other approaches in bifurcation theory based upon 
splitting methods (e.g., see [10, 11, 18, 21]) in which either linear and 
quadratic or linear and cubic terms appear in the reduced equations. 
In this sense the spirit of the approach presented here is somewhat like 
that of singularity theory as in Golubitsky and Schaeffer [7], however, 
our approach also has points in common with those in Busse [2] and 
Chow, Hale and Mallet-Paret [4, 5]. The present paper emphasizes the 
identification and utilization of structure parameters in fluid mechanics 
but the approach presented here applies equally well to general classes 
of bifurcation problems provided that such problems have appropriate 
"higher order" terms (e.g., see the general class of variational problems 
studied in [14]). 

The following hypotheses are chosen to illustrate our approach with 
a minimum number of technical difficulties. We consider equation (*) 
under the following hypotheses in which if is a real Hilbert space with 
norm || || generated by an inner product (, ). 

(HI) The linear operator L : H —• H is selfadjoint and compact, and, 
if /io denotes the smallest positive characteristics value of L, then the 
dimension of the null space N = N(I — ^LQL) is n = 1 and N is spanned 
by t/>o with limoli = 1. 

(H2) The linear operator M : H -+ H is compact and satisfies 
M : N —• N1-, where N1- denotes the orthogonal complement of N 
i n i / . 

(H3) The critical characteristic value, Xc = Ac(7), of L1 = L — 7M, 
i.e., the positive characteristic value of L1 of least magnitude, is of the 
form 

(1.2) Ac(7) = Mo - Hobl2 + A(7), | 7 | < 7 l , 

where A is real and analytic and satisfies A(7) = 0(73) as 7 —• 0. Here 
b = (MKMipo^ipo) where K : M1- —• N1- denotes the inverse of the 
restriction of (/ — IIQL) to TV-1. 

(H4) The nonlinear operators F(w) = $(w,w) and G(w) = T(W;,Ü;) 

are generated by bounded bilinear operators $ : H x H —• H and 
r : H x H —• H, where, in addition, $ : N x N —• iV"-1. 
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The assumption in (HI) that dim TV = 1 is made for the sake of con
venience; more general settings with dimiV > 1 may be treated along 
the lines in [12, 13, 19], however, the actual solution of the bifurcation 
equations may be, of course, much more difficult in the case dim N > 1. 
The assumption (1.2) in (H3) is the "natural" expansion for Ac and also 
is made for the sake of convenience. It, or a suitable modification, holds 
in many linear problems in fluid mechanics even if M is not symmetric 
and dimiV > 1 (e.g., see [3, 8, 12, 13, 19]); if M is symmetric, then 
(H3) may be omitted. The modifications required when H is a complex 
Hilbert space are somewhat more involved but may be formulated as in 
[12; §4] in terms of real operators and group representations (see also 
[20, 21]). Finally, if one wishes to carry out a linear stability analysis 
of solutions of (*) in the case dimiV > 1, one may proceed as in [12; 
§5] (see also [16]). 

REMARK 1.1. In many problems in fluid mechanics the bilinear 
operator $ in (H4) will be generated by the nonlinear term (u • V)w 

in the Navier-Stokes equations. If so, then $ satisfies the additional 
condition 

(1.3) {${u, i>), w) = -($(u, w),v), u,v,w G H. 

The condition (1.3) plays a role in determining the actual from of the 
bifurcation equations associated with (*) but it is not required in the 
derivation of the bifurcation equations. Thus, condition (1.3) is not 
included as part of (H4); however, it is used in the application to rotat
ing Couette-Poiseuille flow in §4 and also in the applications to Bénard-
type convection problems in [12, 13] and to the Taylor problem in [19]. 

The outline of the paper is as follows. In §2 we make use of 7 as 
an amplitude parameter and derive the bifurcation equation associated 
with(*) under hypotheses (HI) through (H4). In §3 the bifurcation 
equation is solved under an additional invariance assumption on the 
remainder term and, for each fixed 7 sufficiently small, a complete 
bifurcation diagram is obtained. In §4 we use the above approach to 
study rotating Couette-Poiseuille channel flow. We show, in particular, 
that the superposition of a Poiseuille flow on a rotating Couette channel 
flow is, in general, destabilizing. This type of result was conjectured in 
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[17] for non-rotating combined Couette-Poiseuille flow on the basis of 
numerical calculations for the linearized Navier-Stokes equations. 

2. The bifurcation equation. The bifurcation equation associated 
with (*) is derived here using standard splitting methods except that 
the structure parameter 7 plays the role of an amplitude parameter. 

Let P : H —• N1- denote the orthogonal projection of H onto N1-
and let 5 = / — P : H —> N denote the orthogonal projection of H onto 
N. For 7 sufficiently small, we shall seek solutions of (*) of the form 

(2.1) u = 7(̂  + 7*), \ = »o-W2(lilb-T), 

where tp € iV, \& € N1- and r G R 1 are to be determined. Note 
that if T = To + 0(7) and if Ac = Ac(7) is defined as in (H3), then 
A = Ac + /ioT"o72 + 0(7 3 ) . Thus, for 7 sufficiently small, a solution of 
(*) of the form (2.1) is subcriticai if TQ < 0 and supercritical if TQ > 0. 

Substituting (2.1) into equation (*), using the projection P onto N1-
and S onto iV, and making use of (H2) and (H4), one obtains the 
following equations in N1- and N: 
(2.2a) 
0 = 

(/ - ii0L)V + P0M1P - F{i>) 

+ 7 P ( ^ 0 M ^ - * ( ^ , tf) - $ ( $ , tl>) - G(i/>)) 

+ 72P(Mo(r - ßb)Mil> + M b - T)L* - F (« ) - T(^, *) - T{% xl>)) 

+ 1
3P(ßo(T-n2

0b)M*-G(*))i 

(2.26) 
0 = (figfc - r)i) + S{p0MV - $(</>, tf ) - $ ( * , t/>) - G{il>)) 

- iS(F(V) + T(^, *) + r ( » , tl>)) + 725(MO(T - /ig6)ATV - G(*)). 

Since # = ( ( / - /ÌO^OIJV-O -1 is bounded on AT-1, given p > 0, there 
exists 70 > 0 such that, if (^,r) € AT x R 1 with \r\ < p and \\ip\\ < p, 
then by the implicit function, theorem (2.2a) can be solved uniquely 
for \& = \I>(^,T,7)in N1- provided that I7I < 70. In fact, \P is analytic 
and of the form 

(2.3) * = -noKMip + KF(ip) + 7*1 , 
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where * i = \I>i(t/>,r, 7) E N-1 is bounded with bound depending only 
on p. It is important here that p can be arbitrarily large provided that 
70 is chosen sufficiently small. Substituting ^ into (2.2b), taking the 
inner product with ifto, and making use of the definition of b in (H3), 
one obtains, for ip of the form ^ = ßipo with ß E R1 , the bifurcation 
equation associated with (*): 
(2.4) 

0 = - Tß + ß^oiMKF^o),^) + Mo($(V>o,KMrM, V-o) 

+ lioWKMifo, i>o), !to) - (G(i>o), ih)] 

- ß3((*Wo, KF(rM), rPo + (*(KF(i/>0), Vo), tfo)) + r(ß, r, 7) 

s - Tß + aß2 + cß3 + r(ß, T, 7) = D(ß, r, 7). 

Here, for |r| < p, \ß\ < p and I7I < 70, the remainder term r is given 
by 

r(ß,r,i) = ( 7 5 { M O M * ! - $(»/>, #1) - * ( * i , ^ ) - F(9) 

(2.5) -T{i>,9)-T(9,xp) 

+ t(l*o(T-i%b)M9-G(9))},iM, 

where ip = ßi/>0 and #1 = ^i(ßi/jo,Ti
r)). Moreover, r is analytic in 

(/?, r, 7) and, for some TQ depending only on p, satisfies 

(2.6) | r ( / ? , r ,7 ) |<r 0 | 7 | , \ß\ < P> \r\ < p, \l\ < 7o-

Note that if (/?*,r*,7) is a solution of (2.4) with |r*| < p, \ß*\ < p, 
and for fixed 7 satisfying I7I < 70, then (v*, A*) e H x R 1 given by 

(2.7) v* = 7(/?>o + 7*(/?>o,r*,7) , A* = /i - »ol2(»2
0b - r*) 

is a solution of equation (*). 

In the next section we solve the bifurcation equation (2.4) under an 
additional invariance assumption on the remainder term r. 

3. Solutions of equation (*). In many problems of the type 
considered here the remainder term r in (2.5) may satisfy additional 
properties. For example, because of invariance and symmetry consid
erations, r may have the form 

(3.1) r(ß,T,i) = ße(ß,T,i), 
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where s is analytic and s and its partials with respect to ß and r are 
uniformly of order 0(7) as 7 —• 0; one has, e.g., 

(3.2) | s ( / ? , r ,7 ) |<soH, | / ? | < p , | r | < p , H < 7 0 , 

for some so depending only on p. In such problems the bifurcation 
equation (2.4) may be factored and replaced by 

(3.3) 0 = - r + aß + cß2 + s(ß, r, 7) = £(/?, r, 7). 

It is this type of "factoring" that is also the key to the solution of more 
difficult problems with dimiV > 1 (e.g., see [13, 15, 19]). Since E is 
a mapping of a neighborhood of (0,0,0) € R into R1 , it is natural to 
seek solutions of (3.3) for 7 near 7 = 0, hence solutions (v*,A*) of (*) 
in the form (2.7), by means of the implicit function theorem. We have, 
e.g., the following result. 

THEOREM 3.1. Given p > 0 there exists 70 > 0 such that, for 
\l\ < 7o> equation (3.3) has a solution 

(3.4) r = r (/?, 7) = aß + cß2 + n (/?, 7) 

that is bounded, analytic and unique in 

(3.5) B = {(/?, r, 7) : |r - aß - cß2\ < fc|<y|, \ß\ < p, | 7 | < 7o}, 

where the constant k depends only on p and T\ is 0(7) as 7 —• 0, 
uniformly for \ß\ < p. For each fixed 7 satisfying \^\ < 70, the corre
sponding nontrivial solution branch (v*(/?),A*(/?)) of (*), \ß\ < p, has 
the form (2.7) with ß* = ß and r* given by (3.4). 

PROOF. Let ßo satisfying \ßo\ < p be given and set To = aßo + C/?Q. 
It follows from (3.2) that (/?o^o50) is a solution of (3.3) at which 
^ = - 1 . Thus, by the implicit function theorem, (3.3) has a solution 
r = r(ß, 7) that is bounded, analytic and unique in a neighborhood of 
(/?,r,7) = (^O,TO,0) with r(/?o,0) = r0. Since 

(3.6) \T - aß - cß2\ = K/?,r ,7) | < s0\i\ < s0l0, 
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a finite number of such neighborhoods cover B, provided that 70 is 
sufficiently small. For fixed 7 satisfying I7I < 70, the form of the cor
responding solution branch (v*(ß),\*(ß)) G H x R 1 is an immediate 
consequence of the above construction. 

REMARK 3.1. One can show also that, for each fixed 7 satisfying 
I7I < 70, if c > 0, then the branch of solutions, <2, of (3.3) determined 
by(3.4) has a unique turning point in B at ß = ßril), where ßr is of 
the form 

(3.7) Är(7) = - ( « / 2 c ) + Ä ( 7 ) 

with /?i(7) = 0(7) as 7 -+ 0. The fact that f§(/?,7) = 0 in (3.4) at 
a unique point in B follows from another application of the implicit 
function theorem; one considers the equation 

(3.8) 0=^r(ß,1)=a + 2cß + A T l (& 7) 

and uses the fact that, at 7 = 0, f§ = 0 only at ß = —a/2c. 

It can be shown (e.g., see [12, §5; 16, 21]) that, for fixed 7, the 
linearized stability at points (v*,A*) along the solution branch of (*) 
in Theorem 3.1 is determined by the sign of ^ § along the branch Q. 
Since, along Q, (2.4) holds and 

M !?-'(• + *» + £). 
one sees that, for 70 sufficiently small, the stability of (v*(ß), \* (ß)) 
is indeterminate only at ß = 0 and at the unique turning point on Q 
given by (3.7). Thus, we have the following corollary to Theorem 3.1. 
For the statement of the corollary we may assume that a < 0; if a > 0, 
one replaces ß by — ß in the given intervals. 

COROLLARY 3.1. If a < 0 and c > 0, then, for 70 sufficiently small, 
the solution branch (v*(ß),\*(ß)) o/(*) obtained in Theorem 3.1 is sta
ble for -~p < ß < 0 and ^(7) < ß < p and unstable for0<ß< ßril)-
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We wish to emphasize that, for each fixed 7 sufficiently small, the so
lution branches of the bifurcation equation (2.4) obtained in the above 
discussion are "global" in the (/?, r) plane, however, the corresponding 
solution branch (v*,A*) of (*) may, of course, be "small" because of 
the amplitude factor 7 in (2.7). 

The above results are formulated only to illustrate the approach when 
dim TV = 1. Complete solutions of the bifurcation equations and the 
corresponding stability results may be, of course, much more difficult 
to obtain in problems where dimiV > 1 because in such problems, e.g., 
there may be points of secondary bifurcation at which the null space 
of the appropriate linearized operator has dimension greater than one 
(see the discussion of hexagonal solutions in [13]). 

4. Rotating Couette-Poiseuille channel flow. In this section 
we study rotating Couette-Poiseuille channel flow and show that, in 
general, the superposition of a Poiseuille flow on a rotating Couette 
channel flow is destabilizing. In the case of non-rotating Couette 
channel flow this result was conjectured in [17]on the basis of numerical 
calculations for the linearized Navier-Stokes equations. In the nonlinear 
analysis presented here, it is crucial that there are Coriolis effects 
present in the problem so that the swirl-like parameter S defined in 
(4.2) is positive. 

We consider viscous incompressible flow in a rotating infinite-channel 
of width /. The non-dimensional Navier-Stokes equations in a rectangu
lar coordinate system rotating about the 2-axis with constant angular 
speed, n, are given by (e.g., see [9, p. 163]) 

(4.1) R 7 1 Ay - Vp' - {y • V)v + 25 

V • y = 0, 

V2 
-Vi 

0 
= 0, (x,y,z)eC 

where C = {(z,t/, z) : —00 < x < 00,—1/2 < y < 1/2,—00 < z < 
00}, and y = (^1,^2^3)- Here the Coriolis acceleration terms are 

determined by the square brackets, the rectangular coordinates are 
scaled by /, the velocity components are scaled by UCi where Uc denotes 
the maximum velocity of pure Couette flow at y = 1/2 in the direction 
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of the x-axis with no Poiseuille flow present (e.g., see [9, p. 179]), S is 
the swirl-like parameter 

(4.2) S = Kì/Uc, 

and Re is Reynolds number 

(4.3) Re = lUc/v, 

where v is the kinematic viscosity. We assume throughout that S is 
fixed and 0 < S < \. 

For the basic unperturbed flow we take a pressure, F , and a combi
nation Couette-Poiseuille velocity distribution U = (f/i(t/), 0,0), where 

(4.4) Ul{y) = {y+\) + 6-{l-Ay% -\<V<\> 

(4.5) 6 = Up/Uc 

Here \UP denotes the maximum velocity of pure Poiseuille flow in the 
direction of the x-axis with no Couette flow present (e.g., see [9, p.66]). 

We shall seek solutions of (4.1) that are perturbations of U and P , 

and are independent of x. Setting v = U + w,p' = P + q in (4.1) 

and assuming w = w(y, z) and q = q(y, z), one obtains the disturbance 

equations 

Rï1Aw-Vq + 2S 
w2 

0 
~ v ' Y V — w ' Yw — o? 

v • w = 0, - - < y < - , -oo < z < oo, 

where V = (0, T£-, ^ ) . The boundary conditions here are w = 0 on 

y — ± | . To introduce the appropriate parameters we set 

(4.6) A = (2S(1 - 2S))x'2Re, 0 < S < ì , 
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(4.7) wi=\-1{2S-l)u1, w2 = A -1(2S(1 - 25))1/2w2 

w3 = A"1(25(l - 2S))1/2u3 , q = \-1R-1(2S(l - 25))1/2p, 

and define the structure parameter, 7, as 

<«> ' - i ^ s - Ä ' 0<s<5-

The disturbance equations for u = (ui, 1*2,̂ 3) and p become 

(4.9a) A«i + A(l - 2-yj/)w2 - ( « J y 1 + « 3 " ^ - ) = ° 

,4,6, *„ -g + t a l - („£ + ,,£) _, 

<**> ^-|-(-t + "'f)=° 
/ , ^ ,\ #^2 ÖW3 ^ 1 1 
( 4 - 9 d ) " 9 i r + ^ 7 = 0 ' - 2 < 2 ' < 2 ' - o o < ^ < 0 0 ' 

with the boundary conditions 

(4.10) U i = i t 2 = W 3 = 0 on y = ±-. 

The equations in (4.9) are closely related to those for the generalized 
Bénard problem studied in [12, 13]. In carrying out the analysis below 
for rotating Couette-Poiseuille flow we shall make repeated use of this 
relationship. 

We next introduce an appropriate Hilbert space setting in which to 
seek solutions of (4.9) that are periodic in z. Given a positive number 
a (to be specified below in (4.22)) we set 

(4.11) R = {(y,z) : - - < y < - and - J < z < ^ } . 
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The Hilbert space, H, used throught out this section is defined as the 
closure of the set {v = (^1,^2^3) • v is smooth, periodic in z with 
period Ç , and vanishing in a neighborhood of \y\ — \ with V • v = 0} 

in the norm, || ||, associated with the inner product 

f 3 

(4.12) (v,w)= / ^ y ^ - y ^ . 
JRJ = 1 

Here and in the sequel, whenever possible, the vector notation y is 

suppressed when dealing with elements of H. 

To formulate the problem as an operator equation in H, we take the 
scalar product of (4.9a) through (4.9c) with w E H and use (4.10) and 
integration by parts to obtain 

(4.13) (u, w) - \{Lxu, w) - (F(u), w) = 0. 

Here, for each 7 E R1 , the linear operator L7 : H —> H and the 
quadratic operator F : H —• H are given by 

(4.14) Ln = L - 7M, 

(4.15) F{u) = ^{uìu)ì uGH, 

where the operators L : H -+ H and M : H —• H are defined (weakly) 
by 

(4.16) (Lv^w) = / (v2wi-\-v1W2), 
JR 

(4.17) (Mv,w) = 2 / yv2Wi, v,w,eH, 
JR 

and the bilinear operator $ : i J x if —• H is defined (weakly) by 

(4.18) ($(u,r;),w) = - / ((ti • V)v) • ti; = - : / ( w 2 ^ + t / 3 ^ ) • w. 
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Since w in (4.13) is an arbitrary element of H, one obtains an operator 
equation of the form (*) in §1, namely 

(t) u-\L1u-F(u) = 0, t i € i ï , A e R 1 , ' y € R 1 . 

Standard regularity methods (e.g., see [10, 11]) can now be used to 
show that the problems of finding classical solutions of (4.9), (4.10) and 
solutions of (t) in H are equivalent. 

We require the following facts about the linear problem associated 
with (t) when 7 = 0, namely the problem 

(4.19) u-fiLu = 0, ueH^eR1. 

The linear problem (4.19) is equivalent to the classical problem, for 
smooth u and p periodic with period 27r/a in z, obtained by setting 
7 = 0 and omitting the nonlinear terms in (4.9). It is sufficient to 
consider the solutions of (4.19) given by (see also [12, (2.11) ff] and 
[10; §3]) 

(4.20a) u = (0i (y) cos az, fa (y) cos az, 03 (y) sin az), 

(4.20b) p = -a'1 cos azD2<t>z 

(4.20c) fa = -a'1^ 

where D2 = ^ - a2, a prime, denotes ^-, and <\>\ and <fo satisfy 

(4.21a) D4(f>2 - [xo2^ = 0, 

(4.21b) D 2 0 ! + / i 0 2 = O , 

(4.21c) 0x = ^ = 02 = 0 at y = ± i . 

(The solutions of (4.19) with cosaz and sinaz interchanged lead to 
flows that differ only by a translation from those obtained here). One 
can show for a > 0 (e.g., see [8]) that the eigenvalue problem (4.21) 
has a countable number of positive, simple eigenvalues, 0 < /ii(tr) < 
/i2(^) < -• Ì depending continuously on a. Moreover, ßi(a) —• oo as 
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either a —» 0"*" or a —> oo. Consequently, //i(<r) assumes an absolute 
minimum at some <Jo > 0. We assume that 00 is unique so that 
fii(cr) > /ii(<7o) if a ^ cr0. (This property is suggested by numerical 
calculations (e.g., see [3, §15 (b)] and [6, §10]) and is usually assumed 
in such problems.) For some given integer po > 1 we now choose a so 
that 

(4.22) ao = p0a 

and use this a to define the basic Hilbert space H of this section. 

We may now determine a complete solution of the linear problem 
(4.19). Since cosoz and sincri in (4.20) must have period 2ir/a in 2, 
it follows that the only wave numbers, <7, corresponding to eigenvalues 
having the required period in z are those for which a2 = p2a2 for some 
integer p. For each p(p = 1,2,...) the eigenvalue problem (4.21) has 
an infinite sequence of real, nontrivial solutions 

(/J, 01,02) = (ßpqi^itä9)! P = M , . . . , ç = ± l , ± 2 , . . . . 

Since (—/i, — 0i,02) is a solution of (4.21) whenever (//,0i,02) is a 
solution of (4.21), we may order the indices so that 

(4.23) 0^-«>=-0f, 0^-*)=0f, /ip(_fl) = -MM , and 

0 < /ipl < fip2 < ' ' ' -

Using this notation, we see from our assumption (4.22) on a that 

(4.24) fx0 = min//„I = fiPol 
p 

so that fipq > /i0 if (p,q) 7* (po, 1),Q > 1-

The above discussion of the underlying problem (4.21) shows that the 
full eigenvalue problem (4.19) in H has the solutions 

(4.25) A = ßpq and u = i/;pq, p = 1,2,..., q = ±1 , ± 2 , . . . , 

where 

(4.26) i>vq = (01* cospaz, 0 ^ cospaz, 0?^ sinpaz) 
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with <j)pq determined by (4.20c). It follows as in [12; Appendix] that the 
eigenfunctions {ippq} may be assumed orthonormal in i7, after rescaling 
by constants depending upon p and g, i.e., 

(4.27) (^t/> r s) = <WU 

where oik is the usual Kronecker delta symbol. 

The following lemma summarizes some of the basic facts for the lin
earized problem (4.19). The compactness properties are essentially 
known (e.g., see [10, 11]) while the characterization (4.28) follows eas
ily from (4.17). 

LEMMA 4.1. (i) The linear operator L : H —• H defined in (4.16) 
is self-adjoint and compact and its characteristic values and eigenfunc
tions are given by (4.25). The eigenfunctions {ippq} satisfy (4.27) and 
are complete in H. 

(ii) The linear operator M : H —• H is compact and its adjoint, M* 
is characterized by 

(4.28) (M*v,w) = 2 yv1w2, v,w e H. 
JR 

We show next that hypotheses (HI) through (H4) of §1 are satisfied 
so that we can make use of the structure parameter approach developed 
in §2. To minimize the calculations, we shall make repeated use of the 
results obtained in [12, 13]. This may be done in most cases simply 
by replacing fa and $4 in [12] by fc and </>i of the present paper, 
respectively. 

Since /io, denned in (4.24) is a simple eigenvalue of (4.21) and 
Mo < Ppq for {p,q) ^ (po>l)><Z > l5A*o is simple and also the smallest 
positive characteristic value of L in H. The associated null space, 
TV, of J — /iol/ is spanned by t/>o = ipPo1 and N1- is spanned by 
{ippq : (p, q) ^ (po5l)- Thus, making use of part (i) of Lemma 4.1 
above, we see that (HI) is satisfied. If M is defined as in (4.17), then 
(H2) can be verified by using part (ii) of Lemma 4.1 above and part 
(ii) of Lemma 3.1 in [12]. The form of Ac = Ac(^) in (H3) may be 
derived as in Lemma 3.2 of [12]. In fact, the characteristic values of 
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L1 = L — 7M are determined by the problem obtained from (4.21) by 
replacing (4.21a) by 

(4.29) D4fc ~ »<T2(1 - 272/)0i = 0. 

Thus, Ac is simple and is also real as an eigenvalue of problem (4.21) 
with (4.21a) replaced by (4.29) and a set equal to o-0 (e.g., see [8]). 
Finally, setting G(w) = 0 in (H4) and recalling the definition of $ in 
(4.18), one sees that F in (4.15) is generated by the bounded bilinear 
operator $ (see also [10, 11]). Since it follows as in part (iv) of Lemma 
3.1 in [12] that $ : H x N -+ TV-1, we see that (H4) is also satisfied. 

To determine the coefficients a and c in the bifurcation equation (2.4), 
we note first of all that $ satisfies, in addition, the condition (1.3) in 
Remark 1.1 (see part (iii) of Lemma 3.1 in [12]). Thus, we may make 
use of parts (v) and (vi) in Lemma 3.1 of [12] to show that a = 0 
always and c > 0 in essentially all cases. Moreover, by making use of 
the invariance of equations (4.9) under the translation z —• z + 7r/a, 
one can show that, for each r and 7, the remainder term r in (2.5) is 
odd in /3(see the last part of Appendix B in [19] and also the proof of 
Lemma 3.2 in [13]). Thus, r has the special form given in (3.1), where, 
in addition, s is even in /?. 

In view of the above discussion one can now use Theorem 3.1 and 
Corollary 3.1 with 0 < 7 < 70 to determine nontrivial solutions of the 
operator equation (f) and, hence, roll-like solutions of the disturbance 
equations (4.9) satisfying the boundary conditions (4.10). Thus, for 
each fixed 7 satisfying 0 < 7 < 70, where 70 is sufficiently small, 
rotating Couette-Poiseuille flow is stable up to Ac(7) at which point it 
loses stability to a supercritical, stable roll-type solution given by (2.7) 
with /?* = /?, r* given by (3.4) with a = 0, and ^0 = '0Po1 given by 
(4.26). 

As we now show, the above result implies that the superposition 
of a Poiseuille flow on a rotating Couette channel flow is, in general, 
destabilizing. Recall that Ac(7) is given by an expression such as (1.2) 
with b = {MKMil)o,ipo). If 6 > 0, then, for 7 sufficiently small, 
Ac (7) < Ac(0) = /io 5 where /io is the critical eigenvalue of the linearized 
problem for rotating Couette flow; to see that b > 0 here, one can make 
use of the results in [3; §71 (d)] (see also [6, p.98]) for narrow-gap Taylor 
problems with the parameter (1 — /i)/(l + /i) in [3] replaced by 7 in 
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(4.8). Thus, for a given value of the swirl 5,0 < S < \, the addition 
of a sufficiently small component of Poiseuille flow to a basic rotating 
Couette channel flow always leads to roll-type solutions at values of A 
that are greater than Xc{l) but less than the critical eigenvalue, /io, 
at which rotating Couette flow loses stability. This type of result was 
conjectured in [17] for non-rotating combined Couette-Poiseuille flow 
on the basis of numerical calculations for the linearized Navier-Stokes 
equation. 
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