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RESOLVING SINGULAR NONLINEAR EQUATIONS 

E.L. ALLGOWER AND K. BÖHMER 

ABSTRACT. This paper concerns the solutions of op
erator equations G(z, X) = 0 having solutions (zo,\o) for 
which G'{ZQ, Ao) is not a surjection. More precisely, suppose 
A G Ä « , g > Oand dimN(G'(zo, A0)) = m+q > 0, where N(-) 
denotes the kernel. Several different kinds of singular prob
lems can be treated in a unified way. Examples are parameter 
dependent problems with q > 0 and ra > 1 and operator equa
tions with m > 0, q = 0. In the latter case the corresponding 
discrete analogues also have some corresponding singularities 
which usually lead to the breakdown of numerical solution 
techniques. The former case includes multiple bifurcations for 
multi-parameter problems. The main results involve the con
struction of an inflated map H(z, A, . . . ) (where . . . denotes 
additional augmented variables). The map H has an invertible 
derivative at (zo, Ao, . . . ) and a component F(z, A, c) such that 
F(z, A,0) = G(z, A). This H may be used to define quadrati-
cally convergent Newton methods. Several examples of finite 
dimensional equations and operator equations are studied. In 
practical applications m is often not known a priori. Some 
ways of determining m + q are described. 

1. Introduction. In this paper we consider operators 

(1.1) G : E := E 0 x Rq - • Ê, (E0, Ê are Banach spaces, q > 0), 

in the neighborhood of a zero point {zo,\o) of G having a nontrivial 
null space of the Frechet derivative G' = (GZi Gx)- Here GZi Gx denote 
the partial derivatives with respect to z and A, respectively. Letting 
N(L) denote the kernel of a linear operator L, we have 

(1.2) G(2o,Ao) = 0, dimN(G ,(^o,Ao)) = m + ^ > 0 . 

In case q > 0 we may have the usual bifurcation problem in continuation 
methods, which is discussed in the literature primarily for m = 1. For 
q = 0 and m > 0, the usual discretization methods for the computation 
of an isolated solution usually fail. Hence, modifications are necessary. 

Received by the editors on April 7, 1986 and in revised form on September 15, 
1986. 

Copyright ©1988 Rocky Mountain Mathematics Consortium 

225 



226 E.L. ALLGOWER AND K. BÖHMER 

Finally, the Newton methods for the computation of ZQ generally break 
down if (1.2) holds. 

The aim of this paper is to suggest a uniform procedure to solve 
the three problems indicated above. We define an inflated operator 
H closely related to G such that, at the singular point (ZQ,XQ), the 
Frechet derivative H' of H is boundedly invertible. For H the usual 
discretization and Newton methods may be applied to obtain z$, 
N(G'(z0)) for q = 0, and (z0, A0),N(G'(2o, A0)) for q > 0. The discrete 
approximations converge with the order of the given method and the 
Newton iterates converge quadratically. For the bifurcation problem 
we obtain (ZQ,XO) and N(G'(zo, XQ)) and hence we are able to really 
obtain a "multiple bifurcation point" directly. 

We assume that m in (1.2) is either known theoretically or empirically. 
One of the contexts in which such information is frequently available 
concerns problems involving bifurcation. In this case the determination 
of (ZQ,XO) and N(G'(£o>>V))) might be used to simplify the task of 
solving the corresponding bifurcation equation arising in the method 
of Liapunov-Schmidt (see, e.g., [42, 45]). For the case m = 1 our 
inflated maps coincide with those of several authors (see [29, 30, 35, 
42-44, 52, 53]). 

The inflation H is introduced and discussed in §2 for Banach space 
mappings. §3 is devoted to the case dimEo = dim E < oo, and §4 
to the problem of discretization of operator equations, which is then 
applied in §5 to our special problems of inflated mappings. 

An empirical determination of (m, q) for the case dim EQ = dim E < 
oo is studied in §3. The actual computations of the Gauss decompo
sition of the corresponding matrices yields "local" information about 
(m, q) which might have to be updated during the further computa
tions. Via discretization, this approach may be used for operator equa
tions as well. 

The case m = l,q > 0 in (1.2) is frequently discussed in the litera
ture. The problem (1.1), (1.2) with m > 1,E = Ê = R* and a known 
trivial bifurcation point ZQ = 0 is treated under additional assumptions 
in [8]. In this paper an inflation H is formally introduced and described 
for some specific examples. To our knowledge no attempt to date has 
been made to give a general theory for operators including discretiza
tion and Newton methods. This approach may be used as well for the 
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solution of nonlinear problems where the additional parameters A G R ? 

can introduce further difficulties, because the structure of the kernels 
are not known a priori. 

2. Inflated maps. 

2.1 The problem. We want to solve the problem 

(2.1) G(*,A) = 0. 

We make the following assumptions concerning the solution 
(z0i A0) of 

(2.1) 

i) G : D(G) C E = E 0 X R ^ R(G) G Ê; 

ii) E, E are Banach spaces; 

iii) G G G2(D(G)),D(G) an open neighborhood of x0 := (z0, Ao); 

(2.2) 

iv) N(G'(z0,Ao)) = [0i,• • •,4>m+q] Ç E o x R ' = E; 

v)N(G'(2o,A 0 r ) = b î , . . . , ¥ ^ ] Ç Ê * ; 

vi) Gf(zo) Ao); and for every w G N(G'(z0, Ao)), G"(zo5 Ao)w 
are linear (bounded) operators with closed range. 

Here E*,E , and L* represent the dual spaces and operators, respec
tively, for the Banach spaces E, E and the linear operator L : E = 
E o x R ^ E , [ w i , . . . , Wi] indicates the span of w\,..., Wi and N(L) 
and R(L) indicate kernel and range of L, respectively. 

Condition (2.2) iii) implies that G'(zi A) and G"{z,\) are bounded 
linear and bilinear operators if || (2, A) — (20, Ao) || is sufficiently small. 
We could as well have started with a densely defined operator G. Then 
G' and G" would be (or assumed to be) closed densely defined linear 
operators with closed range and appropriate G2(D(G)). The following 
theory essentially remains unchanged for this case. To avoid a more 
technical discussion we therefore choose (2.2). 

As a consequence of (2.2) (iv), (v) the usual kinds of discretiza
tion and Newton methods applied to (2.1) will fail, since stability 
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and convergence of Newton's method break down for nonexisting 
{G'(zo, Ao))_1. Therefore, we introduce an inflated mapping. In this 
context we need a bounded linear operator 

(2.3) 

i) Lç£(E = E0xRg,Rm+q) 

such that 

i i )N(L)nN(G' ( 2 o ,A o ) ) = {0}, 

an (m + q) x (m + q) matrix 

(2.4) 

i) A = ( a i , . . . , o m + g ) 

such that 

ii) rank A = m + Ö, 

and a variable c G Rp , which we will further specify below. We embed 
G into a family of operators such that, with 

(2.5) 

x := (z, A) € D(G) Ç E = E 0 x R*, c G D F C Rp , 0 G D F , 

F := T>(G) x D F Ç E 0 x Rq x Rp -> Ê, F(z,0) = G(x) 

and 
F G C 2 ( D ( G ) X D F ) . 

The question of how to choose F is treated in §2.4. Now we define the 
operator if, with Fx and Fc representing the partial derivatives of F , 
as 

H : D(G) x Em+q x Rp Ç F := E m + q + 1 x Rp -> F 
:= Ê x (Ê x R™+«)™+<7, 

^ , c ) (2.6) 
f f ( a ; , t i ; i , . . . , t i ; m + g , c ) : = 

-Fx(a;,c)t£;j 

Lt = l , . . . , m - h ö j 

The integer p is determined by the requirement that, for Eo = Ê = R n , 
the derivative of H represents a square matrix. Omitting the argument 
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on the right-hand side of the equation, we find 

(2.7) 

H'(x,Wlì...ìWm+q,c) = 

Fx 0 0 •-• 
FxxWx Fx 0 

0 L O 

FxxWi 0 0 *'. 

o o o ' - . 
FxxWm+q 0 

0 0 

0 
0 

0 

0 
Fx 

L 

Fxcw\ 
0 

FxcWi 

0 
2xcWm+q 

0 

In this "matrix" the columns 1 to m + q + 2 represent the partial 
derivatives with respect to z , ^ , . . . ,w m + q and c, respectively. If 
G : Rn+q -> R n , then (2.7) represents a matrix with 

(n +' q){™> + q + 1) + p columns and n + (n + m 4- q){m + q) rows. 

A square matrix is then obtained if and only if 

(2.8) p = m(m + q) -q. 

For simplicity we require the perturbation F(x, c) to satisfy the follow
ing conditions: (2.3) 

(2.9) 
for F in (2.5) choose p as in (2.8) and, for x € D(G), let 

F(x,0) = G(s), Fx{xì0) = G'(x)ì Fxx{x,0) = G"(x). 

Finally, we introduce the operator M for XQ = (z0, Ao) as 

(2.10) M := M(xo) : E x R p - • R m { m + g ) 

such that 

M(z . « ) : = ( ( * ? ; , ^ ( z o , 0)<foa; + Fxc{x0 ) m-\-q m 

i = l J = l 

where (•, •) is defined on Ê x Ê. We furthermore require 

(2.11) N(M) n N(F'(x0 ,0)) = {0} 
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and 

(2.12) R ( F , ( x o , 0 ) ) = E . 

2.2. Comments and propositions. Before we discuss H in more de
tail we want to comment upon the assumptions (2.2)-(2.4) and (2.11), 
(2.12) and give some propositions concerning them. We first describe 
N(G') in terms of Gx and G\. Since we will need a similar result for 
N(F') below, we prove 

PROPOSITION 2.1. Let K := (KZ1KX) : Ei x Rs -+ Ê be a bounded 
linear operator for Banach spaces Ei, E, such that 

Kz : Ei —• Ê has closed range R{KZ) Ç Ê, 

(2.13) Ê = R(KZ) + Ufor Uthe closed complement ofR(Kz), 

P :Ê->Uis a projector along R(Kz)onto U (N(P) = R(KZ), ) 

d imN( i^ ) = jfc, dim PKXR8 = j . 

Then 

(2.14) N(K) = {(x,X):Kxz + KxX = 0} 
= {(*, A) : A = A0 + Ar, A0Ar e N(/TA), KxXr € R{KZ), 

z = z0 + zr, z0 € N(KZ), Kzzr = -KxXr} 

and 

dimN(lf) = k + s-j. 

PROOF. There is a system of s = £+i+j linearly independent vectors 
Aoi, . . . , Ao£, A r i , . . . , Art, Aw i , . . . , Xuj E R such that 

N(Kx) = [X01,...,Xoe}, 

(2 15) R A : = { A € R S : KxX € R{Kz)} = l ^ 1 ' " - ' ^ « ] ' 
PK\RS = P[K\\ui,...,K\\Uj) 

KxRx Ç R(KZ), PKxR* Q U, dimPKxR
s = j . 

Therefore, A € R s is uniquely representable as 

X = XQ + Xr + Xu 



RESOLVING SINGULAR NONLINEAR EQUATIONS 231 

with A0 G N{Kx),\r € Rx,PKxXu G PKXRS. Now (*,A) G N{Kf) 
implies 

0 = Kzz + KXX = Kzz + KXXQ + Kx\r + KXXU 

= Kzz + Kx\r + K\K. 

Applying P to this equation yields PKxXu = 0 or Xu = 0 so that 

N{K) = {(z, A) :A = A0 + Ar, z = z0 + zr with z0 G N(ÜTÄ), 

Ao G N(XA), and X ^ r = -Kx\r}. 

This implies (2.14). 

REMARK 2.2 

(i). In Proposition 2.1 the roles of Kz and Kx might as well have 
been exchanged. If Q : E —• V is a projector along the (necessarily) 
closed K(K — A) onto its closed complement and if 

dimN(XA) = £, dimQtfzEi = *, dim{R(Kz) n R(KX)) = h 

we find, analogously to (2.14) or symmetrically in Kz,Kx, 

dim N(K) = £ + s-t = k + l + i. 

(ii). We use K = G7 : E 0 xRq —»• Ê in Proposition 2.1 and additionally 
postulate G^(^o? Ao) having closed range. Then a comparison between 
(2.2) (iv) and (2.14) shows that (2.2) (iv) is satisfied if and only if 

dimN(G*(x0)) =m + j , dimPGx(x0)R
q = j > 0, 

The latter case is particularly interesting for bifurcation problems, it 
means that bifurcations up to multiplicity m + q are possible. 

(iii). Using Banach's closed range theorem (2.2) (iv), (v) represents 
the fact that G'(xo) is a Fredholm operator of index 0 with condimen-
sion m. If furthermore, GZ{XQ) is a Fredholm operator of index 0, then 
automatically dimN(G'(xo)*) = m and (2.2) (v) is automatically sat
isfied. Thus, the conditions (2.2) (iv) , (v) represent a combination 
which is satisfied for may important classes of problems, e.g., finite-
dimensional equations and differential, integral and integrodifferential 
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equations depending upon a parameter. 

COROLLARY 2.3. Assume the conditions (2.2), (2.9) and (2.12) and 
omit the argument (xo,0) here (and in the following proof). Then 

NF' ) = N(FX,FC) 

= {(x, c) : c = coo + c r, coo € N(FC), Fccr € R ^ ) , 

(2.16) x = zoo + 3r, zoo € N( / x ) , FsZr = - F c c r } 

and 

dimN(F') =p + q = m(m-fg). 

PROOF. The conditions (2.2) and (2.9) show that the first two lines 
of (2.13) are satisfied. (2.2 v) and the closed range theorem shows that 

R(Fx) = R(G') = [<pl,...,<p*m}±, 

where ± indicates that, with respect to the Banach space pairing (•, •) 
for E , E, we have (<j)^G'x) = 0 for j = 1 , . . . , m and arbitrary i G E . 
This result, combined with (2.12), yields d i m P i ^ R p = j = m, and, 
with (2.2)(iv), (2.8) and (2.14) 

dimN(F') = m + q + p-m = p + q = m(m + q). 

The conditions Lwi — a{ = 0 in (2.6) are normalizing conditions, 
realized by m + q linear bounded functional 

(2.17) l i : E = E 0 x R ^ R. 

As an example we might envision, for Eo Ç C[a,6], a set of fixed 
real scalars tji, fixed coordinates U € [a, 6], i = 1 , . . . , s, fixed vectors 
rj € R9 , and with the inner product (•, •) in R9 , 

s 

tjX := lj{z, A) := £/**(«,• ) + ( r i 'A)-
t = i 

PROPOSITION 2.4. For L as in (2.3) (i) and 

(2.18) Lo := (^<A;)™ta € R("»+«)*(">+«), 
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the condition (2.3) (ii) is satisfied if and only if rank (L0) = m + q. 

PROOF. The following statements are obviously equivalent: 

(i) Rank Z,0 < m 4- q. 

(ii) There exists a 0 £ (/> = YZ£q M ; € N(G'(*0> A0)) such that 

m+q 

] £ «i (£,•&) = °> y = l , . . . , m + g, 
2 = 1 

hence cß G N(L). 

(iii) There exists a ^ O such that </> G N(L) n N(G'(JSÖ, A0)). 

PROPOSITION 2.5. Let L m_(2.3)(i) satisfy (2.3)(ii) and choose 
<j)i G N{G'{zo,\0)) such that Lfa = a* G R m + g , i = 1 , . . . 
TTierc Me < ,̂ i = 1 , . . . , m + q, are linearly independent if and only if 
the ai satisfy (2.4). 

PROOF. With the linearly independent fc,i = 1 , . . . , m+q in (2.2)(iv) 
we have the existence of ani G R such that 

m+q 

<t>% = z 2 atni<f)n. 
n = l 

Now 

if and only if 

Lo 

Lfa -a^ i = l , . . . , m + g, 

« i i 

= ai, i = l , . . . , r a + g, I/o in (2.18). 

Therefore, we have by Proposition 2.4, the a»,i = l , . . . , r a + g are 
linearly independent if and only if 

du 

, t = l , . . . , m + g 

-^(m+g)t J 
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are linearly independent. This in turn is equivalent to the following 
statements: 

rank [{aji)?J»1]=m + q, 

<j)^ i — 1 , . . . , m + q are linearly independent. 

PROPOSITION 2.6. Let pk = (ek,rk),k = l , . . . ,m(m + <?) be a 
basis for N(Ff) (see Corollary 2.3), fa,..., (ßm+q and y?J,..., (p^ be 
bases for N(G'(x0)) = N(Fx(xOi0)) andN((G'(x0))*), respectively (see 
(2.2)). Then (2.11) is equivalent to the fact that the m(m+q)xm(m+q) 
matrix 
(2.19) 

Afo: = (m t t)S=i+g) , 
mtk : = (Pj,Fxx{xo,0)<l>iek + FxcixoiOifcTk), l := (i-l)m + j , 

has full rank m(m 4- q). This property is independent of the special 
bases pk = (eki 7*), &, p* chosen. 

PROOF. This follows immediately from (2.16). 

REMARK 2.7. 

(i). It follows from a theorem of Sard (see, e.g., [34]) that the 
condition (2.3) (ii) is satisfied with probability one if we choose the 
bounded £j,j — l , . . . , r a + q at random. This does not exclude, 
however, that, for a special N(F ' ) , which we do not know yet, we 
might have chosen tj such that (2.3) (ii) is violated. This will become 
obvious, however, during the computations (see §3). In such a case we 
would locally change some of the lj,j = 1 , . . . , m + q. 

(ii). We have assumed m + q to be known. This knowledge may be 
achieved in several ways: One might start computation for Fz = 0, e.g., 
by Newton's method, and then discover that m > 0. In this case one 
could gradually increase m, using Remark (i) until m is maximal. One 
might as well have chosen some embedding and used Sylvester's law 
of inertia (see, e.g., Birkhoff, MacLane [9] as was done in [3] and [11] 
to determine m. Finally, some theoretical or e.g., physical knowledge 
might provide the value of m. 
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(iii). If the conditions (2.2) and (2.9)-(2.12) are violated in the sense 
that an appropriate F does not exist (see discussions below and Re
mark 2.2), the following analysis breaks down. 

2.3. The main result. To prove the (locally) unique solvability of 
H = 0 and the regularity of H' we use the following well-known corol
lary of the open mapping theorem (see, e.g., Yosida [54]). 

COROLLARY 2.8. / / a bounded linear operator T : F -* F (F, F 
Banach spaces), R(T) = F is invertihle, that is T~xy = 0 implies 
y = 0, then T"1 : F —• F is a bounded linear operator. 

THEOREM 2.9. For an operator G satisfying (2.2) let L and A be 
chosen so as to satisfy (2.3), (2.4) and let an inflation H be defined 
in (2.6) satisfying (2^5) and (2.9) — (2.12). Then there exists a locally 
unique solution (#o, 0 l 5 . . . , <t>m+qi 0) of 

(2.20) JET (re, wx,..., wm+q, c) = 0 

with ( ? i , . . . , ? m + J = N{Fx(xOi0)) = N(G'(z0)),xo = (*ö,A0). For 
this solution, the operator 

H,(x0^1,...ìpm+qì0) : F - + F , 

where 

F = E m + 9 + 1 x R p = (E0 x R9)™+<?+i x Rm(m+9)-<*5 

F = Ê x (Ê x *Rj
m+q)m+q 

defined in (2.7) is a regular linear bounded operator. That is, 

^ , ( ^ o , A o , 0 1 , . . . , ^ m + g , O ) ] - 1 : F ^ F 

exists and is bounded. 

PROOF. The combination of (2.1) and (2.5) yields F(^o,Ao,0) = 0, 
(2.2) (iv), (2.3), (2.4), (2.9) and Proposition 2.5 show the existence of 



236 E.L. ALLGOWER AND K. BÖHMER 

4>i such that (2.20) is satisfied. The local uniqueness is a consequence 
of the regularity of H'. 

We want to show, omitting the argument (xo, </>i,..., 0) in FX,FXX,FXC, 
that 

(2.21) 

^'O&O»^!»---j^m+g»0) 

_ Fxu + Fcd 
Fxx<t>i + FxVi + Fvcfad 

Lvi 
2 = l , . . . , r a + <7 

uH 

vi 

Vm+q 
d 

U 

Vi 

Ti 

li = l , . . . , r a + <7 

has a unique solution (w, v i , . . . ,vm+9 ,d) G F for every (û,ôi, 
r i , . . . ,{ ) m + g , r m + g ) € F. By applying the <p* to the equations (2.21) 
we are able to eliminate the V{ and obtain the system for u, d: 
(2.22) 

Fxu + Fcd = u 

((Pj,Fxx$i + Fxc^id) = {<Pjd)> i = 1 , . . . , m + g, j = 1 , . . . , m. 

Because of (2.12) there is a fixed pair (u2n, dtn) such that, with (x, c) € 
N(F ' ) , we have the general solution (see Corollary 2.3) 

Fx(u
in + x)+Fc(<fn + c)=û. 

Now we can use the equations in the second line of (2.22) to compute 
(x,c) from 

(2.23) 
{v^Fnhz+Fxcfac) = (tp^Vi - Fxx<ßiU

in - Fscfadf»), 

i = l , . . . , r a + ç, j = l , . . . , m . 

Corollary 2.3, Proposition 2.6, and (2.11) show that (2.23) is uniquely 
solvable for arbitrary {)», i = 1 , . . . , m + q. 

Since u and d are known, we are left with the following equations (see 
(2.21)): 

(2.24) 
(i) FxVi =t>i- Fxx<j>iU - Fxcfad, 

(ii) Lvi = n, i = l,...,m + q. 
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As a consequence of (2.22) we have, for the right-hand side in (2.24), 
the relations 

(<Pj,Vi - FXx4>i - Fxc$id) = 0, i = 1 , . . . , m + q, j = 1,. . . ,m. 

The conditions (2.2) (v) and (2.9) show that this implies that the 
right-hand sides in (2.24)(i) are indeed in R(i r

x) , so there exists a v™ 
such that v]n + V{0 with arbitrary Vi0 G N(FX) is the general solution 
for (2.24)(i). Then a combination of (2.3), (2.4), and Proposition 2.4 
shows the unique existence of i>i,. . . , vm+q satisfying (2.24). A combi
nation of Corollary 2.8 with this result completes the proof. 

REMARK 2.10. In the proofs of Theorem 2.9 and the preceding propo
sitions, we have seen that the conditions which we have imposed are 
well balanced so they are in some sense "necessary and sufficient". 

It seems to be necessary to extend the argument in G, x G D(G) Ç E, 
into an argument (a;, cj € E x Rp . To show this, we introduce in (2.6) 
and (2.7) a modified H (by avoiding c) so that 
(2.25) 
H{x,wi,...,wm+q) := (G(x),G'(x)wi,Lwi - airi = 1 , . . . ,m + q)T. 

In the formulas (2.7) and (2.10), the FXi Fxx, Fxc have to be replaced by 
G,(x)ìG

f,(x)ì0ì respectively, the last column of H' in (2.7) disappears 
and M in (2.10) only depends upon x. Then we may use the following 
theorem (see, e.g., Taylor-Lay [51]) to obtain Theorem 2.12. 

THEOREM 2.11. Let T : D(T) C E -+ R ( r ) C Ê be a closed, 
densely defined linear operator, with Banach spaces, E, E, and let 
T " 1 : R(T) -+ D(T) exist Then T^1 is bounded if and only ifR{T) 
is closed. 

THEOREM 2.12. Let G,L,M satisfy 

(2.2)(i)-(v) is satisfied for G with a dense D(G) Ç E; 

(2.2)(vi) G'(XQ) and, for every w € N ^ ^ o ) ) ^ " ^ ^ are closed 
densely defined linear operators with closed ranges; 
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(2.3), (2.11) are satisfied for N (G ' (2 0 5 ) ) , £ , ^ ; and let H be defined 
as in (2.25). Then the modified H' is a closed densely defined operator 
with closed range, R ( # ' ) in Xo, <£ l5..., </>m+g7 such that 

( A , ( x o , 0 1 , . . . , 0 m + , ) ) - 1 : R ( # , ( x o , 0 1 , . . . , 0 m + , ) ) - E m + 1 

exists and is bounded. 

Comparing Theorems 2.9 and 2.11 we see that by introducing c G Rp 

we avoid the hard problem of finding 'R(H') for the "simple" H in 
(2.25). Instead we obtain that, for the "complicated" H in (2.6), the 
derivative H' in (2.7) has K(Hf) = F, is the whole Banach space, and 
(H')~l : F —• F is continuous. Certainly we have to pay the price of 
introducing c G R p as the cost of this crucial advantage. 

2.4 Construction of Embedding. Until now we have assumed the 
existence of an embedding F in (2.5) such that the above conditions 
are satisfied. Usually an operator G as in (2.1), (2.2) will be given 
and we have to construct an F. Certainly it would be possible to 
introduce perturbations such that the bifurcation point of multiplicity 
m + q is totally or nearly unfolded. However, we do not want to change 
the multiplicity nor the exact solution (zo, Ao). Furthermore, it makes 
sense to define F to be as "simple as possible". For this reason we 
introduce 

(2.26) F(x, c) := G(x) + B{x, c) + Qc, 

with continuous bilinear and linear operators B and Q into E, respec
tively, and x € E, c € Rp . If xo = 0, we need Q ^ 0, otherwise Q = 0 
may be chosen. For the operator F in (2.26) we have 

F'(x,c) 

F(x,0) = G(x), 

= G'(x)u + B{u, c) + B{x, d) + Qd, 

(2.27) Fx{x, c)u = G'{x)u + B(u, c), Fx(x,0)u = G'(x)u, 
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Fc (x, c)d = B(x, d) + Qd, Fc {x, 0)d = Qd + B{x, d) 

Fxx(x, c)uv — G"(x)uv, 

Fxc(x, c)ud = B(u, d). 

For this type of F the conditions (2.5) and (2.9) are satisfied and (2.10)-
(2.12) have the form 
(2.28) 

M(x0,0) H = (tp^CixoWiU + Bifad)) 

for 1 < i < m + q, 1 < j < m, 

N(F'(x0,0)) = N(G'(zo), B(x0, •) + Q) 

= {(u,d) : G'(x0)u + B(x0,d) + Qd = 0}( see (2.16)), 

R{F'(x0,0)) = {G'{x0)u + B{x0, d) + Qd} = Ê. 

Since, by (2.2)(v), 

R(G'(x0)) = b î , . . . , ^ ] ± , 

the last condition implies that, with an appropriate projector F , 

(2.29) PR(B(xQ, -) + Q)2 [<pl • • •, V'X-

We shall not discuss (2.29) in detail. However, it is obvious that in the 
special situation where 

(2.30) N(G'(z0)) H {u : G"(x0)<M = 0, i = 1 , . . . , m + q} ^ {0} 

our choice (2.26) cannot satisfy (2.11). In this (very exceptional) case 
we have to modify (2.26) into the form 

F(x, c) := G(x) + C(x, x,c-c) + B(x, c) + Qc 

with a trilinear operator C : E 2 x R p —* E and c ^ 0. In §3, §4 and §5 
we will present, for the special case of finite systems of finite equations 
and of operator equations and their discretizations, respectively, some 
hints on how to choose B, Q and (if necessary) C. 
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3. Finite-dimensional Equations. 

3.1 Determination ofm^Q and B. In this section we want to specify 
the preceding general results for the finite-dimensional case. We will be 
able to discuss more explicitly the conditions (2.3) and (2.11), (2.12). 
Instead of (2.2) we have 

(3.1) G : R n + « - + R n , G(*o)=0 , x0 = (*o,A0). 

In this case E 0 = Ê = R n = EQ = F . We want to write down 
the system (2.21) in slightly altered form. The bordering numbers in 
(3.2) (and in the sequel) indicate the numbers of rows and columns 
of the corresponding matrices. In contrast to (2.21) we do not use 
H'(XQ, 0 l 5 . . . , 0m + ( ? , 0), since these arguments are not yet known (ex
cept = 0); however, we use H(x, Wi , . . . , wm+qi c), omitting these argu
ments in FX,FC,FXX and Fxc. 

n + q n + q p 

n FxVi + FxxWiU + FxcWid = Vi m + q times for 
(3.2) m + q Lv{ = ri i = 1 , . . . , m + q 

n Fxu + Fcd = û. 

By (2.8) this is a square matrix, which has full rank (n+m+q)(m+q)+n 
if (2.3) and (2.11) are satisfied. In this context (2.12) is a consequence 
of (2.3) and (2.11). 

Throughout the following we restrict our discussion to the case that 
the different linear equations are solved by some type of Gaussian al
gorithm. This assumption is appropriate for (3.1). If operator equa
tions are discretized (see §4 and §5), n in (3.1) might become so large 
that other techniques have to be applied. For multigrid methods (see, 
e.g., Hackbusch-Trottenberg [28]) the following considerations may be 
used on the coarsest grid. For other discretizations the mesh indepen
dence principle (see Allgower-Böhmer [1] and Allgower-Böhmer-Potra-
Rheinboldt [2]) again yield the information on the coarser grids. 

Given (3.1) we do not know a priori whether singularities of the form 
(2.2) with m > 0 are to be expected. If Newton's method is used for 
the solution of (3.1), a defect m in the rank of G' will become apparent 
in the neighborhood of (ZQ, AO). Although the theorem of Sard guar
antees that, for a random choice of L in (2.3) (i), the condition (2.3) (ii) 
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will be satisfied, we proceed slightly differently. By one of the usual 
decomposition strategies we can transform G'{z, X) into the form 

(3.3) PGG'(z,X) = 

n -- m 

0 

m + q 
G0(x) 

&0 

n — m 

m 

where the last m rows are nearly 0, and the matrix Go = Go(x) has 
nonvanishing diagonal elements. Then we choose a matrix L such that 

(3.4) rank 

n -- m 

0 ^ \ 

m + q 
G0 

L 

n — m 
= n + q 

m + q 

Thus, we obtain a square matrix with full rank. 

Unless (2.30) is satisfied, Sard's theorem again implies that a random 
choice of B and Q satisfies (2.11) and (2.12). However, using (3.3) we 
are again able to do better. From the last m nearly vanishing lines in 
(3.3), approximations w% for the 

^ 6 N ( G ' ( i 0 , 0 ) ) , i = l , . . . , m + g, 

and Vj for the 

^ G N ( G ' ( x o , 0 ) * ) , j = l , . . . ,ra, 

may be obtained (see the end of §3.3 for more details). With these 
approximations we choose B,Q (and C if necessary) such that (2.11) 
and (2.12) are satisfied for Wi^x^x = (z, A) instead of 0», <Pj,Xo. In any 
case, it is advisable to choose the B, Q (and C) such that i2* in (3.5) 
has "maximal rank". Thus, by combining (2.28) with (2.11), (2.12) we 
obtain the approximate conditions 

(3.5) R CM {v*j,G"{x)wiu + B(wi,d)) 
G'(x)u + B{x,d) + Qd J 
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1 < i < m + g, 1 < j < m, rank R = n + q -j- p = m(m + q) + ra, and 
thereby (via (2.29)) we have 

(3.6) R(%.) + Ç . ) 2 K , . . . , a 

If we should realize during the computation that (3.4)-(3.6) or (2.30) 
is violated, we have to correct locally. We are going to present two 
different numerical approaches to solve (3.2). A naive solution via the 
Gaussian algorithm using column pivoting relative to the ^i-norm of 
the rows would essentially require (n(m + q +1))3 operations. We can, 
however, do much better. The two ways differ by the fact that, in §3.2, 
the dual kernel, introduced into the calculation via (2.22), is avoided, 
whereas it is used in §3.3. The approach in §3.3 only works under a very 
special assumption (see (3.18)) and furthermore turns out to be more 
costly than the method in §3.2. We discuss the problem elsewhere as to 
whether it is worthwhile to use the known value c = 0 in the solution 
of H(xo, 0 ! , . . . , 0m+g , 0) already during some iteration processes such 
as Newton's method. 

3.2 Solution without dual kernel. With F defined, we once more want 
to study (3.2). At first we treat the (ra + q) systems for the Vi. Since 
we have assumed Fx(xi 0) = G'(x) we only discuss the case that \\c\\ 
and || x - XQ || are small enough to guarantee (see (3.3)) 

PGFx{x,c) = 

n -- m 

0 

m + q 
Fo(x) 

« 0 

n — m 

m 

Now let PF be the matrix corresponding to (3.3) such that 

n+q n+q 

n 

m + q 

Fx 

I 

FxxWi 

0 

FxcWi 

0 
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is transformed by Pp into 

n — m 

m + q 

m 

n + q 

\ Fo 
0- • > F 

o\ 
0 

n + q 

M 

Mr 

p 

r9 

Mf 

'Vi 
u 

with a matrix F of full rank n+q, obtained from Fo and L in a manner 
analogous to (3.4). Then (3.2) is equivalent to the system 

F Vi = PF MP i = l , . . . , r a + <?, 

PGFxu + PGFcd = PGu, PGFX « F0 , 

M > + Mfd = RPF 
Vi i = ! , • • • ,m + g , 

where R indicates the restriction to the last m components of Pp 

corresponding to the matrix (M^, Mf) in (3.7); the statement PGFa 

FQ indicates that the last m lines in PGFX are nearly zero. So we obtain 
for (w, d) a system of the following structure: 

(3.8) 
n + q p 

n 
m 
m 

Fx 

Mj u 

. *m±i_ 

Fe 

Mt 
Mi+a 

C) 
is transformed by PG into 
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n + q 

n — m 

m 
m 

\ F0 \ ° 
0 \ 

Mj" 

*C+« 

PGFC 

Mt 

Mi+Q m 

This system (3.8) has, by (2.8), n + ra(ra + q) = n + q + p equations 
for the n + q + p unknowns. Condition (2.11) is equivalent to the fact 
that the corresponding matrix has full rank n + q + p. 

Let us now study the number of elementary arithmetric operations 
required to solve (3.2). Under the assumption that 

(3.9) n » (m + p + q) 

and only terms multiplied by n3^2 and high powers of m are taken 
into account. We furthermore assume n to be small enough that we 
may apply the following procedure: 

(3.10) 

Solve (3.2) in the form (3.7), (3.8) with a 
Gaussian algorithm and use, for the i^-part in(3.7), 
(3.8), column pivoting with respect to the ^i-norm 
of the first n + q elements. For the last m + q and m{m + q) 
rows in (3.7) and (3.8), respectively, use column pivoting 
relative to the ^i-norm of the full rows. 

We study the number of necessary of operation subject to the assump
tions (3.9) and (3.10). The terms mentioned in (3.9) are dominating 
terms, which in the sequel are indicated by = 
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(3.11) 

Partial problem 

(i) 

(») 

(iii) 

(iv) 

LR decomposition for Fx with 

£i-norm relative pivoting 

operations additional to (i) for full 

LR decomposition of ( Ff ) in (3.7) 

operations, induced in FXxWi,FxcWi 

by LR decomposition of Fx, yielding 

M?,M?,Mf in (3.7), i = l , . . . , m + ç 

operations additional to (i), (iii), for 

full LR decomposition of (3.8) 

Number of operations 

= n 3 + §n 2 (g + l) 

= n2(m + q) 

= n 3 ( ra + g) 

+ n 2 ( m + g)(p + g - 2 ) 

= n2m{m + q) 

+ (m(m + q))3 \ 

Adding the numbers in (i)-(iv) we obtain for the total amount (= 
number of elementary operations): 
(3.12) 
Total amount for the LR decomposition of (3.2) = 

3 
n3(ra + q + 1) + n2((ra + q){p + q + m-l) + -{q + l)) + (ra(ra + q))3 

In (3.11) and (3.12) we have assumed that the FXXW{ and FXCW{ in (3.7) 
have already been computed. Since 

(3.13) 
Fxx € C((Rn+9)2,Rn), Fxc e C(Rn+q x R p , R " ) , 

Fx,FxxWi e £ ( R n + « , R n ) , Fxcwi e C(RP,Rn), 

we find 
(3.14) 
the total amount for computing FX,FXX, Fxc = 2(n3 H- n2(2q + p + 1)) 

and 
(3.15) 

the total amount for computing FxxWi, FxcWi, i = 1 , . . . , m + q, 

= 2n3(m + q) + 2n2(m + q)(p + 2q). 

Having solved (3.8) for (u,d) we have to use these known values to 
compute the FxxWiU -f FxcWid, % = 1 , . . . , m H- g, which are needed in 
(3.7) to determine the v%. 
(3.16) 
The total amount for computing FxxWiU + FxcWid, i = 1 , . . . , m + ç, 

= 2n2(m-¥q). 



246 E.L. ALLGOWER AND K. BÖHMER 

To transform the right-hand sides and solve the equations (3.7) and 
(3.8) we obtain: 

The total amount for computing the solutions of (3.7), (3.8) 

= 2n2(ra + <? + l) . 

The summation of (3.12) and (3.14)-(3.17) yields 

PROPOSITION 3.1. Under the assumption (3.9) the procedure (3.10) 
requires 

= n33(m + q + 1) + n2((ra + q)(m + bq + 3p + 3) 

+ -{q + 1) + p + 1) + {m{m + q)f 

operations to solve (3.2). 

The solution of (3.2) via (3.7) and (3.8) may be interpreted as follows: 
By splitting (3.7) into the first n + q equations for V{ and combining the 
last m equations in (3.7), M?u + Mfd = ... with Fxu+Dcdinto (3.8), 
we have separated the total system into m + q + 1 systems with n + q 
unknowns each if only (3.8) is solved first and then the known value 
(li, d) is used in (3.7). In this approach the related structure of the dif
ferent systems is taken into account. Another way to separate (3.2) into 
small systems is via the use of (2.22), i.e., via the use of the dual kernel. 

3.3 Solution using the dual kernel. The following procedure only 
works for the special case that condition (3.18) is satisfied. We will see, 
however, that even for this case the amount in §3.3 is higher than in 
§3.2. 

For || x — XQ II + || c || small enough, let 

(3.18) dimN(Fx(x,c)) = m + g,dimN(Fa;(a;,c)*) = m and 

(2.3)(ii), (2.11), (2.12) be satisfied for F'(x,c). 

Again omitting the arguments (x, w i , . . . ,wm+q,c) as in (3.2) we first 
compute approximations yj G R n for the <pj with an appropriate 
operator L : R n —• R m such that 

(3.19) N(L)HN(F*) = {0}, 
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and a matrix 

(3.20) B = (&i,... ,6m) , bj G R m , rank B = m, 

from 

(3.21) 

Lyj = bj, y = l , . . . , m . 

We will see below that the LR decomposition of 2^ may be used to solve 
(3.21) and to see how to choose L. As a consequence of (3.18)-(3.20) 
the systems (3.21) are uniquely solvable. Taking the inner product (•, •) 
of the yj in (3.21) with the first equations in (3.2) we find, as in (2.21), 
(2.22) that 

(3.22) Fxu + Fcd = û 

(Vji FxxWiU + FxcWid) = (y,-, Vi), i = 1 , . . . , m -h q, j = 1 , . . . , m. 

From the proof of Theorem 2.9 we know that this system for (u, d) is 
uniquely solvable by (3.18). With the known (w, d) we finally compute 
Vi from (3.2) (i), (ii) as the solution of 

(3.23) 
FxVi = Vi - FxxWiU - Fulvia, 

Lvi =Vi, %i = l , . . . , m + g. 

By (3.18) this overdetermined system is uniquely solvable as we have 
seen in the proof of Theorem 2.9. 

For the solution of (3.22) and (3.23) we may use nearly the same LR 
decomposition. We use the strategy in (3.10), where obviously (3.7) 
and (3.8) must be replaced by (3.23) and (3.22), respectively. Thus, 

the LR decomposition for is obtained as 

Gn+q-lPn+q-l ' ' ' ^n-m+l^n-m+l^Gn-m-Pn-m ' " G\Pi 

which has the structure 
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n — m 
+ 
m 
+ 
m 
+ 

q = 
n + m + q 

n — ra+ 

— Q ^ ^ 

¥ 

o
 

o
 

Il 
1 II 

m + q 

0 

= 0 1 

^ ^ . £ 0 - -

= n + q 

In (3.24) the Pj,Gj represent the well-known permutation and combi
nation matrices in the Gaussian algorithm (see, e.g., [48, p. 135]). By 
(3.10) we allow only "restricted" permutations Pj\ they permute, for 
j = 1 , . . . , n — ra, only the rows 1 , . . . , n of Fx. Then P exchanges the 
last (now trivial) rows of the transformed Fx with the transformed L. 
Necessarily, the Pj,j = n — ra+l,...,n + <7 — 1, only exchange the lines 
of L. Now, we denote for simplicity the "restrictions" of the Pj^Gj to 

Fx' the lines of Fx instead of the full 

again, j = 1 , . . . , n - m. Gn-mPn-m 

with the same symbols Pj,Gj 

G\P\FX has the structure: 

n — m + m + q = n + q 

With P* = Pj we find that F^PxGl... Pn-mG*n_m has the structure: 
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n — ra 
+ 

m + q 

n + q 

n-m 

^ o 
= 0 

+ra 

= 0 

r F* T 

With the n x n matrices Pj,G* we finally obtain that [ £ JPiGJ . . . 
Pn-mGn_m has the structure: 

n — m 

+ 
m + q 

+ 
m 

n + q + m 

n — m 

# 0 - ^ = = 

-fra 

= 0 

* o 

corresponding to F* 

corresponding to L 

Let us choose, in particular, L such that 

LP\G{ • • - Pn-mGn„m — 
n — m m 

0 /, Lmìm ra, 

where Jm ,m denotes the ra x ra identity matrix, and let us denote the 
matrix in (3.25) by A*. Then with appropriate 6, and with ( G p _ 1 

immediately obtained from G^ by inverting the nondiagonal terms, 

6 = 
F* 
L 

y<*b = A* G*n_mPn-mGf y =: A*x. 
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Now the equation A*x = b is solved very easily, since the first n + q 
components in b and in b are zero and the lines n — m + l,...,n + qm 
the upper part of A* depend linearly upon the first n-m lines of A*. 
Hence, 
(3.26) 

calculating y = P\G\ . . . P n _ m G ^ m requires = n2 operations. 

A full use of the decomposition in (3.24) would be possible; however, 
it would require much bookkeeping and a complicated argumentation, 
which we wish to avoid. 

Now we obtain the number of operations to solve (3.21)-(23.23) very 
similarly to §3.2. Using the approach for the LR decomposition of F* 
indicated above, and with known matrices in (3.27) (see (3.22), (3.11) 
(i), (ii), (iv), (3.12)), we get: 

The total amount of operations required for the 

(3 27) ^R decomposition of (3.21)-(3.23) 
3 

= n3 + n2((ra + q){\ + m) + -q) + {m{m + q))s. 

Furthermore, we have to compute the 

(3.28) {yj,FxxWi-), {yj,FxcWi'), i = l , . . . , r a + g, j = 1,. . .m, 

(see (3.13)) which requires in addition to (3.14) and (3.15) that 

total amount of operations for computions (3.28) 

= 2mn3 + 2m(p + q)n2. 

Finally, we have to transform the right-hand sides and solve the 
equations (3.21)-(3.23), requiring a total amount of operations 
(3.30) 

for computing the solution of (3.21)-(3.23) = 2n2(2m + 2q + 1). 

The summation of the numbers in (3.14)-(3.16), (3.26) m times, and 
(3.27)-(3.30) yields 
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PROPOSITION 3.2. Under the assumption (3.9), (3.18) the procedure 
corresponding to (3.10) via (3.21)-(3.23) requires 

Q 5 
= n3(4(m + | ) + 3) + n2((m + q)(m + 2p + 4q + 3) + 2ra(p + g -h - ) 

19 
+ 2p -f — q + 3) + (ra(m + ?))3 

operations. 

3.4 Examples. We conclude this section with several examples. 

EXAMPLE 3.3. Let G : R2 -> R 2 and 

z i 
#2 #2 

, G 

Then we have 

G' 
X2j 

= L ° 
0 
x2 

1 G' 0 
OJ = [0 0 

p o 
5 N 

find 

G' 
4E 

0 
0 

0' 
0 — G' [Ol 

ol • « ( 
G' "0 

0 

( * ) - * . 

= R2, 

since 

G' 
"0" 
0 

«2 
) = 0 = 

U2 
,G' 

0" 
0 

4« 

So we have to define 
F : R2 x R4 -» R2 

using 4 x 2 matrices f?i, J?2,Q to obtain with the inner product (•, •) 
i n R 2 

F(x, c) := G(x) + B(&, c) + Qc with £(x, c) := 
\X\)\B2C) 
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Then we need the following partial derivatives at XQ := 

(0,0,0,0)T , 

(3.31) 

5 C Q : = 

Fx{x0ic0)u = G' 

Fc(xOico)d = B(0,d) 

Fxx(xo,co)(u,v) = 

u + B(u,c0) = 

+ Qd = Qd, 
ux 0 
0 1*2 

0 0 
0 0 u = 

Fxc(x0,c0){u,d) = B(u,d) = 
U2 

= G"{xv)(u,v) = 

Bxd 
B2d 

U2V2 

Now we choose (see (2.18)) L = Lo such that rank Lo = 2, e.g., 

and (2.3) is satisfied. To guarantee (2.12) we need Ln = 
0 1 

R(F'(x0,c0)) = R(F3,(x0,co),Fc(xo,c0)) 
- ( 

0 0 
0 0 ,Q = R 2 , 

so Q can be any matrix of rank 2. Finally, we require, with fa = 

and the above results, the conditions ei,<Pj =e*,ei = ,e2 = 

(2.11) or (2.27). This amounts to 

(3.32) 

(variable) 

1 

0 

0 

0 

0 

0 

0 

0 

0 
1 

0 

0 

ßil 
ßil 
ßlx 
ßil 

9 i i 

921 

ßh 
ß\i 

ßi. 
ßh 
Qu 

922 

ßis 
ßis 
ßis 
ßis 
913 

923 

# 4 

ßi* 
0Ì4 
ßh 
Ql4 

<?24 

{(fl.Bxphir) 

{vl,B2fa-) 

Q 

having the full rank 6. So the following choice would satisfy all of the 
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conditions 

(3.33) 

1 0 0 0 
0 1 0 0 

0 0 0 0 
0 0 0 1 

, Bi = 
0 0 0 0 
0 0 1 0 

By the above statements, any random choice would have sufficed with 
probability one as well. 

EXAMPLE 3.4. Let GR2 -»• R 2 be 

G 
_ 1 
"" 6 

rT3 i 
x\ , G = 

"0" 
0 = 

"0; 
oj 

This is an example satisfying (2.30) and we have to use 

F(x, c) = G(x) + C{x, x,c-c) + B(x, c) + Qc. 

If we choose for simplicity a trilinear C(x, y,c — c)\ which is symmetric 
in x, 2/, the only difference compared to (3.31)is Fxx which has to be 
replaced by 

Fxx(xo,co)(u,v) = 2C(ti ,v,-c). 

For example, if 

C{x,y,c) := 
XlVlCi +X2V2C2 

XiyiC3 + X2V2C4 
and — c = (1,1,1,1), 

the partial matrix (^>!,GJ;-) in (3.32) has to be replaced by 

r2 
2 
0 

Lo 

o-
0 
2 

2J 
and B\, JB2> Q have to be chosen such that the modified matrix in (3.32) 
has full rank 6. That is the case, e.g., with the B\, f?2, Q in (3.33), and 
would also have been correct with probability one for any random choice 
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OÎQ,BuB'2,C. 

The preceding examples illustrate the inflation technique for the case 
q = 0 and E = R n = E. In this case the inflation technique is 
related to the tensor Newton method recently described by Schnabel 
and Frank [41]. For additional references on this case see [41, 20] and 
the bibliographies therein. 

The inflation technique for q = 1 and m = 1 involving simple 
bifurcation has recently been treated by several authors (see, e.g., [29, 
30, 35, 42-44, 52, 53, and 8a]). 

To illustrate an example with q = 1 and m > 1 we will briefly outline 
a case recently studied in [3] at the conclusion of this paper. 

Discretization methods applied to H. As was mentioned in the 
introduction, we want to use the results in §2, especially Theorem 2.9 
in two different ways. Either, for q > 0, in continuation methods where 
it is important to notice the existence of branching points. Whenever 
these branching points have to be computed, our results apply. Often 
it is not necessary to really compute them. Then unfolding techniques 
can be used. Or we may, for q = 0, use our results to compute 
zo and N(G'(zo)) for (2.1) which is not tractable with the common 
discretization methods, since G'{ZQ) is not invertible. 

Let us briefly introduce the formalism for defining discretization 
methods. Instead of the original problem (2.1) we want to solve 

(4.1) HX = 0 w i t h X : = (x,wu . . . , wm+qic)T e F, 

where H is defined in (2.6). We know from Theorem 2.9 that 

(4.2) H'{Z0) : F = E m + 9 + 1 x R p ^ F = Ê x ( Ê x Rm+*)™+<?, 

where Zo := (^OJ^H-••*0m+g>O)T ( t n e e x a c t solution of (4.1)) is 
continuously invertible. 

This fact yields the possibility of using the general setting of dis
cretization methods as presented, e.g., in Stetter [46], Böhmer [10]. 
Let, for (4.1), (4.2), 

Ah : F -+ Fh := ( E / l ) m + 9 + 1 x Rp 

(4 3) 
Ah : F - • Fh := Ê^ x (Èh x Rm+<?)™+<* 
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be bounded linear operators onto finite dimensional spaces, e.g., E 
- h 

or E Banach spaces of grid functions, or of finite elements used in 
the discretization, where ft indicates a discretization parameter in an 
appropriate Kk. Then (4.1) is transformed into 

H*Xh = 0 € F h 

having the exact solution ZQ = (£§, <t>\h > • • • ? 0m+<r co)-

Whenever H is given in a form where the usual discretization methods 
apply, the general concepts of consistency, stability and convergence are 
available and read in this case as (choose appropriate norms) 

|| HhAhZ0 - ÂhHZ0 | |= | | HhAhZo | |= o(l)(0(he)) 

consistency (of ordere), for bounded || z0 ||*, 

with a suitable Sobolev-norm || • ||*, 

(4.6) || X? - X% || < S || EhX\ - HhXh
z || stability, 

where S is independent of ft and the right-hand side and || X£ — AhZ \\ 
are sufficiently small, and 

(4.7) || AhZ0 -Z$ || = o(l)(0(he)) convergence (of order £). 

If, with Ah, Ah in (4.3), the relations (4.5), (4.6) are satisfied and Hh is 
continuous in || Xh — AhZo || < p, p sufficiently small and independent 
of ft, then (4.7) is true. 

It is well known (see [46]) that under rather general conditions the 
bounded invertibility of (Hh)' in (4.2) implies the stability (4.6), a fact 
which is usually much harder to prove than the consistency (4.5). 

In some recent papers (see, e.g., Stummel [49, 50]) for integral 
equations of the second kind, Beyn [7] and Grigorief [23, 24] for 
initial and boundary value problems in ordinary differential equations 
or integro-differential equations, and Hackbusch [25, 26] for certain 
elliptic boundary value problems) results of the following type have 
been shown: 

(4.8) lim || ( H * ' ^ ) ) - 1 || = || tf'(Z))-1 II; 
h—•O 
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the operator norms in (4.8) are based on limit relations for the norms 
related via Ah andAh as 

lim || AhX | |=| | X || for any x € F, 
(4-9) h^° . . 

lim || AhY | |=| | Y || for any Y € F . 
h—•O 

Under well-known smoothness or piecewise smoothness conditions for 
H and appropriate discretizations Hh, asymptotic expansions for the 
"local discretization error" 

q 

HhAhX - AhHX = Ah(J2hjVj + 0(ft«+1)) 

for small enough || X — Z ||* are observed. For a consistent and stable 
discretization, satisfying additional technical conditions (see [10, 46]), 
the discrete approximation admits an asymptotic expansion of the form 

q 

(4.10) Zh = Ah (z + ̂ 2 hJWJ + 0(fc9+1)) • 
j=p 

where the W* (and the V3' above) are independent of h. For "sym
metric" discretizations we usually have h2 expansions, so the pow
ers of h have to be replaced by powers of h2. This establishes the 
possibility for using Richardson extrapolation or any kind of defect 
and deferred corrections (see, e.g., Böhmer [10, 11], Böhmer-Hemker-
Stetter [12], Böhmer-Römer [13], Böhmer-Stetter [14], Frank-Hertling-
Ueberhuber [18], Frank-Ueberhuber [19], Hackbusch [27], Lindberg 
[32, 33], Pereyra [36-38], and Stetter [47]). 

5. Computation of the discrete approximation. We start the 
computation of 

(5.1) HhZh = 0 

(see (4.4)) by first considering only the original equation 

(5.2) Ghxh = 0, 
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which we assume has an exact solution XQ. Starting with a point xhi° 
near XQ, we might use a Newton-type method, e.g., 

(5.3) Gh'{xh^){xh^x - xh^) = -Gh(xh^), v = 0 , 1 , . . . . 

Since N(G'(xo)) ^ {0}, for a sufficiently good approximation xhiV to XQ 
the (Gh)'(xh,l/) should be nearly singular. Because of the perturbation 
caused by the discretization, neither (G / I ) / (XQ) nor (Gh('(Ahxo) are 
necessarily singular. Another problem results from the fact that, for a 
discretization, we usually only have, for a suitably restricted AÄ, 

(5.4) (Fx(x,c))h = (Fh(Ah(x,c)))xh + 0(he), 

when || (x, c) — (^,0) || is sufficiently small. The 0(he) term indicates 
that (omitting the arguments (z,c) and Ah(xi c)) 

\\{Fx)
h-{Fh)xu

h\\<C-hl-\\uht 

for some C independent of h and where || ||* is a discrete Sobolev 
norm corresponding to || ||* in (4.5). Therefore, for the following dis
cussion we make 

ASSUMPTION 5.1. Let the discretization for H satisfy the following 
relations 

(5.5) HhXh = 
Fh(xh,ch) 

(Fh)xh{xh,ch)w* 
Lhwï - ok 

+ 0(he), 

i = l , . . . , r a + #, for || xh — Ahz ||* + || ch \\ small enough, where 
Fh,(Fh)xh,Lh are the corresponding discretizations of the single com
ponents of H. Furthermore, omitting the arguments on the right-hand 
side, 

(i/ft)'(xh,^,...,<+g,c
ft) = 

0 ••• 0 

(5.6) 
F\ 

F& 
i W 

0 

F\ w" xhxh
 wm+q 
0 

F*k 

0 
0 

0 
0 

FxhchQi 
0 

Lh 
•w" 

xhch ">m+q 
0 
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for || xh — Ahz ||J + || ch || sufficiently small and \\ w^ ||J bounded. 

REMARK 5.2. 

(i). To the knowledge of the authors the properties (5.5) and (5.6) 
are satisfied for all important discretization methods. They are closely 
related to the so-called admissible (Hh)' and FX,FXX and Fxc approx
imations introduced in Böhmer [11], especially if the discretization of 
H works componentwise. 

(ii). If stability results hold for Hh and {Hh)\ then a simple ap
plication of perturbation arguments shows that they are valid for the 
right-hand side approximations in (5.5) and (5.6) as well. The exis
tence of asymptotic expansions is not touched upon since we need (5.5) 
and (5.6) only for the numerical solution of the approximation XQ in 
combination with a method in §3.2. The approach in §3.3 does not 
work here because of the problems mentioned following (5.3). 

Based on (5.5), (5.6) it is now straightforward to compute a numerical 
solution for a problem with singular G;(^o,Ao). We finish with some 
examples. 

EXAMPLE 5.3. We discuss the nonlinear boundary value problem 

z" +smz + z2 = 0, 

(5.7) sin(2(0) + 2(7r))=0, 

z'[0) + z'(ir) = 0. 

We apply the general theory for the case of 

(5.8) closed, densely defined operators G with closed range. 

If we want to compute locally unique solutions for (5.7), we have to 
require 

, 5 9 i x(0) + x(7r) = 0, 
1 ' j z'(0) + x'(7r)=0, 

or some integer multiples of n instead of 0 for the function values. Now, 
in#2[0,7r],let (see (2.2)) 
(5.10) 

D(G) := {x E G2[0,7T],X satisfies (5.9) } C L2[0,TT] =: E =: E* 
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=: E =: E with {u,v) — \ u(r)v(r)dr = (u,v)2, 
Jo 

G{x) := x" + sin x + x2, G{0) = 0. 

For x, u G D(G) we then have 

Gf(x)u = w" + (2x + cosa;)w, G"(x)uv = (2 — sin:r)m;, 
(5.11) 

G'(0)u = «" + «, G"(0)uv = 2uv. 

Then G'(x) and G"(x) satisfy (5.8) and we are able to apply our general 
theory. We have immediately 

(5.12) N(G'(0)) = [sin -, cos •], so m = 2, q = 0. 

To compute G'(0)* we observe that, for u G D(G),v G iJ2[0,7r] (see 
(5.10), (5.11)), 

(G'(0)w,t;)2-(u,G /(0)t;)2= / [v(ti" + u) - u(v" + v)]dr 
Jo 

= u'{ir)v(ir) - u'(0)v(0) + t*(0)t/(0) - u(ir)v'(ic) 

= ti'(7r)l>>M + v(0)) + u(0)[f/(0) + v'(ir)]. 

So we have D(G'(0)*) = B(G) = L>(G'(0)), and hence 

(5.13) G'(0) = G'(0)*, N(G'(0)) = N(G'(0)*) = [sin-,cos-]. 

To define L in (2.3) we have to choose two continuous linear functionals 
defined on D(G), e.g., 

(5.14) Lx := 
X(TT/2) 

X'(TT/2) 

From (5.12) we see that N(L) n N(G'(0)) = {0}. Corresponding to 
§2.4 we define (see (2.8)) 

(5.15) F(x,c) :=G(x) + B(x,c) + Qc, x € D(G),c 6 R4 . 

Then 

(5.16) 
F'(0,c) G'{0)u + Qd, 

R(F'(0, c)) = R(G'(0)) + R(Q). 
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Because of 

(5.17) R(G/(0)) = [sin-,cos-]-L2, 

(see (5.13) and e.g., [51, 54]) we need a Q (see (2.12)) such that 

,_ . . . dimR(Q) > 2, and linearly independent x ( 1 ) ,x ( 2 ) G R(Q), 
(5.18) ,.* ,.* 

with | (xW,sin-)2 l + l (z ( l ),cos- | 2 |> 0, t = l ,2. 
For our simple case with G'(0) as in (5.11), we may verify (5.17) directly 
and we would not need a general theorem. The general solution for 

y" + y = f 

is given as 

y(t) = Iot\ + / /(r)COSrdr) sin£+ (0:2 + / / ( r ) sinrdr J cosi. 

Since we only admit y G D(G) we have to require 

y(o) + yM = / f(r)smr dr = o 
Jo 

y;(0) + y' W = - / / ( r ) cosr dr = 0, 
./o 

that is, (5.17). 

To satisfy (5.18) we may, e.g., choose Q as 
(5.19) 

<9(ci,...,c4) := (ci + c 2 ) l + c3* + c4(2 -7r t -M 2 ) , with 

functions z(1)(<) = 1, x(2)(«) = <2,z(3)(<) = 2 - nt + t2 

which are linearly independent and 

(a;(1),sm-)2^0,(a;(2),cos-)2^0, 
(x&K sin -)a = (x(3\cos-)2 = 0 , so x<3) € R(G'(0)). 

For our choice of L in (5.14) and Q in (5.18) and (5.19) the condi
tions (2.3) (ii) and (2.12) are satisfied. To discuss (2.11) first study 
JV(F'(0,0)) = N(G'(0),Q). We have, by Proposition 2.1 (see (5.16)), 

N(F'(0,0)) = N(G'(0),Q) 

= {(u,d) \u" + u + Qd = 0,ueD(G),d€R4} 

= {{u,d) | d = do + dr,d0 e N(Q),Qdr € R(G'(0)), 

u = «o + ur,u0 e N(G'(0)),G'(0)u r = -Qdr). 
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Now 

N(Q) = {d= (dlld2ìdSìd4)
T \ dt + d2 = ds = d4 = 0} 

= [(1,-1,0,0)], 
"0-

{2-7Tt + t2) = G'{0)uPi Q 
o 
o 
u 

u" + up = (2 - irt + t2) implies up = t2 - irt e D(G), 

and finally 

(5.20) 
N(F'(0,0)) = { ( M ) : d = (di , -d i ,0 ,d4) , 

w(£) = a sin £ + ß cos £ — djttp}. 

To satisfy (2.11) we have to define a bilinear operator 

£ : D ( G ) x R 4 - > Ê = L2[0,7r]. 

We choose, e.g., 

(5.21) B(u, d) := d2u + d4u. 

With (5.20) this JE? satisfies (2.11) if and only if the rank of the matrix 

/ (pj(t) I 2(/>i(t)[asint = ßcost - d4up) + d2(j>i(t) + d4<^(£) ) * , 

f,y = 1,2, is 4. We obtain the matrix 

j = t = l : 8/3 0 -TT/2 7r3/6-h7r/2, 
y = l , t = 2 : 0 4/3 0 -TT/2 , 

y = 2, t = 1 : 0 4/3 0 TT/2, 

j = 2 = i: 4/3 0 -TT/2 TT3/6 - TT/2 

which indeed has the rank 4. 

It seems as if the choice of L,Q and B in (5.14), (5.19) and (5.21) 
required to define F in (5.15) relies very much upon the knowledge 
of N(G'(0)) and R(G'(0)) = N(G'(0)*)x . Indeed, we have chosen 
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L,<2 and B such that the condition (2.3)(ii), (2.11), (2.12) are satisfied 
with the known N(G'(0)) = N(G'(0)*). However, the choice of L 
in (5.14) would have been straightforward whenever any moderate 
approximation for N(G'(0)) would have been available. The same is 
true essentially for Q in (5.19). Since x^ and x^ are arbitrary anyway 
and for any x^ G R(G'(0)), the component of x^ in R(G'(0)) or in 
an approximation would have done as well. Finally, the B in (5.21) has 
not been related with N(G'(0)) at all. 

Now we apply a symmetric divided difference of formula to (5.7). We 
introduce a grid 

Ch := {t„ := vir/n, v = - 1 , . . . , 2n + 1} 

and 

The discretization of (5.7) with (5.9) would then be 

(5.7*) {zì+1-2z* + z*_1)/h
2+smz* + (z*)2=0ì i/ = 0 , l , . . . , 2n , 

yH yH yH yH 

(5-9") 4 + 4 , = 0, f L - ^ = l + « ^ 1 ^ - 1 = 0 . 

For F(x,c) (see (5.15), (5.19) and (5.21)) we would have 

FH{xHxh) = x ( ; + 1 - 2 ^ + ^ _ 1 + s i D x , + {xH)2 + C2XH 

+ C4Xu+1 ~X"~1 + (ci + c9) + c3tu + c4(2 - 7ctv + tl), 
In 

» = 0,l,...,2n,x* + xh
2h = 0, ^ - ^ + 2n+\h

 2 n ' 1 = ' 

The (Fx)
h(xh,ch)w? would be 

(F.)*(*\«*K = < ^ - 2 ^ + w t - i + (co8x»X + 2**<, 

+ c a < y + cr '•"+1 M ' - 1 , i/ = 0 , l , . . . , 2n , 
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and 
h„h _ Lnx 

xh 

{xh
n^-xh

n_1)/{2h) 

With these results we see that (5.5) and (5.6) are satisfied even without 
the 0(^)- terms. 

EXAMPLE 5.4. Consider the equation 

G(*,A) = 0 

where G : Cg([0, l]2) x R+ -> C([0, l]2) is of the form 

G(z,\) = Az + \f{z). 

We assume CQ([0, l]2) is the space of twice continuously differentiable 
functions defined on the unit square and vanishing on the boundary. 
In addition, let us assume that 

/ '(0) = 1, /(0) = 0. 

Then G'(z, \){w) = Aw + Xff(z)w and, in particular, 

G'(0,A)(w) = Aw + \w. 

Thus, on the A-axis, the eigenvalues of G'(0, A) are given by 

where s, t are positive integers. Now suppose that s2 4-t2 is factored 
(uniquely) into the form 

s
2+*2=2"np?ne 

i = l i=l 

where pi and qi are of the form pi = Ai + 1, <& = 4i + 3. Then it can be 
shown [31] that the multiplicity mSit of X3it is given by 

k 

mait = J I ( l + rt-). 
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Thus, if s2 + t2 = 8, then m = 1; if s2 + t2 = 10, then m = 2; if 
s2 + t2 = 50, then m = 3; if s2 + t2 = 65, then ra = 4, etc. If, in 
addition, / is an odd map, then according to [6] bifurcations of order 
m actually occur at (0, \Sit)-

It is not our aim at this point to carry through the entire discussion 
for the extension of G(x) = G(z,X) to / (x, c) = F(z, A,c). We confine 
this discussion to a few additional remarks. First of all, since q = 1, 
we have by (2.8) that 

Ps,t =m 5 ) t (mS ) t + l ) - 1. 

By (2.9), (2.26) and the subsequent discussion we have x = (z, A), xo 
= (0,AM)- Then 

G'{XQ)U = Aw + XSitu 

G"(xo)(uiv) = \Sitf"(0)uv 

and 
F(x, c) = G(x) + B(x, c) + Qc 

where 
£ : E x Rp - • È is bilinear 

Q : Rp - • È is linear. 

In general it will suffice to choose a random a E Rp — {0} and random 
linearly independent Z{ € CQ ([0, l]2), i = 1 , . . . , p. Then we may take 

v v 
F(x, c) = F(z, A, c) = G(z, A) + ] T c ^ + ^ o ^ . 

t= l i = l 

Since for practical numerical considerations it is not in general possible 
to work with this extension, we shall not continue the discussion of this 
example. 

Although we will not carry forth the further discussion of this example 
here, a few additional remarks concerning the numerical aspects of the 
case q = 1 ought to be made. First of all, for q = 1, a continuation 
method may be used to traverse the solution sets, since they are 1-
manifolds near regular points. In traversing these 1-manifolds one may 
monitor algebraic invariants of the Jacobians (e.g., the signature) in 
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order to empirically determine m at a singular point XQ. Secondly, in 
many examples arising from physical applications a great deal of a priori 
information concerning properties of the solutions may be available, 
e.g., symmetry, oscillations, etc. In order to avoid the numerically 
irrelevant solutions (which are likely to be present) and to possibly 
reduce slightly the dimension of the extension, these known properties 
ought to be incorporated into the extension F(x,c). 

For G : R n x Rq —• R n with q > 1 there are at the present time 
few general numerical techniques available for reliably tracing a q-
dimensional manifold MQ defined by 

G(* ,A)=0 

and these are still in a research state. One technique involves the use 
of continuation methods applied to restrictions so that varieties of 1-
manifolds are traced out. For a discussion of this approach, see the 
recent monograph of Rheinboldt [40]. Another approach involves the 
approximation of MQ by a piecewise-linear manifold which can then 
be iteratively refined in any local region. Discussions of this approach 
may be found in [4] and [5]. In both of these approaches it is possible 
to begin to isolate singular points and singular manifolds. However, it 
seems that these problems still require further exploration. 
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