ON THE SIMPLICITY AND UNIQUENESS OF POSITIVE EIGENVALUES ADMITTING POSITIVE EIGENFUNCTIONS FOR WEAKLY COUPLED ELLIPTIC SYSTEMS

ROBERT STEPHEN CANTRELL

1. Introduction and preliminaries. Throughout this paper, we shall assume that Ω is a bounded domain in $\mathbf{R}^{N}, N \geq 1$, with $\partial \Omega$ of class $C^{2+\alpha}$ for some $\alpha \in(0,1)$. Then, for $k=1,2, \ldots, r$, let L^{k} denote the formally self-adjoint operator on Ω given by

$$
L^{k} w(x)=-\sum_{i, j=1}^{N} \frac{\partial}{\partial x_{j}}\left(A_{i j}^{k}(x) \frac{\partial w}{\partial x_{i}}(x)\right)+A^{k}(x) w(x) .
$$

The coefficients $A_{i j}^{k}$ and A^{k} are assumed to satisfy
(i) $\left(A_{i j}^{k}(x)\right)_{i, j=1}^{N}$ is symmetric and uniformly positive definite on $\bar{\Omega}$;
(ii) $A^{k}(x) \geq 0$;
(iii) $A_{i j}^{k} \in C^{1+\alpha}(\bar{\Omega}), i, j=1,2, \ldots, N, \quad 0<\alpha<1$; and
(iv) $A^{k} \in C^{\alpha}(\bar{\Omega}), 0<\alpha<1$.
L will then denote the diagonal matrix

$$
L=\left[\begin{array}{cccc}
L^{1} & & & \\
& & L^{2} & 0 \\
& 0 & & \ddots
\end{array}\right]
$$

In addition, the matrix $M(x)=\left(m_{k \ell}(x)\right)_{k, \ell=1}^{r}, x \in \bar{\Omega}$ will be assumed to satisfy
(i) $m_{k \ell} \in C^{\alpha}(\bar{\Omega}), k, \ell=1,2, \ldots, r, 0<\alpha<1$;
(ii) $m_{k \ell} \geq 0$ on $\bar{\Omega}$ if $k \neq \ell$; and
(iii) $m_{k \ell}=m_{\ell k}$ for $k, \ell=1,2, \ldots, r$.

Received by the editors on April 19, 1986.

We will now consider the linear boundary value problem

$$
\begin{align*}
L u & =P M u \text { in } \Omega \tag{1.3}\\
u & \equiv 0 \text { on } \partial \Omega,
\end{align*}
$$

where $u=\left(u^{1}, u^{2}, \ldots, u^{r}\right)^{t}$ is viewed as an r-tuple of functions on $\bar{\Omega}$ and P is a nonnegative $r \times r$ scalar matrix with $p_{k k}>0$ for $k=1,2, \ldots, r$. We are mainly interested in choices of P which admit classical solutions of (1.3) for which $u^{k}(x) \geq 0$ on $\bar{\Omega}, k=1,2, \ldots, r$.
This problem has been addressed in [1] and [2], in case $P=\lambda I, \lambda>0$ and without the assumptions of formal self-adjointness for L and symmetry for M. The principal result of Hess [2] is that if $m_{k k}\left(x_{0}\right)>0$ for some $k \in\{1,2, \ldots, r\}$ and some $x_{0} \in \Omega,(1.3)$ has such a solution for at least one $\lambda>0$. Some partial results on the simplicity and uniqueness of such eigenvalues are given in [1]. In particular, if the Hess result holds, and if $(M+\mu I)(\bar{x})$ is a nonnegative irreducible matrix for some $\bar{x} \in \Omega$, then $u^{k}(x)$ may be chosen strictly positive inside Ω for $k=$ $1,2, \ldots, r$. Moreover, $\operatorname{dim}\left(\operatorname{ker}\left((L-\lambda M)^{2}\right)\right)=\operatorname{dim}(\operatorname{ker}(L-\lambda M))=1$.
However, for purposes of applications to associated nonlinear problems (as, for example, in bifurcation theory) a more relevant question is the algebraic simplicity of an eigenvalue λ of

$$
\begin{equation*}
u=\lambda L^{-1} M u \tag{1.4}
\end{equation*}
$$

As described in [1] and [2], (1.4) is equivalent to (1.3) in case $P=\lambda I$ by standard a priori estimates and embedding theorems for secondorder elliptic partial differential equations. In particular, $L^{-1} M$ may be viewed as a compact linear operator on either of the Banach spaces $\left[C_{0}^{1+\alpha}(\bar{\Omega})\right]^{r}$ or $\left[C_{0}^{0}(\bar{\Omega})\right]^{r}$ (the choice of $\left[C_{0}^{0}(\bar{\Omega})\right]^{r}$ being made when it is desirable to exploit the monotone nature of the cone of positive functions in this space). To this end, it is shown in [1] that, in case $L^{-1} M=M L^{-1}$ and $(M+\mu I)\left(x_{0}\right)$ is irreducible for some $\mu>0$ and $x_{0} \in \Omega$, (1.4) has a unique algebraically simple eigenvalue admitting an eigenfunction with $u^{k}(x) \geq 0, k=1,2, \ldots, r$, provided $m_{k_{0} k_{0}}>0$ for at least one $k_{0} \in\{1,2, \ldots, r\}$. It should be noted that the commutativity assumption essentially requires that $L^{1}=L^{2}=\cdots=L^{r}$ and that M is a constant matrix, although L^{1} need not be formally self-adjoint and $m_{k k}$ can be negative for $k \neq k_{0}$. Partial results are given in [1] in case the commutativity assumption is dropped.

In this article we shall show that the simplicity and uniqueness results obtain as above without the commutativity assumption provided that L is formally self-adjoint and M is symmetric. (These results extend to systems the results of [3].) To this end, in §2, we prove a basic simplicity theorem, which covers a number of cases, including $P=\lambda I$. Corresponding uniqueness results are presented in §3, making strong use of the results of $[\mathbf{1}]$.

2. Simplicity results.

THEOREM 2.1. Consider (1.4), where L, M, and P are as described in §1. In addition, invertible matrix;
(i) P is a symmetric, invertible matrix
(ii) $P^{-1} L=L P^{-1}$;
(iii) If $A=P M$ and $A=\left(a_{k \ell}\right)_{k, \ell=1}^{r}$, then $a_{k \ell} \geq 0$ if $k \neq \ell$ and $(A+\delta I)(\bar{x})$ is nonnegative irreducible, for some $x \in \Omega$ and some $\delta>0$;
(iv) The map $Q:\left[C_{0}^{2}(\bar{\Omega})\right]^{r} \rightarrow \mathbf{R}$ given by

$$
Q(w)=\left\langle w, P^{-1} L w\right\rangle
$$

is positive definite, where \langle,$\rangle is the inner product for \left[L^{2}(\bar{\Omega})\right]^{r}$.
Then, if (1.4) has a nontrivial solution u in $\left[C_{0}^{2+\alpha}(\bar{\Omega})\right]^{r}$ with $u^{k} \geq 0$ on $\bar{\Omega}$ for $k=1,2, \ldots, r, u^{k}(x)>0$ for $x \in \Omega$ and $\frac{\partial u^{k}}{\partial \nu}(x)<0$ on $\partial \Omega$, where $\frac{\partial}{\partial \nu}$ denotes the outward normal derivative. Moreover, $N\left(\left(I-P L^{-1} M\right)^{2}\right)=N\left(I-P L^{-1} M\right)=\operatorname{span}(u)$.

Proof. That u^{k} is as described for $k=1,2, \ldots, r$ and that $N(I-$ $\left.P L^{-1} M\right)=\operatorname{span}(u)$ follow from (iii) as in $[1 ; \S 3]$. Suppose now that $\left(I-P L^{-1} M\right)^{2} x=0$. Then $\left(I-P L^{-1} M\right) x=c u$, where $c \in \mathbf{R}$. Consequently

$$
\begin{aligned}
0 & =\left\langle\left(I-P L^{-1} M\right)^{2} x, y\right\rangle \\
& =\left\langle\left(I-P L^{-1} M\right) x,\left(I-P L^{-1} M\right)^{*} y\right\rangle \\
& =c\left\langle u,\left(I-M L^{-1} P\right) y\right\rangle
\end{aligned}
$$

for any $y \in\left[C_{0}^{\alpha}(\bar{\Omega})\right]^{r}$. In particular, if $y=P^{-1} \mathrm{Lx}$

$$
\begin{aligned}
0 & =c\left\langle u,\left(I-M L^{-1} P\right)\left(P^{-1} L x\right)\right\rangle \\
& =c\left\langle u, P^{-1} L x-M x\right\rangle
\end{aligned}
$$

But now $x=P L^{-1} M x+c u$ and $P L^{-1}=L^{-1} P$ imply $P^{-1} L x-M x=$ $c P^{-1} L u$. Hence

$$
0=c^{2}\left\langle u, P^{-1} L u\right\rangle
$$

Since $u^{k}>0$ on Ω for $k=1,2, \ldots, r$, (iv) implies $c^{2}=0$.

REMARK. Hypothesis (iv) of Theorem 2.1 may be omitted provided it is known that $\left\langle u, P^{-1} L u\right\rangle=\langle u, M u\rangle \neq 0$. However, we have chosen to present the result with hypothesis (iv) included, as there are two important cases in which the hypotheses of Theorem 2.1 may be verified.

COROLLARY 2.2. Suppose that L, M, and P are as in §1. In addition, assume that $p_{k \ell}=0$ if $k \neq \ell$ and that $(M+\delta I)(\bar{x})$ is nonnegative irreducible for some $\bar{x} \in \Omega$ and some $\delta>0$. Then the conclusion of Theorem 2.1 obtains.

Proof. That hypotheses (i)-(iii) of Theorem 2.1 are satisfied is immediate. Suppose now that $w \in\left[C_{0}^{2}(\bar{\Omega})\right]^{r}$. Then

$$
\begin{aligned}
Q(w) & =\sum_{k=1}^{r} \frac{1}{p_{k k}} \int_{\Omega} w^{k} L^{k} w^{k} \\
& =\sum_{k=1}^{r} \frac{1}{p_{k k}}\left[\int_{\Omega} \sum_{i, j=1}^{N} A_{i j}^{k}(x) \frac{\partial w^{k}}{\partial x_{i}} \frac{\partial w^{k}}{\partial x_{j}} d x+\int_{\Omega} A^{k}(x)\left[w^{k}\right]^{2} d x\right]
\end{aligned}
$$

by the formal self-adjointness of $L^{k}, k=1, \ldots, r$. Consequently, $Q(w)>0$ unless $w \equiv 0$.

REMARK. In particular, Corollary 2.2 includes, of course, the case $P=\lambda I$.

COROLLARY 2.3. Suppose that L, M, and P are as in §1. In addition, assume that P and M satisfy hypotheses (i) and (iii) of Theorem 2.1 and that P is positive definite. Then if $L^{1}=L^{2}=\cdots=L^{r}$, the conclusion of Theorem 2.1 obtains.

Proof. Again, we need only verify hypothesis (iv). Since P^{-1} is a symmetric positive definite matrix, it is well-known that there is a symmetric matrix C such that $C^{2}=P^{-1}$. So if $w \in\left[C_{0}^{2}(\bar{\Omega})\right]^{r}$,

$$
\begin{aligned}
Q(w) & =\left\langle w, P^{-1} L w\right\rangle \\
& =\left\langle w, c^{2} L w\right\rangle \\
& =\langle C w, L C w\rangle
\end{aligned}
$$

The hypotheses on L guarantee that $Q(w)>0$ unless $C w \equiv 0$ on $\bar{\Omega}$. But if such is the case $\left\langle w, P^{-1} w\right\rangle=\langle C w, C w\rangle=0$. Consequently, since P^{-1} is positive definite, $w \equiv 0$, and (iv) is verified.
3. Uniqueness results. Let us now assume that $P=\Lambda=$ $\left(\begin{array}{cc}\lambda_{1} & \ddots \\ 0 & 0 \\ \lambda-r\end{array}\right)$, with $\lambda_{k}>0$ fixed for $k=1,2, \ldots, r$, that L and M are as in Corollary 2.2, and that

$$
\begin{equation*}
m_{k k}\left(x_{0}\right)>0 \tag{3.1}
\end{equation*}
$$

for some $x_{0} \in \Omega$ and some $k \in\{1,2, \ldots, r\}$. We may now obtain the following

Theorem 3.1. Suppose that Λ, L, and M are as above. Then there is a unique $s_{0}>0$ such that

$$
\begin{gather*}
L u=s_{0} \Lambda M u \quad \text { in } \Omega \tag{3.2}\\
u=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

has a nontrivial solution u_{0} with $u_{0}^{k} \geq 0$, for $k=1,2, \ldots, r$.

REMARK. The proof of Theorem 3.1 is a special case of the proof of our Theorem 3.8 in [1], and, consequently, a fully detailed exposition of the proof is unnecessary. However, in order that this present article be somewhat self-contained, we will give a brief sketch of the main ideas of the proof. A reader seeking further details is referred to [1].

Proof of Theorem 3.1. First of all, there is no loss of generality in the additional assumption that

$$
\begin{equation*}
-\frac{1}{2 r}<m_{k k}(x)<\frac{1}{2 r} \tag{3.3}
\end{equation*}
$$

for $x \in \bar{\Omega}, k=1,2, \ldots, r$, and that

$$
\begin{equation*}
0 \leq m_{k \ell}(x) \leq \frac{1}{r} \tag{3.4}
\end{equation*}
$$

for $x \in \bar{\Omega}, k \neq \ell, k, \ell=1,2, \ldots, r$. Now consider the family of problems

$$
\begin{gather*}
L u=s \Lambda(M-t) u \quad \text { in } \Omega \tag{3.5}\\
u=0 \text { on } \partial \Omega
\end{gather*}
$$

which contains (3.2). It is easy to see that (3.5) is equivalent to

$$
\begin{equation*}
u=s \Lambda(L+s \Lambda)^{-1}(M-t+1) u \tag{3.6}
\end{equation*}
$$

Notice that if $t<1-\frac{1}{2 r}, M-t+1$ is nonnegative and, for some $\bar{x} \in \Omega$, irreducible as well. Consequently, the right hand side of (3.6) may be viewed as a compact positive operator on $\left[C_{0}^{0}(\bar{\Omega})\right]^{r}$ if $s>0$ and $t<1-\frac{1}{2 r}$. It follows as in §3 of [1] that, for such s and t, that the existence of a positive solution to (3.6) is equivalent to $r\left(s \Lambda(L+s \Lambda)^{-1}(M-t+1)\right)=1$, where $r(A)$ is the spectral radius of A. Moreover, if (\bar{s}, \bar{t}) is such a point there is a smooth function $t(s):(\bar{s}-\delta, \bar{s}+\delta) \rightarrow\left(-\infty, 1-\frac{1}{2 r}\right)$, where $\delta>0$ is sufficiently small, such that $t(\bar{s})=\bar{t}$ and such that $r\left(s \Lambda(L+s \Lambda)^{-1}(M-t+1)\right)=1$ exactly when $t=t(s)$ if $|(s, t)-(\bar{s}, \bar{t})|$ is sufficiently small.
It follows from (3.3)-(3,4) and [4, pp. 188-192] that there is a $t_{0} \in$ ($0,1-\frac{1}{2 r}$) such that (3.6) has no positive solution with $s>0$ and $t \geq t_{0}$. Let $t_{0}^{*}=\inf \left\{t: t<1-\frac{1}{2 r}\right.$ and (3.6) has no positive solution with $s>0$ at $t\}$. Then it follows from (3.1) that $0<t_{0}^{*} \leq t_{0}$. We may define a function $f:\left(-\infty, t_{0}^{*}\right] \rightarrow[0, \infty)$ by $f(t)=1 / s$ where s is the smallest positive number for which (3.6) has a positive solution at t provided $t<t_{0}^{*}$ and 0 if $t=t_{0}^{*}$. That $M-t+1$ is monotonic in t will imply that f is a decreasing function. Now if $t<t_{0}^{*}$ and $s=1 / f(t)$, Corollary 2.2 implies that

$$
\operatorname{dim}\left(N\left(\left[I-s \Lambda L^{-1}(M-t)\right]^{2}\right)\right)=\operatorname{dim}\left(N\left(I-s \Lambda L^{-1}(M-t)\right)\right)=1
$$

A degree theoretic argument, as in $[1 ; \S 3]$, may now be made to show that f is continuous.

Now suppose there is $\tilde{s}>s_{0}$ such that (3.6) has a positive solution. Since $0<1 / \tilde{s}<1 / s_{0}=f(0)$, there is a $\tilde{t} \in\left(0, t_{0}\right)$ such that $f(\tilde{t})=1 / \tilde{s}$. Consequently, $r\left(\tilde{s} \Lambda(L+\tilde{s} \Lambda)^{-1}(M-0)\right)=1=r\left(\tilde{s} \Lambda(L+\tilde{s} \Lambda)^{-1}(M-\tilde{t})\right)$. So $r\left(\tilde{s} \Lambda(L+\tilde{s} \Lambda)^{-1}(M-t)\right)=1$ for $t \in[0, \tilde{t}]$, a contradiction to the solvability of t in terms of s at (\tilde{s}, \tilde{t}).

Theorem 3.1 has an immediate consequence which is of substantial interest in the geometric study of generalized spectra of systems of second order elliptic partial differential equations [5].

COROLLARY 3.2. Suppose that L and M satisfy the hypotheses of Corollary 2.2 and in addition that (3.1) holds. Then the set $\left\{\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}\right): \lambda_{k}>0\right.$, for $k=1,2, \ldots, r$, and $L u=\Lambda M u$ has a positive solution in Ω with $u=0$ on $\partial \Omega\}$ is homeomorphic to $S=\left\{\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}\right): \lambda_{k}>0\right.$ and $\left.\sum_{k=1}^{r} \lambda_{k}^{2}=1\right\}$. In particular, if $\left(\lambda_{1}^{0}, \lambda_{2}^{0}, \ldots, \lambda_{r}^{0}\right) \in S$ and ψ denotes the homeomorphism, $\psi\left(\left(\lambda_{1}^{0}, \lambda_{2}^{0}, \ldots \lambda_{r}^{0}\right)\right)=\alpha\left(\lambda_{1}^{0}, \lambda_{2}^{0}, \ldots, \lambda_{r}^{0}\right)$, where $\alpha>0$.

REFERENCES

1. R.S. Cantrell and K. Schmitt, On the eigenvalue problem for coupled elliptic systems, SIAM J. Math. Anal. 17 (1986), 850-862.
2. P. Hess, On the eiginvalue problem for weakly-coupled elliptic systems, Arch. Rat. Mech. Anal. 81 (1983), 151-159.
3. A. Manes and A.M. Micheletti, Un'estensione della teoria variationale classica degli autovalori per operatori ellitici del secondo ordine, Boll, U.M.I. 7 (1973), 185-301.
4. M.H. Protter and H.F. Weinberger, Maximum Principles in Differential Equations, Prentice-Hall, Englewood Cliffs, N.J., 1967.
5. The generalized spectrum of second order elliptic systems, Rocky Mountain J. Math. 9 (1979), 503-518.
