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ON THE SIMPLICITY A N D UNIQUENESS 
OF POSITIVE EIGENVALUES ADMITTING 

POSITIVE EIGENFUNCTIONS FOR WEAKLY 
COUPLED ELLIPTIC SYSTEMS 

ROBERT STEPHEN CANTRELL 

1. Introduction and preliminaries. Throughout this paper, we 
shall assume that H is a bounded domain in RN,N > 1, with dû of 
class C 2 + a for some a € (0,1). Then, for k = 1,2,..., r, let Lk denote 
the formally self-adjoint operator on Q given by 

N 
Lkw{x) = ~Y, -±(Ak

j(x)^(x)) + Ak(x)w(x). 
dxi 

The coefficients Alf- and Ak are assumed to satisfy 

(i) {AkAx))^jz=zl is symmetric and uniformly positive definite on 0; 

(ii) Ak{x) > 0; 

(iii) A% E C1+(*(n), t, j = 1,2,..., TV, 0 < a < 1; and 

(iv) A f c € C a ( U ) , 0 < a < l . 

L will then denote the diagonal matrix 

•Ll 

L2 0 

0 
U 

L = 

In addition, the matrix M(x) = {mu(x))r
k e^x,x G Cl will be assumed 

to satisfy 

(i) mMeCa(ß), fc,*=l,2,...,r, 0 < a < l ; 

(ii) mu > 0 on fi if k ^ £; and 

(iii) mkt = mtk for A:, ^ = 1 ,2, . . . , r. 
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We will now consider the linear boundary value problem 

, . Lu = PMu in H 
(1.3) 

w = 0on <9Q, 

where u = (u1, u2,..., ur )* is viewed as an r-tuple of functions on H and 
F is a nonnegative r x r scalar matrix with pkk > 0 for fc = 1,2,..., r. 
We are mainly interested in choices of P which admit classical solutions 
of (1.3) for which uk{x) > 0 on Q, k = 1,2,..., r. 

This problem has been addressed in [1] and [2], in case P = A J, À > 0 
and without the assumptions of formal self-adjointness for L and 
symmetry for M. The principal result of Hess [2] is that if rrikki^o) > 0 
for some fc € {1 ,2 , . . . , r} and some XQ € Q, (1.3) has such a solution 
for at least one A > 0. Some partial results on the simplicity and 
uniqueness of such eigenvalues are given in [1]. In particular, if the Hess 
result holds, and if (M + /i/)(x) is a nonnegative irreducible matrix for 
some x € Q, then uk(x) may be chosen strictly positive inside Q for k = 
1,2,..., r. Moreover, dim(ker((L - AM)2)) = dim(ker(L - AM)) = 1. 

However, for purposes of applications to associated nonlinear prob
lems (as, for example, in bifurcation theory) a more relevant question 
is the algebraic simplicity of an eigenvalue A of 

(1.4) u = XL^Mu. 

As described in [1] and [2], (1.4) is equivalent to (1.3) in case P = XI 
by standard a priori estimates and embedding theorems for second-
order elliptic partial differential equations. In particular, L~XM may 
be viewed as a compact linear operator on either of the Banach spaces 
[C^+a(Ü)] r or [Cg(Ö)]r (the choice of [Cg(0)]r being made when it 
is desirable to exploit the monotone nature of the cone of positive 
functions in this space). To this end, it is shown in [1] that, in case 
L " 1 M = ML~X and (M + /J,I)(XO) is irreducible for some /i > 0 and 
xo E n , (1.4) has a unique algebraically simple eigenvalue admitting an 
eigenfunction with uk(x) > 0, k = 1,2,..., r, provided mk0k0 > 0 for at 
least one fco G {1 ,2 , . . . , r} . It should be noted that the commutativity 
assumption essentially requires that L1 = L2 = • • • = U and that M 
is a constant matrix, although L1 need not be formally self-adjoint and 
mjçk can be negative for fc ̂  fco- Partial results are given in [1] in case 
the commutativity assumption is dropped. 
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In this article we shall show that the simplicity and uniqueness results 
obtain as above without the commutativity assumption provided that 
L is formally self-adjoint and M is symmetric. (These results extend 
to systems the results of [3].) To this end, in §2, we prove a basic 
simplicity theorem, which covers a number of cases, including P = XL 
Corresponding uniqueness results are presented in §3, making strong 
use of the results of [1]. 

2. Simplicity results . 

THEOREM 2.1. Consider (1.4), where L,M, and P are as described 
in §1. In addition, invertible matrix; 

(i) P is a symmetric, invertible matrix 

( Ì Ì )P- 1 L = L P - 1 ; 

(iii) If A = PM and A = (p>kt)rk,i=\, then au > 0 if k ^ l and 
(A + 6I)(x) is nonnegative irreducible, for some x E f l and some 6 > 0; 

(iv) The map Q : [Cg(Q)]r -+ R given by 

Q(w) = {w,P~lLw) 

is positive definite, where (, ) is the inner product for [L2(Q)]r. 

Then, if (1.4) has a nontrivial solution u in [CQ+Q:(H)]r with uk > 0 
on 0 for k = l , 2 , . . . , r , uk(x) > 0 for x e Q and %£{x) < 0 
on dU, where -^ denotes the outward normal derivative. Moreover, 
N((I - PL~lM)2) = N(I - PL~lM) = span(u). 

PROOF. That uk is as described for k = 1,2,..., r and that N(I -
PL~XM) = span (ti) follow from (iii) as in [1; §3]. Suppose now that 
(J - PL-xM)2x = 0. Then (J - PL~xM)x = cu, where e e R. 
Consequently 

0 = ( ( / - P L - 1 M ) 2 x , 2 / ) 

= ((/ - PL~1M)x1 (I - PL^MYy) 

= c(ui(I^ML-1P)y) 

for any y € [Cfî (fî)]r. In particular, if y = P"1 Lx 

0 = c(u, {I - ML" 1P)(p- 1La:)) 

= c(tt, P~xLx - Mx). 
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But now x = PL~1Mx + cu and PL'1 = L~XP imply P~xLx-Mx = 
cP~xLu. Hence 

0 = c2(u,P~1Lu). 

Since uk > 0 on Q for k = 1,2,..., r, (iv) implies c2 = 0. 

REMARK. Hypothesis (iv) of Theorem 2.1 may be omitted provided 
it is known that {u, P~xLu) = (u,Mu) ^ 0. However, we have chosen 
to present the result with hypothesis (iv) included, as there are two im
portant cases in which the hypotheses of Theorem 2.1 may be verified. 

COROLLARY 2.2. Suppose that L,M, and P are as in §i. In addi
tion, assume that pu = 0 if k ^ I and that (M -\-6I)(x) is nonnegative 
irreducible for some x 6 U and some 8 > 0. Then the conclusion of 
Theorem 2.1 obtains. 

PROOF. That hypotheses (i)-(iii) of Theorem 2.1 are satisfied is 
immediate. Suppose now that w G [Co(H)]r. Then 

Q(w) = J2 — I wkLkwk 

= E — f I t 4 ( # ? ^ + / Ak(x)[W
k?dx] ^[PkkUa^ %3K dxi dxj Ja J 

by the formal self-adjointness of Lfc, k = l , . . . , r . Consequently, 
Q(w) > 0 unless w = 0. 

REMARK. In particular, Corollary 2.2 includes, of course, the case 
P = XL 

COROLLARY 2.3. Suppose that L,M, and P are as in §1. In addi
tion, assume that P and M satisfy hypotheses (i) and (iii) of Theorem 
2.1 and that P is positive definite. Then if L1 = L2 = • • • = U, the 
conclusion of Theorem 2.1 obtains. 
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PROOF. Again, we need only verify hypothesis (iv). Since P " 1 is 
a symmetric positive definite matrix, it is well-known that there is a 
symmetric matrix C such that C2 = P " 1 . So if w e [C^fi)]7*, 

Q H = (w.P^Lw) 
= (w,c2Lw) 

= (Cw,LCw). 

The hypotheses on L guarantee that Q(w) > 0 unless Cw = 0 on fi. 
But if such is the case (w,P~1w) = (Cw,Cw) = 0. Consequently, 
since P " 1 is positive definite, w = 0, and (iv) is verified. 

3. Uniqueness results. Let us now assume that P = A = 

(Ao '* x-r ) ' w i t h xk > 0 fixed for k = l , 2 , . . . , r , that L and M 

are as in Corollary 2.2, and that 

(3.1) mkk{x0) > 0 

for some xo € fi and some k G {1 ,2 , . . . , r} . We may now obtain the 
following 

THEOREM 3.1. Suppose that A,X, and M are as above. Then there 
is a unique so > 0 such that 

(3.2) Lu = soAMu in fi 

u = 0 on9Q 

/las a nontrivial solution UQ with u§ > 0, for k = 1,2,..., r. 

REMARK. The proof of Theorem 3.1 is a special case of the proof of 
our Theorem 3.8 in [1], and, consequently, a fully detailed exposition of 
the proof is unnecessary. However, in order that this present article be 
somewhat self-contained, we will give a brief sketch of the main ideas 
of the proof. A reader seeking further details is referred to [1]. 
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PROOF OF THEOREM 3.1. First of all, there is no loss of generality 
in the additional assumption that 

(3.3) -h<mkk{x)<h 
for x € fi, k = 1,2,..., r, and that 

(3.4) 0 < mki{x) < -
r 

for x € fi, k ^ £, A;, £ = 1,2,..., r. Now consider the family of problems 

(3.5) Lu = sA{M - t)u in fi 

u = 0 on dfi 

which contains (3.2). It is easy to see that (3.5) is equivalent to 

(3.6) u = sA{L + sA)~1{M-t + l)u. 

Notice that if £ < 1 — ^ , M — £ + 1 is nonnegative and, for some 
x € fi, irreducible as well. Consequently, the right hand side of (3.6) 
may be viewed as a compact positive operator on [Co(fi)]r if s > 0 
and t < 1 — ^ . It follows as in §3 of [1] that, for such s and 
t, that the existence of a positive solution to (3.6) is equivalent to 
r(sA(L + sA)_ 1(M - t + 1)) = 1, where r(A) is the spectral radius 
of A. Moreover, if (s,£) is such a point there is a smooth function 
t(s) : (s — 6,s + 6) —> (—oo, 1 — ^ ) , where 6 > 0 is sufficiently small, 
such that t(s~) =t and such that r(sA(L+sA)~1(M—1+1)) = 1 exactly 
when t = t(s) if | (M) — (^J)I is sufficiently small. 

It follows from (3.3)-(3,4) and [4, pp. 188-192] that there is a t0 € 
(0,1 — ^r) such that (3.6) has no positive solution with s > 0 and t > to. 
Let £Q = inf {t : t < 1 — ̂  and (3.6) has no positive solution with s > 0 
at t). Then it follows from (3.1) that 0 < % < tç>. We may define a 
function / : (—OO,£Q] —• [0, oo) by f(t) = 1/s where s is the smallest 
positive number for which (3.6) has a positive solution at t provided 
t < t$ and 0 if t = tç. That M — t + 1 is monotonie in t will imply that 
/ is a decreasing function. Now if t < Eg and s = 1/'f{t), Corollary 2.2 
implies that 

dim(JV([J - sAL-^M - t)]2)) = dim{N{I - sAL~l(M - t))) = 1. 
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A degree theoretic argument, as in [1; §3], may now be made to show 
that / is continuous. 

Now suppose there is s > so such that (3.6) has a positive solution. 
Since 0 < 1/5 < l/s0 = /(0), there is a t G (0, *0) such that f(t) = 1/5. 
Consequently, r(SA(L + SA)" 1 (M-0)) = 1 = r(§A(L + § A ) - 1 ( M - ï ) ) . 
So r(sA(L + 5A)""1(M - t)) = 1 for t G [0,ï], a contradiction to the 
solvability of t in terms of s at (5, t). 

Theorem 3.1 has an immediate consequence which is of substantial 
interest in the geometric study of generalized spectra of systems of 
second order elliptic partial differential equations [5]. 

COROLLARY 3.2. Suppose that L and M satisfy the hypotheses 
of Corollary 2.2 and in addition that (3.1) holds. Then the set 
{(Ai,À2,..., Ar) : Xk > 0, for k = 1,2,.. . ,r, and Lu = KMu 
has a positive solution in fi with u = 0 on dQ} is homeomorphic 
to S = {(Ai,À2,...,A r) : Afe > 0 and YH=i^l = !}• ln Par-
ticular, if (AC, A§, . . . , A£) G S and il) denotes the homeomorphism, 
</>((A?, A§,. . . A?)) = a(A?, Ai},..., A?), öftere a > 0. 
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